Electronic Supplementary Information

Deprotonation Induced Formation of Möbius Aromatic [32]Heptaphyrins

Won-Young Cha,^a Tomoki Yoneda,^b Sangsu Lee,^a Jong Min Lim,^a Atsuhiro Osuka*^b and Dongho Kim*^a

^aDepartment of Chemistry, Yonsei University, Seoul 120-749, Korea, ^bDepartment of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.

E-mail: dongho@yonsei.ac.kr, osuka@kuchem.kyoto-u.ac.jp

Contents

- Fig. S1 ¹H NMR spectra of neutral and deprotonated 1, 2, and 3
- Fig. S2 Optimized molecular structures
- Fig. S3 NICS calculations
- Fig. S4-9 Bond lengths of neutral and deprotonated of 1, 2, and 3
- Fig. S10 TPA spectra and Z-scan curves

Fig. S1 ¹H NMR spectra of neutral and deprotonated species of (a) **1**, (b) **2** and (c) **3** in CDCl₃.

Fig. S2 Optimized molecular structures of neutral and deprotonated 1 (a, b), 2 (c, d) and 3 (e, f). All the *meso*-substituents and pyrrolic β -protons are omitted for clarity.

Fig S3. NICS values for neutral and deprotonated 1 (a, b), 2 (c, d) and 3 (e, f). The values were selected at z-axis of red positions. All the *meso*-substituents and pyrrolic β -protons are omitted for clarity.

Ato	m Aton	n Length	Ator	n Atom	Length
C	L C2	1.4586	C19	C20	1.4419
C	2 C3	1.3731	C20	C21	1.3712
C	3 C4	1.4594	C21	. C22	1.4574
C	4 C5	1.3688	C22	C23	1.3510
C	5 C6	1.4464	C23	C24	1.4568
C	5 N38	1.3239	C24	C25	1.3659
NB	8 C9	1.4080	C25	C26	1.4447
C	e c10	1.3631	C26	6 C27	1.4215
C1	0 C11	1.4444	C27	C28	1.4004
C1	1 C12	1.4023	C28	C29	1.4070
C1	2 C14	1.3949	C29	C30	1.4268
C1	4 C15	1.4054	C30	C31	1.3816
C1	5 C47	1.4280	C31	. N46	1.4076
C4	7 C16	1.3728	N46	6 C34	1.3397
C1	6 N41	1.4104	C34	C35	1.4419
N4	1 C19	1.3401	C35	C1	1.3731

Fig. S4 Calculated bond lengths of neutral 1. *Meso*-substituents and pyrrolic β -protons are omitted for clarity.

Atom	Atom	Length	Atom	Atom	Length		
C1	N35	1.3561	C18	C19	1.4416		
N35	C4	1.3754	C19	C20	1.4522		
C4	C5	1.3848	C20	N39	1.3283		
C5	C6	1.4425	N39	C23	1.4020		
C6	N36	1.3374	C23	C24	1.3733		
N36	С9	1.4089	C24	C25	1.4304		
С9	C10	1.3740	C25	N40	1.3592		
C10	C11	1.4319	N40	C28	1.3696		
C11	N37	1.3719	C28	C29	1.4135		
N37	C14	1.3606	C29	C30	1.3904		
C1 4	C42	1.4478	C30	N41	1.3932		
C42	C15	1.3759	N41	C33	1.3353		
C15	N38	1.3968	C33	C34	1.4513		
N38	C18	1.3351	C34	C1	1.4067		

Fig. S5 Calculated bond lengths of deprotonated 1. *Meso*-substituents and pyrrolic β -protons are omitted for clarity.

Atom	Atom	Length		Atom	Atom	Length		
C1	C2	1.4588		C18	C19	1.4378		
C2	С3	1.3517		C19	C20	1.3675		
С3	C4	1.4612		C20	C21	1.4575		
C4	С5	1.3663		C21	C22	1.3503		
С5	C6	1.4434		C22	C23	1.4586		
C6	N37	1.3249		C23	C24	1.3643		
N37	С9	1.4083		C24	C25	1.4449		
С9	C10	1.3595		C25	C26	1.4098		
C10	C11	1.4438		C26	C27	1.3996		
C11	C12	1.4022		C27	C28	1.4036		
C12	C13	1.3949		C28	C29	1.4245		
C13	C14	1.4048		C29	C30	1.3748		
C14	C46	1.4264		C30	N45	1.4071		
C46	C15	1.3713		N45	C33	1.3412		
C12	N40	1.4105		C33	C34	1.4384		
N40	C18	1.3425		C34	C1	1.3715		

Fig. S6 Calculated bond lengths of neutral 2. *Meso*-substituents and pyrrolic β -protons are omitted for clarity.

Atom	Atom	Length	Atom	Atom	Length		
C1	N35	1.3572	C18	C19	1.4393		
N35	C 4	1.3793	C19	C20	1.4524		
C 4	С5	1.3816	C20	N39	1.3306		
C5	C6	1.4379	N39	C23	1.4045		
C6	N36	1.3410	C23	C24	1.3755		
N36	С9	1.4081	C24	C25	1.4294		
С9	C10	1.3749	C25	N40	1.3622		
C10	C11	1.4305	N40	C28	1.3710		
C11	N37	1.3765	C28	C29	1.4165		
N37	C14	1.3605	C29	C30	1.3891		
C14	C42	1.4527	C30	N41	1.3978		
C42	C15	1.3756	N41	C33	1.3370		
C15	N38	1.4014	C33	C34	1.4518		
N38	C18	1.3379	C34	C1	1.4049		

Fig. S7 Calculated bond lengths of deprotonated **2**. *Meso*-substituents and pyrrolic β-protons are omitted for clarity.

Atom	Atom	Length	Atom	Atom	Length		
N1	C12	1.4005	C28	C41	1.3731		
C12	C13	1.3807	C41	C23	1.4619		
C13	C16	1.4431	C23	C33	1.3496		
C16	C37	1.4705	C33	C38	1.4582		
C37	C35	1.3497	C38	C15	1.3712		
C35	C21	1.4627	C15	C39	1.4405		
C21	C20	1.3635	C39	N8	1.3444		
C20	C17	1.4379	N8	C40	1.4074		
C17	С9	1.4053	C40	C43	1.3745		
С9	C34	1.3915	C43	C27	1.4240		
C34	C14	1.4057	C27	C10	1.4044		
C14	C18	1.4320	C10	C26	1.3943		
C18	C30	1.3674	C26	C11	1.4024		
C30	N7	1.4063	C11	C22	1.4453		
N7	C19	1.3333	C22	C42	1.3685		
C19	C28	1.4496	C42	N1	1.4193		

Fig. S8 Calculated bond lengths of neutral 3. *Meso*-substituents and pyrrolic β -protons are omitted for clarity.

Atom	Atom	Length	Atom	Atom	Length
N1	C10	1.4062	C26	C39	1.4359
C10	C11	1.3785	C39	N3	1.3310
C11	C14	1.4498	N3	C36	1.4074
C1 4	N4	1.3434	C36	C13	1.3634
N4	C19	1.3814	C13	C37	1.4572
C19	C18	1.4033	C37	N6	1.3334
C18	C15	1.3981	N6	C38	1.3850
C15	N2	1.3901	C38	C41	1.3996
N2	C12	1.3389	C41	C25	1.4026
C12	C16	1.4542	C25	N42	1.3821
C16	C28	1.3908	N42	С9	1.3330
C28	N5	1.3642	С9	C20	1.4559
N5	C17	1.3630	C20	C40	1.3724
C17	C26	1.3939	C40	N1	1.4110

Fig. S9 Calculated bond lengths of deprotonated 3. *Meso*-substituents and pyrrolic β -protons are omitted for clarity.

Fig S10. Two-photon absorption spectra (blue) and Z-scan traces (insets) of neutral (a, c) and deprotonated (b, d) of 1 (a, b) and 2 (c, d), respectively. The solid line indicates the steady-state absorption spectrum for comparison, and the solid line in inset is the best curve fit line of experimental data.