Supporting Information

Copper-Catalyzed Trifluoromethylation of N-Aryl Acrylamides On Water at Room Temperature

Fang Yang, Piyatida Klumphu, Yong-Min Liang* and Bruce H. Lipshutz*

a Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
e-mail: lipshutz@chem.ucsb.edu

b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, P.R. China
e-mail: liangym@lzu.edu.cn

Table of Contents

1 General Information S2
2 Experimental Details S2-4
3 Characterization Data S5-11
4 Experiments on Mechanism S12
5 References S12
6 Spectral data (1H NMR, 13C NMR, 19F NMR) S13-39
General Information

Commercially available reagents and solvents were used without further purification. Column chromatography was carried out using EMD silica gel 60 (0.040-0.063 mm). Thin-Layer-Chromatography analysis was conducted using commercially available EMD TLC Silica gel 60 F254 glass plates. \(^1\)H, \(^{13}\)C and \(^{19}\)F NMR spectra were recorded on a Varian 400 MHz, 500 MHz or 600 MHz spectrometer in CDCl\(_3\). High resolution mass spectral (HRMS) data were acquired on either a VF Autospec or an analytical VG-70-250 HF spectrometer. 1,3,5-Trifluorobenzene was used as an \(^{19}\)F NMR internal standard. \(^1\)H and \(^{19}\)F multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt) doublet of quartets (dq) and multiplet (m). Room temperature is 24 °C.

Table S1: Optimization of reaction conditions\(^d\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Additive</th>
<th>Solvent</th>
<th>Time (h) / Temp (°C)</th>
<th>Yield (%)(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CuCl (1 equiv)</td>
<td>-</td>
<td>DCM/H(_2)O = 2.5:1 (0.2 mL)</td>
<td>20 / 50</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>CuI (1 equiv)</td>
<td>-</td>
<td>DCM/H(_2)O = 2.5:1 (0.2 mL)</td>
<td>20 / 50</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>CuCl(_2) (1 equiv)</td>
<td>-</td>
<td>DCM/H(_2)O = 2.5:1 (0.2 mL)</td>
<td>20 / 50</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>CuSO(_4)•5H(_2)O (1 equiv)</td>
<td>-</td>
<td>DCM/H(_2)O = 2.5:1 (0.2 mL)</td>
<td>20 / 50</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Cu(OAc)(_2)•H(_2)O (1 equiv)</td>
<td>-</td>
<td>DCM/H(_2)O = 2.5:1 (0.2 mL)</td>
<td>20 / 50</td>
<td>49</td>
</tr>
<tr>
<td>6</td>
<td>Cu(NO(_3))(_2)•2.5H(_2)O (1 equiv)</td>
<td>-</td>
<td>DCM/H(_2)O = 2.5:1 (0.2 mL)</td>
<td>20 / 50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Cu(NO(_3))(_2)•2.5H(_2)O (1 equiv)</td>
<td>phen</td>
<td>2 wt% TPGS-750-M (0.2 mL)</td>
<td>24 / RT</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Cu(NO(_3))(_2)•2.5H(_2)O (1 equiv)</td>
<td>DBU</td>
<td>2 wt% TPGS-750-M (0.2 mL)</td>
<td>24 / RT</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>Cu(NO(_3))(_2)•2.5H(_2)O (1 equiv)</td>
<td>TMEDA</td>
<td>2 wt% TPGS-750-M (0.2 mL)</td>
<td>48 / RT</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>Cu(NO(_3))(_2)•2.5H(_2)O (20%)</td>
<td>TMEDA</td>
<td>2 wt% TPGS-750-M (0.2 mL)</td>
<td>24 / RT</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>Cu(NO(_3))(_2)•2.5H(_2)O (10%)</td>
<td>TMEDA</td>
<td>2 wt% TPGS-750-M (0.2 mL)</td>
<td>24 / RT</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>Cu(NO(_3))(_2)•2.5H(_2)O</td>
<td>TMEDA</td>
<td>2 wt% TPGS-750-M</td>
<td>24 / RT</td>
<td>87</td>
</tr>
</tbody>
</table>
These reactions were carried out by using 1a (0.1 mmol) with CF$_3$SO$_2$Na (1.5 equiv) and TBHP (3.5 equiv). * Determined by 19F NMR analysis using 1,3,5-trifluorobenzene as an internal standard.

Table S2. NaSO$_2$CF$_3$/TBHP ratio screen for Cu-catalyzed trifluoromethylation of 1aa

<table>
<thead>
<tr>
<th>Entry</th>
<th>CF$_3$SO$_2$Na (x equiv)</th>
<th>TBHP (y equiv)</th>
<th>Time</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>3.0</td>
<td>6 h</td>
<td>tracec</td>
</tr>
<tr>
<td>2</td>
<td>1.3</td>
<td>3.5</td>
<td>3 h</td>
<td>75e</td>
</tr>
<tr>
<td>3</td>
<td>1.3</td>
<td>4.0</td>
<td>3 h</td>
<td>73e</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>3.0</td>
<td>6 h</td>
<td>15e</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>3.5</td>
<td>1 h</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>4.0</td>
<td>1 h</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3.5</td>
<td>1 h</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4.0</td>
<td>1 h</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>5.5</td>
<td>1 h</td>
<td>58</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>7.0</td>
<td>1 h</td>
<td>52</td>
</tr>
</tbody>
</table>

a Reaction conditions: 1a (0.1 mmol), Cu(NO$_3$)$_2$·2.5H$_2$O (10 mol %), TMEDA (10 mol %), CF$_3$SO$_2$Na (x equiv) and TBHP (y equiv) in H$_2$O (0.5 M).

b Determined by 19F NMR analysis using 1,3,5-trifluorobenzene as an internal standard.

c Incomplete reaction.

Studies on E Factors:

All aqueous media excluded as waste
Solvents used: 1mL EtOAc (0.898g)
Product: 0.284 g
Yield: 80%

$$E-\text{Factors} = \frac{0.898 \text{ g waste}}{0.284 \text{ g product}} = 3.2$$
All aqueous media included as waste
Solvents used: 2 mL H2O (2 g)
1mL EtOAc (0.898g)
Product: 0.284 g
Yield: 80%
E-Factors = $\frac{(0.898 + 2) \text{ g waste}}{0.284 \text{ g product}} = 10.2$

Based on
Total organic solvent 3.2
Aqueous media included 10.2

General Procedures for Cu-Catalyzed Aryltrifluoromethylation

For substrates 1a, 1c–f, 1k, 1l and 1o–q: In a 10 mL microwave reaction tube, substrates 1 (0.3 mmol), CF3SO2Na (1.5 equiv), Cu(NO3)2•2.5H2O (10 mol %), TMEDA (10 mol %) and water (0.6 mL) were added. Then TBHP (3.5 equiv., 70% aqueous) was added dropwise to the mixture. The mixture was stirred at room temperature for the indicated time until complete consumption of starting material as monitored by TLC. Upon completion, the mixture was extracted with EtOAc and concentrated in vacuo affording the crude product, which was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to give the corresponding products 2 (2a, 2c–f, 2k, 2l and 2o–q).

For substrates 1b, 1g–j, 1m, 1n and 1r: In a 10 mL microwave reaction tube, substrates 1 (0.3 mmol), CF3SO2Na (3.0 equiv), Cu(NO3)2•2.5H2O (10 mol %), TMEDA (10 mol %) and water (0.6 mL) were added. Then TBHP (7.0 equiv., 70% aqueous) was added dropwise to the mixture. The mixture was stirred at room temperature until complete consumption of starting material as monitored by TLC. Upon completion, the mixture was extracted with EtOAc and concentrated in vacuo affording the crude product, which was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to give the desired products 2 (2b, 2g–j, 2m, 2n and 2r).
Characterization Data

1,3-Dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2a)

Yield 75%; white solid; 1H NMR (500 MHz, CDCl$_3$) δ 7.34 – 7.29 (m, 1H), 7.26 (d, $J = 4.0$ Hz, 1H), 7.09 (dt, $J = 7.6$, 0.8 Hz, 1H), 6.88 (d, $J = 7.8$ Hz, 1H), 3.24 (s, 1H), 2.82 (dq, $J = 15.2$, 10.7 Hz, 1H), 2.65 (dq, $J = 15.2$, 10.5 Hz, 1H), 1.41 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 178.4, 142.8, 131.0, 128.5, 125.2 (q, $J = 278.1$ Hz), 123.5, 122.6, 108.4, 44.4, 40.6 (q, $J = 28.3$ Hz), 26.4, 25.0. 19F NMR (376 MHz, CDCl$_3$) δ -62.0 (t, $J = 10.6$ Hz).

3-Methyl-1-phenyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2b)

Yield 62%; white solid; 1H NMR (500 MHz, CDCl$_3$) δ 7.53 (dt, $J = 10.0$, 1.9 Hz, 1H), 7.45 – 7.38 (m, 3H), 7.33 (d, $J = 7.4$ Hz, 1H), 7.24 (dt, $J = 7.8$, 1.3 Hz, 1H), 7.13 (dt, $J = 7.5$, 1.0 Hz, 1H), 6.84 (d, $J = 7.9$ Hz, 1H), 2.97 (dq, $J = 15.1$, 10.7 Hz, 1H), 2.73 (dq, $J = 15.2$, 10.4 Hz, 1H), 1.54 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 177.9, 142.9, 134.3, 130.7, 129.6, 128.4, 128.2, 126.6, 123.7 (d, $J = 1.2$ Hz), 123.0, 109.7, 44.5 (d, $J = 2.1$ Hz), 41.1 (q, $J = 28.2$ Hz), 25.4. 19F NMR (376 MHz, CDCl$_3$) δ -61.9 (t, $J = 10.6$ Hz).

5-Methoxy-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2d)

Yield 75%; white solid; 1H NMR (500 MHz, CDCl$_3$) δ 6.87 (d, $J = 2.5$ Hz, 1H), 6.82 (dd, $J = 8.5$, 2.5 Hz, 1H), 6.77 (d, $J = 8.4$ Hz, 1H), 3.79 (s, 3H), 3.20 (s, 3H), 2.80 (dq, $J = 15.2$, 10.5 Hz, 1H), 2.65 (dq, $J = 15.2$, 10.7 Hz, 1H), 1.41 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 178.4, 142.8, 131.0, 128.5, 125.2 (q, $J = 278.1$ Hz), 123.5, 122.6, 108.4, 44.4, 40.6 (q, $J = 28.3$ Hz), 26.4, 25.0. 19F NMR (376 MHz, CDCl$_3$) δ -62.0 (t, $J = 10.6$ Hz).
Hz, 1H), 2.61 (dq, J = 15.2, 10.5 Hz, 1H), 1.38 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 178.0, 156.0, 136.3, 132.3, 128.2, 126.3, 124.1, 112.5, 111.2, 108.7, 55.8, 44.7 (d, J = 2.2 Hz), 40.52 (q, J = 28.9 Hz), 26.4, 25.0. 19F NMR (376 MHz, CDCl$_3$) δ -61.9 (t, J = 10.6 Hz).

1,3,5-Trimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2e)1,2,3

Yield 73%; white solid; 1H NMR (500 MHz, CDCl$_3$) δ 7.10 (d, J = 7.9 Hz, 1H), 7.07 (s, 1H), 6.77 (d, J = 7.9 Hz, 1H), 3.21 (s, 3H), 2.80 (dq, J = 15.1, 10.7 Hz, 1H), 2.62 (dq, J = 15.1, 10.5 Hz, 1H), 2.35 (s, 3H), 1.39 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 178.4, 140.5, 132.2, 131.1, 128.7, 126.4, 124.3 (d, J = 1.4 Hz), 108.1, 44.4 (d, J = 2.1 Hz), 40.61 (q, J = 28.2 Hz), 26.4, 25.0, 21.1. 19F NMR (376 MHz, CDCl$_3$) δ -61.9 (t, J = 10.6 Hz).

5-Fluoro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2f)1,3

Yield 72%; colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.04 – 6.98 (m, 2H), 6.80 (dd, J = 9.2, 4.2 Hz, 1H), 3.22 (s, 1H), 2.82 (dq, J = 15.2, 10.4 Hz, 1H), 2.62 (dq, J = 15.2, 10.4 Hz, 1H), 1.40 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 178.1, 159.3 (d, J = 241.0 Hz), 138.8 (d, J = 1.7 Hz), 132.6 (d, J = 8.3 Hz), 125.1 (q, J = 278.2 Hz), 114.8 (d, J = 23.5 Hz), 111.8 (dd, J = 25.0, 1.6 Hz), 108.9 (d, J = 8.2 Hz), 44.8 (d, J = 2.0 Hz), 40.5 (q, J = 28.4 Hz), 26.6, 24.9. 19F NMR (376 MHz, CDCl$_3$) δ -62.0 (t, J = 10.5 Hz), -120.4 (td, J = 8.3, 4.0 Hz).
5-Chloro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2g)1,2,3

Yield 72%; white solid; 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.29 (dd, \(J = 2.0, 0.9\) Hz, 1H), 7.28 (dd, \(J = 2.0, 0.9\) Hz, 1H), 7.24 (d, \(J = 1.8\) Hz, 1H), 6.80 (d, \(J = 8.3\) Hz, 1H), 3.22 (s, 3H), 2.83 (dq, \(J = 15.2, 10.6\) Hz, 1H), 2.62 (dq, \(J = 15.2, 10.4\) Hz, 1H), 1.40 (s, 3H). 13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 177.9, 141.4, 132.7, 128.5, 128.1, 126.1, 124.1, 123.9, 109.4, 44.6, 40.55 (q, \(J = 28.4\) Hz), 26.5, 24.9. 19F NMR (376 MHz, CDCl\textsubscript{3}) \(\delta\) -62.0 (t, \(J = 10.5\) Hz).

5-Bromo-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2h)1,2,3

Yield 82%; white solid; 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.43 (dd, \(J = 8.3, 1.9\) Hz, 1H), 7.37 (d, \(J = 1.8\) Hz, 1H), 6.75 (d, \(J = 8.3\) Hz, 1H), 3.21 (s, 3H), 2.81 (dq, \(J = 15.2, 10.6\) Hz, 1H), 2.62 (dq, \(J = 15.2, 10.4\) Hz, 1H), 1.39 (s, 3H). 13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 177.8, 141.9, 133.0, 131.4, 126.8 (d, \(J = 1.5\) Hz), 126.1, 123.9, 115.3, 109.9, 44.5, 40.5 (q, \(J = 28.4\) Hz), 26.5, 24.9. 19F NMR (376 MHz, CDCl\textsubscript{3}) \(\delta\) -62.0 (t, \(J = 10.5\) Hz).

5-Iodo-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2i)1,2,3

Yield 75%; white solid; 1H NMR (600 MHz, CDCl\textsubscript{3}) \(\delta\) 7.62 (dd, \(J = 8.2, 1.6\) Hz, 1H), 7.54 (d, \(J = 1.2\) Hz, 1H), 6.66 (d, \(J = 8.2\) Hz, 1H), 3.20 (s, 3H), 2.81 (dq, \(J = 15.2, 10.6\) Hz, 1H), 2.61 (dq, \(J = 15.2, 10.4\) Hz, 1H), 1.39 (s, 3H). 13C NMR (151 MHz, CDCl\textsubscript{3}) \(\delta\) 177.6, 142.6, 137.4,
133.4, 132.3, 110.5, 85.0, 44.3, 40.56 (q, J = 28.3 Hz), 26.5, 24.9. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -62.0 (t, J = 10.5 Hz).

1,3-Dimethyl-3-(2,2,2-trifluoroethyl)-5-(trifluoromethyl)indolin-2-one (2j)

Yield 63%; white solid, mp 86-88 °C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.60 (dd, J = 8.2, 0.8 Hz, 1H), 7.49 (s, 1H), 6.96 (d, J = 8.2 Hz, 1H), 3.27 (s, 3H), 2.86 (dq, J = 15.2, 10.6 Hz, 1H), 2.69 (dq, J = 15.1, 10.3 Hz, 1H), 1.44 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 178.3, 145.8, 131.5, 126.4 (q, J = 4.0 Hz), 126.1, 125.2, 124.9, 123.9, 123.2, 120.6, 108.3, 44.3 (d, J = 2.1 Hz), 40.6 (q, J = 28.5 Hz), 26.6, 24.9. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -61.6, -62.1 (t, J = 10.5 Hz). HRMS (EI) calcd. for C\(_{13}\)H\(_{11}\)F\(_6\)NO, 311.0745; found: 311.0742.

4-Methoxy-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2k)

Total yield 74%; colorless oil; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.26 (t, J = 9.2 Hz, 1H), 6.63 (d, J = 8.5 Hz, 1H), 6.53 (d, J = 7.8 Hz, 1H), 3.86 (s, 3H), 3.20 (s, 3H), 2.98 (dq, J = 14.8, 10.5 Hz, 1H), 2.80 (dq, J = 14.8, 10.7 Hz, 1H), 1.43 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 178.9, 156.3, 144.0, 129.7, 126.4, 124.2, 116.6, 105.8, 101.7, 55.4, 44.2, 39.0 (q, J = 27.9 Hz), 26.6, 22.9. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -64.1 (t, J = 10.7 Hz). HRMS (EI) calcd. For C\(_{13}\)H\(_{14}\)F\(_3\)NO\(_2\), 273.0977; found: 273.0974.

6-Methoxy-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one 2k’

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.15 (d, J = 8.2 Hz, 1H), 6.58 (dd, J = 8.2, 2.3 Hz, 1H), 6.46 (d, J = 2.3 Hz, 1H), 3.83 (s, 3H), 3.21 (s, 3H), 2.77 (dq, J = 15.2, 10.8 Hz, 1H), 2.61 (dq, J = 15.2, 10.5 Hz, 1H), 1.37 (s, 3H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 179.1, 160.4, 144.1, 130.1, 124.2, 122.9, 113.2, 106.5, 96.4, 55.5, 43.9, \(\delta\) 40.7 (d, J = 22.6 Hz), 26.4, 25.1. \(^{19}\)F NMR
(376 MHz, CDCl$_3$) δ -62.0 ($t, J = 10.6$ Hz). HRMS (EI) calcd. for C$_{13}$H$_{14}$F$_3$NO$_2$, 273.0977; found: 273.0978.

4,6-Dimethoxy-1,3-dimethyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2l)
Yield 50%; white solid, mp 85-87 °C; 1H NMR (500 MHz, CDCl$_3$) δ 6.17 ($d, J = 2.0$ Hz, 1H), 6.11 ($d, J = 2.0$ Hz, 1H), 3.83 (s, 3H), 3.83 (s, 3H), 3.19 (s, 3H), 2.92 (dq, $J = 14.8, 10.6$ Hz, 1H), 2.76 (dq, $J = 14.8, 10.7$ Hz, 1H), 1.40 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 179.5, 161.8, 157.0, 144.6, 126.4, 124.2, 108.7, 92.4, 88.4, 55.5 ($d, J = 20.6$ Hz), 43.9, 39.2 ($q, J = 27.6$ Hz), 26.6, 23.2. 19F NMR (376 MHz, CDCl$_3$) δ -64.1 ($t, J = 10.5$ Hz). HRMS (EI) calcd. for C$_{14}$H$_{16}$F$_3$NO$_3$, 303.1082; found: 303.1074.

1-Methyl-1-(2,2,2-trifluoroethyl)-5,6-dihydro-1H-pyrrolo[3,2,1-ij]quinolin-2(4H)-one (2m)1,3
Yield 58%; colorless oil; 1H NMR (500 MHz, CDCl$_3$) δ 7.10 ($d, J = 7.4$ Hz, 1H), 7.05 (dd, $J = 7.7, 0.8$ Hz, 1H), 6.97 ($t, J = 7.6$ Hz, 1H), 3.74 – 3.71 (m, 2H), 2.86 – 2.72 (m, 3H), 2.70 – 2.58 (m, 1H), 2.07 – 1.95 (m, 2H), 1.41 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 177.3, 138.6, 129.7, 127.3, 126.5, 124.3, 122.0, 121.4 ($d, J = 1.6$ Hz), 120.5, 45.6, 40.4 ($q, J = 28.3$ Hz), 39.0, 24.5 ($d, J = 8.3$ Hz), 21.1. 19F NMR (376 MHz, CDCl$_3$) δ -61.9 ($t, J = 10.7$ Hz).
1-Methyl-3-phenyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2n)1,2,3

Yield 50%; colorless oil; 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.40 (dt, \(J = 7.7, 0.9\) Hz, 1H), 7.35 – 7.27 (m, 6H), 7.17 (t, \(J = 7.4\) Hz, 1H), 6.94 (d, \(J = 7.8\) Hz, 1H), 3.43 (dq, \(J = 15.2, 10.8\) Hz, 1H), 3.23 (s, 3H), 3.05 (dq, \(J = 15.2, 10.4\) Hz, 1H). 13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 176.7, 143.8, 138.6, 129.1, 128.8, 127.9, 126.4, 126.0, 124.0, 108.7, 105.0, 40.9 (q, \(J = 28.1\) Hz), 26.7. 19F NMR (376 MHz, CDCl\textsubscript{3}) \(\delta\) -61.20 (t, \(J = 10.3\) Hz).

![Image of 2n](image_url)

3-(Hydroxymethyl)-1-methyl-3-(2,2,2-trifluoroethyl)indolin-2-one (2o)1,2

Yield 71%; yellow oil; 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.36 (t, \(J = 7.7\) Hz, 1H), 7.28 (d, \(J = 7.4\) Hz, 1H), 7.11 (t, \(J = 7.6\) Hz, 1H), 6.91 (d, \(J = 7.8\) Hz, 1H), 3.74 (d, \(J = 11.0\) Hz, 1H), 3.67 (d, \(J = 11.1\) Hz, 1H), 3.24 (s, 3H), 3.10 – 3.00 (m, 1H), 2.86 – 2.75 (m, 1H), 2.71 (d, \(J = 10.2\) Hz, 1H). 13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 177.1, 143.6, 129.1, 127.0, 126.7, 124.5, 124.0, 122.9, 108.7, 67.4, 49.8, 36.4 (q, \(J = 28.7\) Hz), 26.4. 19F NMR (376 MHz, CDCl\textsubscript{3}) \(\delta\) -61.5 (t, \(J = 10.6\) Hz).

![Image of 2o](image_url)

1-Methyl-2-oxo-3-(2,2,2-trifluoroethyl)indolin-3-yl)methyl acetate (2p)1,2

Yield 77%; light yellow oil; 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 7.35 (dt, \(J = 7.8, 1.1\) Hz, 1H), 7.29 (d, \(J = 7.4\) Hz, 1H), 7.09 (dt, \(J = 7.6, 0.8\) Hz, 1H), 6.89 (d, \(J = 7.8\) Hz, 1H), 4.39 (d, \(J = 10.9\) Hz, 1H), 4.07 (d, \(J = 10.9\) Hz, 1H), 3.24 (s, 3H), 2.93 – 2.86 (m, 1H), 2.86 – 2.78 (m, 1H), 1.96 (s, 3H). 13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 175.1, 170.0, 143.6, 129.3, 126.5, 126.3, 124.6 (d, \(J = 1.3\) Hz), 124.0, 122.7, 108.5, 97.3, 67.0, 48.2, 36.7 (q, \(J = 29.1\) Hz), 26.5, 20.5.
19F NMR (376 MHz, CDCl$_3$) δ -61.4 (t, $J = 10.4$ Hz).

![Image of compound 2q]

3-(Methoxymethyl)-1-methyl-3-(2,2,2-trifluoroethyl)indolin-2-one 2q1,3

Yield 80%; white solid; 1H NMR (500 MHz, CDCl$_3$) δ 7.37 (d, $J = 7.4$ Hz, 1H), 7.33 (dt, $J = 7.8$, 1.2 Hz, 1H), 7.08 (dt, $J = 7.6$, 0.9 Hz, 1H), 6.87 (d, $J = 7.8$ Hz, 1H), 3.60 (d, $J = 8.8$ Hz, 1H), 3.37 (d, $J = 9.0$ Hz, 1H), 3.27 (s, 3H), 3.23 (s, 3H), 2.94 (dq, $J = 15.2$, 10.6 Hz, 1H), 2.80 (dq, $J = 15.2$, 10.8 Hz, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 175.8, 143.5, 129.4, 128.7, 128.2, 126.6, 124.9 (d, $J = 1.2$ Hz), 124.4, 122.5, 108.3, 76.4, 59.6, 49.5, 36.7 (q, $J = 28.7$ Hz), 26.4. 19F NMR (376 MHz, CDCl$_3$) δ -61.5 (t, $J = 10.6$ Hz).

![Image of compound 2r]

2-((1-Methyl-2-oxo-3-(2,2,2-trifluoroethyl)indolin-3-yl)methyl)isoindoline-1,3-dione (2r)1,2,3

Yield 90%; white solid; 1H NMR (500 MHz, CDCl$_3$) δ 7.85 – 7.82 (m, 1H), 7.72 (dd, $J = 5.5$, 3.0 Hz, 1H), 7.31 (td, $J = 7.8$, 1.1 Hz, 1H), 7.23 (d, $J = 7.4$ Hz, 1H), 7.03 (dd, $J = 11.2$, 3.9 Hz, 1H), 6.88 (d, $J = 7.8$ Hz, 1H), 3.99 (d, $J = 14.2$ Hz, 1H), 3.88 (d, $J = 14.2$ Hz, 1H), 3.24 (s, 2H), 3.08 (dq, $J = 15.6$, 10.4 Hz, 1H), 2.98 (dq, $J = 15.6$, 10.4 Hz, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 175.5, 168.0, 143.4, 134.2, 131.6, 129.3, 126.6, 126.1, 124.4, 123.9, 123.6, 122.5, 108.7, 48.4, 44.0, 38.07 (q, $J = 28.2$ Hz), 26.6. 19F NMR (376 MHz, CDCl$_3$) δ -61.5 (t, $J = 10.3$ Hz).
Experiments in the presence of TEMPO.

(I) In a 10 mL microwave reaction tube, substrates \(1a\) (0.3 mmol), CF\(_3\)SO\(_2\)Na (1.5 equiv), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 1.5 equiv), Cu(NO\(_3\))\(_2\)\(\cdot\)2.5H\(_2\)O (10 mol %), TMEDA (10 mol %) and water (0.6 mL) were added. TBHP (3.5 equiv., 70% aqueous) was then added dropwise to the mixture which was stirred at RT for 2 h. \(^{19}\)F NMR analysis (using 1,3,5-trifluorobenzene as an \(^{19}\)F NMR internal standard) of this reaction mixture showed that TEMPO-CF\(_3\) was formed in 16% yield; formation of \(2a\) was totally suppressed by TEMPO, suggestive that this transformation may involve the CF\(_3\) radical.

(II) In a 10 mL microwave reaction tube, CF\(_3\)SO\(_2\)Na (1.0 equiv., 0.3 mmol), TEMPO (1.0 equiv., 0.3 mmol), Cu(NO\(_3\))\(_2\)\(\cdot\)2.5H\(_2\)O (10 mol %), TMEDA (10 mol %) and water (0.6 mL) were added. TBHP (2.5 equiv., 70% aqueous) was then added dropwise to the mixture. The mixture was stirred at RT for 2 h. \(^{19}\)F NMR analysis of this reaction mixture showed that TEMPO-CF\(_3\) was formed in 14% yield. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -55.66 (s, 3F).

References:
Spectral data