Supporting Information for

A mild and catalyst-free conversion of solid phase benzylidenemalononitrile/benzylidenemalonate to N-benzylidene-amine and its application for primary alkyl amine vapor fluorescence detection

Liqi Shia,b, Yanyan Fua, Chao Hea, Defeng Zhua, Yixun Gaoa,b, Yuerong Wanga,b, Qingguo Hea, Huimin Caoa, Jiangong Chenga

a State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China. E-mail: hqg@mail.sim.ac.cn (Q. He), jgcheng@mail.sim.ac.cn (J. Cheng)

b Graduate School of the Chinese Academy of Sciences, Yuquan Road 19, Beijing 100039, China
Experimental Section

General:
UV-vis absorption and fluorescence analysis conducted on a Jasco V-670 spectrophotometer and a Jasco FP 6500 spectrometer, respectively. The 1H and 13C-NMR spectra were obtained from a Bruker DRX500 instrument, tetramethylsilane (TMS) was used as an internal standard. Mass spectra were recorded on BIFLEX III MALDI-TOF (Bruker Daltonics Inc.) and GCT-MS Micromass UK mass spectrometers. GPC experiments were performed with Waters GPC system using THF as eluent. Cyclic voltammetry experiments were performed with a CH Instruments electrochemical analyzer. The electrochemical behaviors were investigated in a standard three electrode electrochemical cell with 0.1 M tetra-n-butylammonium hexafluorophosphate (Bu$_4$NPF$_6$) in acetonitrile solution, (a glassycarbon working electrode, a platinum counter electrode and a saturated calomel electrode (SCE) as a reference electrode) and the scanning rate was 100 mV/s under nitrogen at room temperature.

Preparation of polymer film for SEM measurement
First a solution of P1 and P2 in toluene (5×10^{-3} M) was prepared, then the film was fabricated onto quartz plate with a size of 10 mm \times 20 mm by spin-coating with a speed of 2500 rpm, then it is vacuum dried to remove the solvent residue and ready for the SEM measurement.

Synthesis and Characterization

Diethyl 2-(4-(bis(4-bromophenyl)amino)benzylidene)malonate (M1)
Several drops of piperidine was added to a solution of 4-(bis(4-bromophenyl)amino)benzaldehyde (4.3 g) and diethyl malonate (1.6 g) in 50 mL CH$_3$CN to initiate the reaction. The solution was stirred at 60°C for 12 h. After the solvent was removed, the residue was purified by column separation with silica-gel to afford yellowish-green solid 5.2 g (yield 91%).

1H-NMR (500 MHz, CDCl$_3$, δ): 7.61 (s, 1H) 7.40 (d, 4H, 8.5 Hz) 7.32 (d, 2H, 8.5 Hz)
9.0 Hz), 6.97 (d, 4H, 8.5 Hz), 6.96 (d, 2H, 9.0 Hz), 4.34 (q, 2H, 7.0 Hz), 4.29 (q, 2H, 7.0 Hz), 1.32 (t, 6H, 7.0 Hz);

13C-NMR (500 MHz CDCl$_3$): 167.11 (1C), 164.44 (1C), 149.07 (1C), 145.42 (2C), 141.18 (1C), 132.70 (4C), 131.22 (2C), 126.75 (4C), 126.49 (1C), 123.71 (1C), 121.76 (2C), 117.18 (2C), 61.61 (1C), 61.48 (1C), 14.15 (1C), 13.97 (1C);

MALDI-TOF MS: 573.0 m/z

2-(4-(bis(4-bromophenyl)amino)benzylidene)malononitrile (M2)

Several drops of piperidine was added to a solution of 4-(bis(4-bromophenyl)amino)benzaldehyde (4.3 g) and malononitrile (0.8 g) in 50 mL CH$_3$CN to initiate the reaction. The solution was stirred at 60°C for 12 h. After the solvent was removed, the residue was purified by column separation with silica-gel to afford a red solid 4.3 g (yield 90%).

1H-NMR(500 MHz, CDCl$_3$, δ): 7.76 (d, 2H, 9.0 Hz), 7.55 (s, 1H), 7.49 (d, 4H, 8.5 Hz), 7.04 (d, 4H, 8.5 Hz), 6.98 (d, 2H, 9.0 Hz);

13C-NMR (500 MHz CDCl$_3$): 157.81 (1C), 152.40 (1C), 144.05 (2C), 133.18 (4C), 132.92 (2C), 132.56 (1C), 127.84 (4C), 126.01 (1C), 123.81 (1C), 119.48 (2C), 119.22 (2C), 114.77 (1C);

MALDI-TOF MS: 479.0 m/z

N-(4-(bis(4-bromophenyl)amino)benzylidene)propylamine from Diethyl 2-(4-(bis(4-bromophenyl)amino)benzylidene)malonate

A solution of Diethyl 2-(4-(bis(4-bromophenyl)amino)benzylidene)malonate (1.4 × 10$^{-3}$ M) was spincoated onto quartz, then it is dried under vacuum to afford the sensing film. The sensing film was put inside an atmosphere of n-propylamine for 5 min, then it is dried under vacuum to afford the target compound in a yield of 100%.

1H-NMR(500MHz CDCl$_3$, δ): 8.19 (s, 1H), 7.59 (d, 2H, 8.5 Hz), 7.37 (d, 4H, 8.5 Hz), 7.03 (d, 2H, 8.5 Hz), 6.96 (d, 4H, 8.5 Hz), 3.55 (t, 2H), 1.71 (dt, 2H), 0.95 (t, 3H);

13C-NMR(500 MHz CDCl$_3$): 159.85 (1C), 148.85 (1C), 145.95 (2C), 132.51 (4C), 131.12 (1C), 129.19 (2C), 126.14 (4C), 122.98 (2C), 116.35 (2C), 63.49 (1C), 24.10 (1C), 11.82 (1C).

HR-MS: calcd 469.9993 for C$_{22}$H$_{20}$N$_2$Br$_2$, found 469.9995.
N-(4-(bis(4-bromophenyl)amino)benzylidene)-propylamine from 2-(4-(bis(4-bromophenyl)amino)benzylidene)malononitrile

A solution of 2-(4-(bis(4-bromophenyl)amino)benzylidene)malononitrile (1.4 × 10^{-3} M) was spincoated onto quartz, then it is dried under vacuum to obtain the sensing film. The sensing film was put inside an atmosphere of n-propylamine for 5 min, then it is dried under vacuum to afford the target compound in a yield of 100%.

\(^1\)H-NMR(500 MHz CDCl\textsubscript{3}, δ): 8.19 (s, 1H), 7.59 (d, 2H, 8.5Hz), 7.37 (d, 4H, 8.5Hz), 7.03(d,2H , 8.5Hz), 6.96 (d, 4H, 8.5Hz), 3.55 (t, 2H,), 1.71(dt, 2H), 0.95(t, 3H);

\(^{13}\)CNMR (500 MHz CDCl\textsubscript{3}): 159.85(1C), 148.85(1C), 145.95(2C), 132.51(4C),131.12(1C), 129.19(2C), 126.14(4C), 122.98(2C), 116.35 (2C), 63.49(1C), 24.10(1C), 11.82(1C).

HR-MS: calcd 469.9993 for C\textsubscript{22} H\textsubscript{20} N\textsubscript{2} Br\textsubscript{2}, found 469.9995

Synthesis of P1

Under Ar atmosphere protection, to a mixture of 2,2'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (240 mg), diethyl 2-(4-(bis(4-bromophenyl)amino)benzylidene)malonate (176 mg), aliquat 336 (20 mg), and Pd(PPh\textsubscript{3})\textsubscript{4} (34 mg, 0.03 mmol) was added 6 mL freshly distilled and degassed toluene and 2 mL K\textsubscript{2}CO\textsubscript{3} aqueous solution(2mol/L) by injection, then kept stirring at 90\(^\circ\)C for 48 h. Cooled to room temperature, the reaction mixture was extracted with CH\textsubscript{2}Cl\textsubscript{2}, washed with brine and dried over MgSO\textsubscript{4}. Then it is reprecipitated in MeOH for three times and extracted with acetone for 24 h to remove the oligomer and the catalyst. After dried under vacuum 160 mg (yield 49.5%) deep green solid was obtained.

\(^1\)H-NMR(500 MHz, CDCl\textsubscript{3}, δ): 7.85-7.75(2H), 7.70-7.62(4H), 7.62-7.55(4H), 7.52-7.45(s,1H) 7.41-7.32(d,2H) 7.15-7.07(d,2H), 4.39-4.32(2H), 4.32-4.25(2H), 2.11-1.97(4H), 1.40-1.27(6H), 1.17-1.07(22H), 0.85-0.67(10H).

Mn = 7555 Da PDI=1.90
Synthesis of P2

Under Ar atmosphere protection, to a mixture of 2,2'-((9,9-dioctyl-9H-fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (214 mg), 2-(4-(bis(4-bromophenyl)amino)benzylidene)malononitrile (150 mg), aliquat 336 (20 mg), and Pd(PPh₃)₄ (34 mg, 0.03 mmol) was added 6 mL freshly distillled and degassed toluene and 2 mL K₂CO₃ aqueous solution(2mol/L) by injection, then kept stirring at 90°C for 48 h. The reaction mixture was extracted with CH₂Cl₂, and dried over MgSO₄. It is precipitated in MeOH for three times, then extracted with acetone to remove the oligomer and the catalyst. After dried under vacuum, 150 mg (yield 56.2%) deep-red solid could be obtained.

¹H-NMR(500 MHz, CDCl₃, δ): 7.78-7.72(5H), 7.72-7.62(4H), 7.62-7.53(6H), 7.37-7.30(4H), 7.23-7.15(2H), 2.15-2.00(4H), 1.17-1.07(22H), 0.87-0.65(10H).

Mₙ = 8934 Da PDI=4.40
Figure S1 UV-vis absorption, emission and CV spectra of P0, P1 and P2 in film state.
Table S1. Optical, Electrochemical Properties and energy level of P0, P1 and P2

<table>
<thead>
<tr>
<th></th>
<th>λ_{max Abs} (nm)</th>
<th>λ_{max PL} (nm)</th>
<th>E_{ox} (eV)</th>
<th>E_g (eV)</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>378</td>
<td>430</td>
<td>0.91</td>
<td>2.95</td>
<td>-5.65 ev</td>
<td>-2.70</td>
</tr>
<tr>
<td>P1</td>
<td>380</td>
<td>531</td>
<td>0.94</td>
<td>2.71</td>
<td>-5.68 ev</td>
<td>-2.97</td>
</tr>
<tr>
<td>P2</td>
<td>376</td>
<td>573</td>
<td>1.09</td>
<td>2.36</td>
<td>-5.83 ev</td>
<td>-3.47</td>
</tr>
</tbody>
</table>

E_{HOMO} = e(E_{ox} + 4.741) (eV), \hspace{1cm} E_{LUMO} = E_g + E_{HOMO}

Table S2. Reaction selectivity

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amine</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n-Propylamine</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>n-Hexamine</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>Benzylamine</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>Aniline</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Diisopropylamine</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Diethylamine</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Triethylamine</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>N,N-Dimethylbenzylamine</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Cyclohexylamine</td>
<td>0</td>
</tr>
</tbody>
</table>

All samples were treated by exposed in amine vapors for 5mins then vacuumed and tested by 1H-NMR with CDCl3.
Figure S2 Proposed mechanism of M1 and M2 with primary alkyl amine

Figure S3 13C-NMR of M1, M2 and the Schiff base product
Figure S4 Visible color (a) and fluorescence (b) of P2. 1: P2 on filter paper stripe. 1': P2 on quartz chip. 2: P2 on filter paper stripe after exposed to saturated benzylamine vapor for 300 s. 2': P2 on quartz chip after exposed to saturated benzylamine vapor for 300 s.

Figure S5 Detection limit for Benzylamine (BZA), 30 ppm calculated
We supposed the reaction between P2 and primary alkyl amine follows a first order reaction.

Namely, \(X + Y \rightarrow Z \)

Among them, \(X: \) C=C structure \(\quad Y: \) amine \(\quad Z: \) C=N structure

Chemical equilibrium: \([Z] = k [X][Y] \)

\([X]\) was regarded as constant at low concentration of \(Y \), so that \([Z]\) was regarded as linear to \([Y]\).

Intensity of \(Z \) regarded as linear to concentration of \(Y \) and the limitation of detection could be calculated from the extension of linear fitting.

Since the value of \((I-I_0)/I_0 \) is 20% , 70% and 230% fluorescent enhancement under 50, 100 and 200 ppm benzylamine, respectively, the detection limit could be calculated to be 30 ppm.