Supporting information for: Activation of gaseous PH₃ with low coordinate diaryltetrylenes

Jonathan W. Dubeᵃ, Zachary D. Brownᵇ, Christine A. Caputoᵇ, Philip P. Powerᵇ, and Paul J. Ragognaᵃ*

ᵃ Department of Chemistry and The Center for Advanced Materials and Biomaterials Research (CAMBR)
The University of Western Ontario
1151 Richmond St. London, Ontario, Canada N6A 5B7.
b Department of Chemistry
The University of California
1 Shields Ave. Davis, California, USA

Contents

Figure S-1: Proton NMR spectrum of compound 1 showing the presence of the GeAr₂H₂ impurity (δ_H = 4.62 GeH₂; 25% relative to 1). Insets show the hydride signals of 1
Figure S-2: Phosphorus-31 NMR spectrum of compound 1
Figure S-3: Proton coupled phosphorus-31 NMR spectrum of compound 1
Figure S-4: FT-IR spectrum of compound 1 showing the presence of the GeAr₂H₂ impurity (ν = 2115 cm⁻¹)
Figure S-5: Full and zoomed stack plots of the Phosphorus-31 NMR spectra (top: proton decoupled, bottom: proton coupled) of the crude reaction mixture of GeAr₂ and phosphine.
Figure S-6: Phosphorus-31 NMR spectrum of the resdissolved solids from the crude reaction mixture of GeAr₂ and phosphine showing the ratio of the products.
Figure S-7: Proton NMR spectrum of the mixture of the crude solids containing both compound 3 and 4 after attempted separation. Insets show hydride signals attributable to compound 3.
Figure S-8: Phosphorus-31 NMR spectrum of the solids obtained after attempted separation of 3 and 4 from crude reaction mixture of SnAr₂ and phosphine.

Figure S-9: Proton coupled phosphorus-31 NMR spectrum of the solids obtained after attempted separation of 3 and 4 from crude reaction mixture of SnAr₂ and phosphine.

Figure S-10: Phosphorus-31 NMR spectrum focused on the signal attributed to compound 4 highlighting the tin-117 and tin-119 satellites

Figure S-11: Phosphorus-31 NMR spectrum focused on the signal attributed to compound 3 highlighting the tin-117 and tin-119 satellites

Figure S-12: Full and zoomed stack plots of the Phosphorus-31 NMR spectra (top: proton decoupled, bottom: proton coupled) of the solids obtained after attempted separation of 3 and 4 from the crude reaction mixture of SnAr₂ and phosphine.

Figure S-13: Phosphorus-31 NMR spectrum of the redissolved solids from the crude reaction mixture of SnAr₂ and phosphine showing the ratio of the products.

Figure S-14: Full and zoomed stack plots of the Phosphorus-31 NMR spectra (top: proton decoupled, bottom: proton coupled) of the crude reaction mixture of GeAr₂ (top two spectra) and SnAr₂ (bottom two spectra) with phosphine.

Figure S-15: ORTEP diagrams of the solids-state structure of 1 highlighting the disorder of the germanium and phosphorus atoms (91:9 A:B occupancy ratio). Ellipsoids are drawn to 50% probability and all hydrogen atoms are shown.
Figure S-1: Proton NMR spectrum of compound 1 showing the presence of the GeAr₂H₂ impurity (δ_H = 4.62 GeH₂; 25% relative to 1). Insets show the hydride signals of 1.

Figure S-2: Phosphorus-31 NMR spectrum of compound 1
Figure S-3: Proton coupled phosphorus-31 NMR spectrum of compound 1

Figure S-4: FT-IR spectrum of compound 1 showing the presence of the GeAr₂H₂ impurity (ν = 2115 cm⁻¹)
Figure S-5: Full and zoomed stack plots of the Phosphorus-31 NMR spectra (top: proton decoupled, bottom: proton coupled) of the crude reaction mixture of GeAr$_2$ and phosphine.
Figure S-6: Phosphorus-31 NMR spectrum of the redissolved solids from the crude reaction mixture of GeAr₂ and phosphine showing the ratio of the products.

Figure S-7: Proton NMR spectrum of the crude solids containing both compound 3 and 4 after attempted separation. Insets show hydride signals attributable to compound 3.
Figure S-8: Phosphorus-31 NMR spectrum of the solids obtained after attempted separation of 3 and 4 from crude reaction mixture of SnAr₂ and phosphine.

Figure S-9: Proton coupled phosphorus-31 NMR spectrum of the solids obtained after attempted separation of 3 and 4 from crude reaction mixture of SnAr₂ and phosphine.
Figure S-10: Phosphorus-31 NMR spectrum focused on the signal attributed to compound 4 highlighting the tin-117 and tin-119 satellites

Figure S-11: Phosphorus-31 NMR spectrum focused on the signal attributed to compound 3 highlighting the tin-117 and tin-119 satellites
Figure S-12: Full and zoomed stack plots of the Phosphorus-31 NMR spectra (top: proton decoupled, bottom: proton coupled) of the solids obtained after attempted separation of 3 and 4 from the crude reaction mixture of SnAr₂ and phosphine.
Figure S-13: Phosphorus-31 NMR spectrum of the redissolved solids from the crude reaction mixture of SnAr₂ and phosphine showing the ratio of the products.
Figure S-14: Full and zoomed stack plots of the Phosphorus-31 NMR spectra (top: proton decoupled, bottom: proton coupled) of the crude reaction mixture of GeAr₂ (top two spectra) and SnAr₂ (bottom two spectra) with phosphine.
Figure S-15: ORTEP diagrams of the solids-state structure of 1 highlighting the disorder of the germanium and phosphorus atoms (91:9 A:B occupancy ratio). Ellipsoids are drawn to 50% probability and all hydrogen atoms are shown.