Supplemental material for:

Enantioselective Construction of Vicinal All-Carbon Quaternary Centers via Catalytic Double Asymmetric Decarboxylative Allylation

Santanu Ghosh, Subhajit Bhunia, Badrinath N. Kakde, Subhadip De, and Alakesh Bisai*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Indore By-Pass Road, Bhopal, MP- 462 066, India. E-Mail: alakesh@iiserb.ac.in

Table of Contents

Materials and Methods	S2
Procedure and characterization of $\pm(3 \text{ and } 9)$	S3 - S5
Procedure and characterization of ±(20a and 20b)	S5 - S6
Procedure and characterization of $\pm(11 \text{ and } 12)$	S7 - S8
Procedure for the synthesis of $(\pm \text{ and } meso)$ -4	S8 - S9
Optimization of enantioselective double decarboxylative allylations	S9 - S11
Procedure of enantioselective double decarboxylative allylations	S12
Procedure for the synthesis of (± and <i>meso</i>)-10	S13
Procedure and Characterization of (-)-10	S14 - S15
Synthesis and characterization of (–)-13	S16 - S17
¹ H, ¹³ C-NMR and mass spectral graphics	S18 - S44
HPLC traces	S45 - S56
¹ H-NMR of crude materials	S57 – S60

Materials and Methods

Unless otherwise stated, reactions were performed in oven-dried glassware fitted with rubber septa under an inert atmosphere and were stirred with Teflon-coated magnetic stirring bars. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Tetrahydrofuran (THF) and diethyl ether (Et₂O) were distilled over sodium/benzophenone ketyl. Dichloromethane (CH₂Cl₂), toluene, and benzene were distilled over calcium hydride. All other solvents and reagents were used as received unless otherwise noted. Reaction temperatures above 23 °C refer to oil bath temperature. Thin layer chromatography was performed using silicagel 60 F-254 precoated plates (0.25 mm) and visualized by UV irradiation, anisaldehyde stain and other stains. Silicagel of particle size 100-200 mesh was used for flash chromatography. Melting points were recorded on a digital melting point apparatus from Jyoti Scientific (AN ISO 9001:2000) and are uncorrected. ¹H and ¹³C NMR spectra were recorded 400, 500 MHz spectrometers with ¹³C operating frequencies of 100, 125 MHz respectively. Chemical shifts (δ) are reported in ppm relative to the residual solvent (CDCl₃) signal (δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants, number of hydrogen). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). IR spectra were recorded on a FT-IR system (Spectrum BX) and are reported in frequency of absorption (cm⁻¹). Only selected IR absorbencies are reported. High-Resolution Mass Spectrometry (HRMS) and Low-Resolution Mass Spectrometry (LRMS) data were recorded on MicrOTOF-Q-II mass spectrometer using methanol as solvent. Optical rotations were measured on an Autopol I automatic polarimeter, Rudolph research analytical. Enantiomeric excess was determined by chiral HPLC analysis performed on PerkinElmer Technologies and Agilent Technologies HPLC system with Daicel Chiralpak AD-H and Daicel Chiralpak IB column.

General Procedure for the synthesis of bis-esters $\pm(3 \text{ and } 9)$:

Step 1:

An oven-dried round-bottom flask under argon atmosphere was charged with 5.44 g (136.05 mmol; 4.0 equiv) of NaH (60% suspension in mineral oil) in toluene (40 mL) at room temperature. After 15 minutes of stirring, the solution of compound **16** (34.01 mmol; 1.0 equiv) and diallylcarbonate (9.76 mL, 68.03 mmol; 2.0 equiv) in 40 mL toluene was added to the reaction mixture drop wise at room temperature. The reaction mixture was stirred at room temperature for another 15 minutes then it was placed on an oil-bath maintaining the temperature 110 °C and stirring continued for another 3 h at same temperature. Upon completion of the reaction (monitoring by TLC), the reaction was cooled to 0 °C and 3 mL of glacial acetic acid was added drop wise to the reaction mixture and stirring was continued for 1 h. Then, the reaction mixture was filtered through celite-bed and the filtrate was evaporated under vacuum to dryness. The crude product was washed with water (2 X 100 mL) and extracted with EtOAc (2 X 150 mL). The organic layer was concentrated to dryness in rotary evaporator under reduced pressure.

Step 2:

In an oven-dried round-bottom flask, crude compound $\pm(17)$ (1.0 equiv) was taken in dry THF (60 mL) at room temperature. To this reaction mixture KO'Bu (4.58 g, 40.81 mmol; 1.2 equiv.) was added in one portion. After 5 minutes of stirring at same temperature, molecular iodine (10.36 g, 40.81 mmol, 1.2 equiv) was added and stirring was continued for 30 minutes (TLC showed complete consumption of starting materials). The reaction mixture was diluted with 150 mL of EtOAc and then treated with 15 mL saturated aqueous sodium thiosulfate solution at room temperature. The whole reaction

mixture was taken in a separatory funnel and extracted with ethyl acetate (100 mL x 2). The organic layer was dried over anhydrous Na_2SO_4 and concentrated in a rotary evaporator under reduced pressure. Finally, the crude products were purified by flash chromatography (3:2 hexanes/EtOAc) to afford product $\pm(3)$ and $\pm(9)$. These products were recrystallized from dichloromethane and hexane to afford white solids.

(±)-Diallyl 1,1'-dimethyl-2,2'-dioxo-[3,3'-biindoline]-3,3'-dicarboxylate ±(3): 5.9 g (76% yield over two steps) of ±(3) as a white solid. $R_f = 0.24$ (30% EtOAc in hexane); ¹H-NMR (400 MHz, CDCl₃, spectrum of 3.6:1 dr) δ 7.32-7.24 (m, 2H for major + 4H for minor diastereomers), 7.18-7.14 (m, 2H for major diastereomer), 6.89 (t, J = 7.6 Hz, 2H for major + 2H for minor diasteromers), 6.74 (d, J = 7.8 Hz, 2H for minor diastereomer), 6.56 (d, J = 7.8 Hz, 2H for major diastereomer), 5.87-5.78 (m, 2H for major + 2H for minor diastereomers), 5.2-5.11 (m, 4H for major + 4H for minor diastereomers), 4.72-4.59 (m, 4H for major + 4H for minor diastereomer), 3.05 (s, 6H for minor diastereomer); ¹³C-NMR (100 MHz, CDCl₃, spectrum contains approximately 3.6:1 diastereomers) δ 170.7, 170.2, 166.7, 166.1, 144.7, 144.0, 131.5, 131.4, 130.1, 129.7, 126.2, 126.1, 123.6, 123.2, 122.1, 122.07, 118.3, 118.0, 108.1, 107.8, 66.7, 66.6, 61.8, 26.5, 26.47; **IR** (film) v_{max} 2925, 1744, 1731, 1609, 1493, 1471, 1372, 1349, 1263, 1227, 1133, 1089, 1028, 934, 755 cm⁻¹; **HRMS** (ESI) m/z 461.1726 [M+H]⁺; calculated for [C₂₆H₂₄N₂O₆ + H]⁺: 461.1707; **MP** 122–124 °C.

(±)-1,1'-Dibenzyl-2,2'-dioxo-[3,3'-biindoline]-3,3'-dicarboxylate ±(9): 5.0 g (73% yield over two steps) of ±(9) as a white solid. $R_f = 0.3$ (30% EtOAc in hexane); ¹H-NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 7.6 Hz, 2H), 7.24-7.18 (m, 10H), 7.11 (t, J = 7.7 Hz, 2H), 6.85 (t, J = 7.6 Hz, 2H), 6.56 (d, J = 7.8 Hz, 2H), 5.83-5.74 (m, 2H), 5.16-5.11 (m, 4H), 5.01 (d, J = 15.7 Hz, 2H), 4.72-4.61 (m, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 170.4, 166.4, 143.5, 135.3, 131.3, 129.6, 128.6, 127.5, 127.4, 126.9, 124.2, 122.3, 118.2, 109.0, 66.6, 61.8, 44.1; **IR** (film) v_{max} 2929, 1746, 1732, 1605, 1467, 1364, 1217, 1170, 752 cm⁻¹; **HRMS** (ESI) m/z 613.2352 [M+H]⁺; calculated for [C₃₈H₃₂N₂O₆ + H]⁺: 613.2333; **MP** 132–135 °C.

General Procedure for the synthesis of dihydroisoindigo $\pm (20a \text{ and } 20b)$:¹

References:

¹ J.J. T. Link, L. E. Overman, J. Am. Chem. Soc. **1996**, 118, 8166.

(±)-1,1'-Dimethyl-[3,3'-biindoline]-2,2'-dione ±(20a): 9.0 g (90% yield) of ±(20a) as a white solid. $R_f = 0.25$ (20% EtOAc in hexanes); ¹H-NMR (400 MHz, CDCl₃, spectrum of 1.8:1 dr) δ 7.23-7.19 (m, 2H for major diastereomer), 7.05-7.01 (m, 2H for minor diastereomer), 6.87-6.81 (m, 2H for major + 2H for minor diastereomer), 6.74-6.68 (m, 4H for major + 2H for minor diastereomer), 6.60 (d, J = 7.8 Hz, 2H for minor diastereomer), 4.21 (s, 2H for minor diastereomer), 4.10 (s, 2H for major diastereomer), 3.03 (s, 6H for major diastereomer); ¹³C-NMR (100 MHz, CDCl₃, spectrum of 1.8:1 dr) δ 175.9, 174.7, 145.0, 144.2, 128.8, 128.4, 125.9,

124.8, 123.3, 123.29, 122.4, 122.3, 108.3, 108.0, 46.2, 46.1, 26.3, 26.2; **IR** (film) v_{max} 3057, 2934, 2889, 1714, 1613, 1494, 1471, 1421, 1376, 1350, 1267, 1127, 1092, 1021, 751, 734 cm⁻¹; **HRMS** (ESI) m/z 293.1299 [M+H]⁺; calculated for $[C_{18}H_{16}N_2O_2 + H]^+$: 293.1285; **MP** 184–186 °C.

(±)-1,1'-Dibenzyl-[3,3'-biindoline]-2,2'-dione ±(20b): 9.4 g (94% yield) of ±(20b) as a yellow gel. $R_f = 0.32$ (20% EtOAc in hexanes); ¹H-NMR (400 MHz, CDCl₃, spectrum of 1.3:1 dr) δ 7.27-7.24 (m, 4H), 7.14-7.09 (m, 10H), 7.04-7.02 (m, 6H), 6.79 (t, J = 7.4 Hz, 2H), 6.72-6.68 (m, 4H), 6.57 (t, J = 7.4 Hz, 4H), 4.92-4.91 (m, 2H for minor diastereomer), 4.88-4.86 (m, 2H for major diastereomer), 4.66 (d, J = 15.8 Hz, 4H for minor diastereomer), 4.29 (d, J = 19.7 Hz, 4H for major diastereomer) δ 175.9, 174.8, 144.2, 143.5, 135.6, 128.8, 128.7, 128.6, 128.4, 127.9, 127.8, 128.4, 127.2, 125.8, 124.8, 124.1, 123.7, 122.5, 122.4, 109.5, 108.9, 46.3, 46.1, 44.1, 43.9; **IR** (film) ν_{max} 3060, 3034, 2925, 1714, 1696, 1615, 1487, 1469, 1381, 1361, 1266, 1178, 1103, 1081, 1030, 1012, 936, 919, 876, 846, 751, 728, 697 cm⁻¹; **HRMS** (ESI) m/z 445.1913 [M+H]⁺; calculated for [C₃₀H₂₄N₂O₂ + H]⁺: 445.1911.

General Procedure for the synthesis of ester-carbonates $\pm(11 \text{ and } 12)$:

In an oven-dried round-bottom flask, the dihydroisoindigo $\pm(20)$ (17.12 mmol; 1.0 equiv) was taken in dry THF (15 mL) under inert atmosphere and the reaction vessel

was cooled to 0 °C. To this reaction mixture NaH (60% suspension in mineral oil, 1.5 g, 37.67 mmol; 2.2 equiv) was added portion-wise and it was stirred for 5 min. Then allyl chloroformate (4.0 mL; 37.67 mmol; 2.2 equiv) was added very slowly drop-wise over a period of 20 minutes to the reaction mixture at 0 °C. Then the reaction mixture was stirred for another 2 h. Upon completion of the reactions the reaction mixture was quenched with ice-water (100 mL) and then diluted with 150 mL of EtOAc. The whole reaction mixture was taken in a separatory funnel and extracted with ethyl acetate (100 mL X 2). The organic filtrate was dried over anhydrous Na₂SO₄ and concentrated in a rotary evaporator under reduced pressure. Finally, the crude products were purified by flash chromatography using (15-20) % EtOAc/hexane as eluent to afford product ±(**11** and **12**). These products were recrystallized from diethylether and hexane to afford reddish solid of ±(**11**) and ±(**12**).

(±)-Allyl 3-(2-(((allyloxy)carbonyl)oxy)-1-methyl-1H-indol-3-yl)-1-methyl-2oxoindoline-3-carboxylate ±(11): 5.9 g (75% yield) of ±(11) as a red solid. $R_f = 0.45$ (20% EtOAc in hexanes); ¹H-NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.4 Hz, 1H), 7.37 (t, J = 7.7 Hz, 1H), 7.24-7.15 (m, 2H), 7.09-6.98 (m, 3H), 6.89 (d, J = 7.8 Hz, 1H), 5.94-5.78 (m, 2H), 5.38-5.29 (m, 2H), 5.22-5.13 (m, 2H), 4.76-4.72 (m, 1H), 4.66-4.49 (m, 3H), 3.52 (s, 3H), 3.23 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.5, 168.5, 151.5, 144.4, 140.0, 132.5, 131.4, 130.7, 129.5, 126.6, 126.0, 124.2, 122.6, 122.0, 120.3, 120.27, 119.8, 118.5, 109.2, 108.2, 95.9, 70.0, 66.7, 58.3, 28.4, 26.6; **IR** (film) ν_{max} 2923, 1777, 1771, 1746, 1608, 1470, 1367, 1346, 1223, 1130, 1089, 1055, 993, 942, 910, 740 cm⁻¹; **HRMS** (ESI) m/z 461.1728 [M+H]⁺; calculated for [C₂₆H₂₄N₂O₆ + H]⁺: 461.1707; **MP** 139–141 °C.

(±)-Allyl 3-(2-(((allyloxy)carbonyl)oxy)-1-benzyl-1H-indol-3-yl)-1-benzyl-2oxoindoline-3-carboxylate ±(12): 4.9 g (72% yield) of ±(12) as a red solid. $R_f = 0.5$ (20% EtOAc in hexanes); ¹H-NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.1 Hz, 1H), 7.37-7.36 (m, 2H), 7.31-7.2 (m, 8H), 7.16-7.12 (m, 4H), 7.09-7.02 (m, 2H), 6.69 (d, J = 7.8 Hz, 1H), 5.88-5.79 (m, 1H), 5.72-5.62 (m, 1H), 5.22-5.14 (m, 7H), 4.77-4.65 (m, 3H), 4.30-4.25 (m, 1H), 4.17-4.10 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 172.7, 168.6, 151.2, 143.7, 139.8, 136.4, 135.6, 132.3, 131.3, 130.5, 129.4, 128.7, 128.68, 127.55, 127.52, 127.4, 126.8, 126.2, 125.9, 124.8, 122.6, 122.3, 120.9, 120.6, 119.6, 118.8, 109.9, 109.2, 96.2, 69.8, 66.8, 58.6, 46.1, 44.2; **IR** (film) v_{max} 2925, 2855, 1778, 1746, 1728, 1608, 1487, 1468, 1453, 1359, 1229, 1211, 991, 914, 912, 736 cm⁻¹; **HRMS** (ESI) m/z 613.2352 [M+H]⁺; calculated for [C₃₈H₃₂N₂O₆+H]⁺: 613.2333; **MP** 75–77 °C.

Double stereoablative process for the synthesis of (± and meso)-4:

3,3'-Diallyl-1,1'-dimethyl-[3,3'-biindoline]-2,2'-dione (4): In an oven-dried sealed tube under argon atmosphere, bis-ester (\pm and *meso*) **3** (0.13 mmol; 1.0 equiv) was dissolved in dry degassed (4 mL) THF. After that 10 mol% of Pd(PPh₃)₄ was added to that reaction mixture. Then the reaction mixture was placed over an oil bath mentioning temperature 75 °C for 1 h. After full consumption of starting material (monitored by TLC) the reaction mixture was concentrated and purified by column chromatography (4 :1

hexanes/EtOAc) to afford 43 mg of 4 (90% yield) as white crystalline solid. R_f 0.65 (20% EtOAc in hexanes). 4 (± : *meso* = 6.6:1) was determined by ¹H NMR analysis of crude reaction mixture. Enantiomeric separation was performed *via* HPLC analysis using a Chiralpak AD-H column; solvent: hexane/2-propanol = 95/5; flow rate: 1.0 mL/min; detection: at 254 nm): t_R (1st enantiomer) = 9.41 min, t_R (2nd enantiomer) = 13.12 min.

Catalytic Enantioselective double decarboxylative allylations:

[Optimization using *N*-methyl bis-esters as substrate]:

Table:	1

Entry ^a	Catalyst	Ligand	Solvent	Temp (°C)	Time	Yield (%) ^b	ee (%)	dr
1	5 mo l %	8c (15 mo l %)	toluene	30	15 h	73	74	7:1
2	5 mol %	8c (15 mo l %)	DCE	30	24 h	С	_	
3	5 mo l %	8c (15 mo l %)	CH_2CI_2	30	24 h	С	_	
4	5 mo l %	8c (15 mo l %)	DEE	30	12 h	91	75	7.6:1
5	5 mo l %	8c (15 mo l %)	THF	30	24 h	С	_	
6	5 mo l %	8c (15 mo l %)	DME	30	24 h	С	_	
7	5 mol %	8a (15 mo l %)	toluene	30	36h	74	-19	7.1:1
8	5 mol %	8a (15 mo l %)	DEE	30	15 h	92	-16	11.3:1
9	5 mo l %	8b (15 mo l %)	toluene	30	48 h	78	-5	7:1
10	5 mo l %	8b (15 mo l %)	DEE	30	14 h	89	-19	8.2:1

^aReactions were carried out on a 0.065 mmol of substrate in 3 mL of solvent in a sealed tube for specified time, unless otherwise stated. ^bIsolated yield after column chromatography. ^cStarting material was recovered in 72-80 %.

Table: 2

Entry ^a	Catalyst	Ligand (8c)	Solvent	Temp (°C)	Time	Yield (%) ^b	ee (%)	dr
1	2.5 mol %	7.5 mol%	toluene	30	16 h	72	71	7.3:1
2	2.5 mo l %	7.5 mol%	DEE	30	16 h	90	83	6.5:1
3	2.5 mo l %	7.5 mol%	toluene	0	18 h	75	95	19.8:1
4	2.5 mo l %	7.5 mol%	DEE	0	12 h	89	91	16.2:1
5	2.5 mol %	7.5 mo l %	DEE	-10	18 h	88	97	17:1

^aReactions were carried out on a 0.065 mmol of substrate in 3 mL of solvent in a sealed tube for specified time, unless otherwise stated. ^bIsolated yield after column chromatography.

Scope using *N*-methyl ester-carbonates:

 Et_2 O, -10 °C, 12 h, 92%: ee = 98%, dr = 15.9:1

റ്

(S,S)-4

Me

Ghosh, Bhunia, Kakde, De, and Bisai, Supporting Information 12

Scope using (1:1) mixture of *N*-methyl bis-esters-(3) and ester-carbonates-(11):

(3*S*,3'*S*)-3,3'-Diallyl-1,1'-dimethyl-[3,3'-biindoline]-2,2'-dione (*S*,*S*)-4: In an ovendried sealed tube, solvent (1.5 mL) was degassed by using nitrogen balloon at room temperature over a period of 10 minutes. 2.5 mol% of Pd₂(dba)₃ and 7.5 mol% ligand (8c) were added to it and stirred for 20 minutes until greenish color persisted. Then the reaction mixture was cooled to specified temperature and then bis-ester (± and *meso*) **3** (0.065 mmol; 1.0 equiv) was dissolved in degassed (1.5 mL) of corresponding solvent then the solution was added drop wise to the complex solution. The reaction mixture was stirred for specified time at same temperature. After complete consumption of starting material (monitored by TLC) the reaction mixture was concentrated and purified by column chromatography (4 :1 hexanes/EtOAc) to afford 21 mg (88% yield) of (*S*,*S*)-4 as white crystalline solid. R_f = 0.65 (20% EtOAc in hexanes); ¹H-NMR (400 MHz, CDCl₃) δ 6.98-6.91 (m, 4H), 6.77-6.73 (m, 2H), 6.33 (d, *J* = 7.8 Hz, 2H), 5.02-4.89 (m, 4H), 4.69-4.66 (m, 2H), 3.59-3.54 (m, 2H), 2.99 (s, 6H), 2.96-2.94 (m, 2H); ¹³C-NMR (100

MHz, CDCl₃) δ 176.9, 143.3, 132.5, 128.2, 128.1, 123.4, 121.6, 118.8, 107.2, 55.9, 33.2, 25.6; **IR** (film) v_{max} 2926, 2852, 1705, 1693, 1610, 1374, 1354, 1124, 922, 759 cm⁻¹; **HRMS** (ESI) m/z 373.1924 [M+H]⁺; calculated for [C₂₄H₂₄N₂O₂ + H]⁺: 373.1911; **MP** 217–220 °C; Enantiomeric excess of pure compound was determined *via* HPLC analysis using a Chiralpak AD-H column; solvent: hexane/2-propanol = 95/5; flow rate: 1.0 mL/min; detection: at 254 nm): $t_{\rm R}$ major = 9.62 min, $t_{\rm R}$ minor = 13.45 min. [α]_D ^{27.0} = -244 (c = 0.40, CHCl₃, for 97% ee).

Procedure for the synthesis of $(\pm$ and *meso*)-10:

3,3'-diallyl-1,1'-dibenzyl-[3,3'-biindoline]-2,2'-dione 10: In an oven-dried sealed tube, bis-ester (\pm and *meso*) **9** (60 mg, 0.1 mmol; 1.0 equiv was dissolved in dry degassed (4 mL) of THF. After that 10 mol% of Pd(PPh₃)₄ was added to that reaction mixture. Then the reaction mixture was placed over an oil bath mentioning temperature 75 °C for 1 h. After full consumption of starting material (monitored by TLC) the reaction mixture was concentrated and purified by column chromatography (10-15)% hexanes/EtOAc to afford 44 mg of **10** (86 % yield) as white crystalline solid. $R_f = 0.71$ (20% EtOAc in hexanes). **10** (\pm : *meso* = 5.1:1) was determined by ¹H NMR analysis of crude reaction mixture. Enantiomeric separation was performed *via* HPLC analysis using a Chiralpak IB column; solvent: hexane/2-propanol = 98/2; flow rate: 1.0 mL/min; detection: at 238 nm): t_R (1st enantiomer) = 12.40 min, t_R (2nd enantiomer) = 15.20 min.

Scope using *N*-benzyl bis-esters:

*Et*₂O, 0 °*C*, *12 h*, *90%* : *ee* = >*99%*, *dr* = *9.4*:1

Scope using *N*-benzyl ester-carbonates:

Et₂O, 0°C, 12 h, 83%: ee = 97%, dr = 8.6:1

Scope using (1:1) mixture of *N*-benzyl bis-esters (9) and ester-carbonates (12):

(3S,3'S)-3,3'-diallyl-1,1'-dibenzyl-[3,3'-biindoline]-2,2'-dione (-)-10: In an oven-dried sealed tube, Et₂O (2 mL) was degassed by using nitrogen balloon at room temperature over a period of 10 minutes. 2.5 mol% of Pd₂(dba)₃ and 7.5 mol% ligand (8c) were added to it and stirred for 20 minutes until greenish color persisted. After that the complex solution was cooled to 0 °C. Then bis-ester (± and *meso*) 9 (60mg, 0.1 mmol; 1.0 equiv) was dissolved in degassed (2 mL) of Et₂O and the solution was added drop wise to the complex solution. The reaction mixture was stirred for specified time at same temperature. After full consumption of starting material (monitored by TLC) the reaction mixture was concentrated and purified by column chromatography (10-15)% hexanes/EtOAc to afford 47 mg (90% yield) of (S,S)-10 as white solid. $R_f = 0.71$ (20% EtOAc in hexanes); ¹H-NMR (400 MHz, CDCl₃) δ 7.28-7.23 (m, 6H), 7.21-7.19 (m, 4H), 7.06 (d, J = 7.4 Hz, 2H), 6.90 (td, J = 7.7, 0.8 Hz, 2H), 6.69 (t, J = 7.3 Hz, 2H), 6.34 (d, J = 7.8 Hz, 2H), 5.10 (d, J = 15.6 Hz, 2H), 5.06-5.02 (m, 4H), 4.78 (t, J = 6.0Hz, 2H), 4.46 (d, J = 15.6 Hz, 2H), 3.73 (dd, J = 14.5, 3.4 Hz, 2H), 3.12-3.07 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 177.1, 142.7, 135.5, 132.5, 128.6, 128.2, 128.0, 127.6, 127.5, 124.0, 121.9, 119.2, 108.4, 55.7, 43.7, 34.1; **IR** (film) v_{max} 3075, 2977, 2919, 2848, 1703, 1698, 1467, 1368, 1357, 1221, 1178, 1113, 995, 919, 754, 697 cm⁻¹; HRMS (ESI) m/z 525.2523 $[M+H]^+$; calculated for $[C_{36}H_{32}N_2O_2 + H]^+$: 525.2537; MP 223–226 °C; Enantiometric excess of pure compound was determined via HPLC analysis using a Chiralpak IB column; solvent: hexane/2-propanol = 98/2; flow rate: 1.0 mL/min; detection: at 238 nm): $t_{\rm R}$ major = 11.93 min, $t_{\rm R}$ minor = 15.38 min. $[\alpha]_{\rm D}^{27.4} = -268$ (c = 0.36, CHCl₃). Reported: B. M. Trost, M. Osipov, Angew. Chem., Int. Ed. 2013, 52, 9176.; $[\alpha]_{D}^{22} = -296 \ (c = 1.08, CH_2Cl_2).$

General Procedure for the synthesis of bis-aldehyde (–)-13:

N-methyl morpholine-*N*-oxide (111 mg, 0.95 mmol; 5.0 equiv) and OsO₄ (0.1 mL, 4% solution in water) was added to a stirred solution of compound (–)-**10** (0.20 mmol; 1.0 equiv) in CH₂Cl₂ (7 mL) at room temperature. Then the reaction mixture was stirred for 5 h at same temperature. Upon completion of starting material (monitored by TLC) the reaction mixture was quenched with saturated Na₂SO₃ (1 mL) and extracted with CH₂Cl₂ (3 X 50 mL). The extracted organic layer was concentrated under reduced pressure. The crude material was directly dissolved in 10 mL THF : H₂O (4:1) mixture. Then to that reaction mixture, NaIO₄ (202 mg, 0.95 mmol; 5.0 equiv) was added at 0 °C and stirred for 1 h. The reaction mixture was diluted with EtOAc (50 mL) and partitioned by adding water. The extracted organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was washed with ether (2 X 5 mL) to afford compound (–)-**13**, as a white solid.

2,2'-((3*S***,3'***S***)-1,1'-dibenzyl-2,2'-dioxo-[3,3'-biindoline]-3,3'-diyl)diacetaldehyde (-)-13: 82mg (82% yield) as a white solid. R_f = 0.45 (50% EtOAc in hexanes); ¹H-NMR (400 MHz, CDCl₃) \delta 9.37 (s, 2H), 7.33-7.24 (m, 10H), 6.91 (t, J = 7.6 Hz, 4H), 6.55 (t, J = 7.5 Hz, 2H), 6.34 (d, J = 7.7 Hz, 2H), 4.46 (d, J = 15.7 Hz, 2H), 4.29 (dd, J = 17.6, 1.1**

Hz, 2H), 3.35 (d, J = 17.7 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 197.6, 176.6, 143.1, 135.2, 128.8, 128.7, 127.7, 126.3, 123.0, 122.0, 108.9, 51.4, 44.3, 43.6; **IR** (film) v_{max} 2923, 2852, 1711, 1704, 1613, 1488, 1469, 1384, 1363, 1178, 911, 755 cm⁻¹; **HRMS** (ESI) m/z 551.1935 [M+Na]⁺; calculated for [C₃₄H₂₈N₂O₄ + Na]⁺: 551.1941; **MP** 215–218 °C; $[\alpha]_D^{26.9} = -143$ (c = 0.4095, CHCl₃). Reported: R. Liu, J. Zhang, *Org. Lett.* **2013**, *15*, 2266 $[\alpha]_D^{20.0} = -131.1$ (c = 0.30, CHCl₃).

Spectral Graphics

Scanned copy of mass spectrum of (\pm) -3

 ^{13}C NMR (100 MHz, CDCl₃) of compound (±)-9

Scanned copy of mass spectrum of (\pm) -9

Scanned copy of mass spectrum of (\pm) -20a

 ^{13}C NMR (100 MHz, CDCl₃) of compound (±)-20b

Scanned copy of mass spectrum of (\pm) -20b

 ^{13}C NMR (100 MHz, CDCl_3) of compound (±)-11

Scanned copy of mass spectrum of (\pm) -11

 ^1H NMR (400 MHz, CDCl₃) of compound (±)-12

 ^{13}C NMR (100 MHz, CDCl₃) of compound (±)-12

Scanned copy of mass spectrum of (\pm) -12

 ^{13}C NMR (100 MHz, CDCl₃) of compound (–)-4

Scanned copy of mass spectrum of (-)-4

 ^{13}C NMR (100 MHz, CDCl₃) of compound (–)-10

Scanned copy of mass spectrum of (-)-10

 1 H NMR (400 MHz, CDCl₃) of compound (–)-13

 ^{13}C NMR (100 MHz, CDCl₃) of compound (–)-13

Scanned copy of mass spectrum of (-)-13

HPLC data

HPLC data of (4) (Racemic + meso)

Data File C:\CHEM32\1\DATA\SANTANU\2013-11-09AB-SG5-141----ADH-5-254-1.D Sample Name: AB-SG5-141----ADH-5-254-1

	-	
Acq. Operator	:	ABGROUP
Sample Operator	:	ABGROUP
Acq. Instrument	:	HPLC 1260 Location : Vial 1
Injection Date	:	11/9/2013 11:14:28 PM
		Inj Volume : 5.000 μl
Acq. Method	:	C:\CHEM32\1\METHODS\SANTANU\5-254-1-30.M

Area Percent Report

Sorted By	:	Sigr	nal		
Multiplier	:	1.00	900		
Dilution	:	1.00	900		
Do not use Multiplier	&	Dilution	Factor	with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	9.413	BB	0.3668	1.13446e4	461.48209	39.4791	
2	13.118	BV	0.5046	1.13592e4	334.13837	39.5301	
3	15.393	VB	0.5985	6031.81689	147.07269	20.9908	
Tata				2 07256-4	042 60215		
lota.	ls :			2.87356e4	942.69315		
=====							

*** End of Report ***

HPLC data of (-)-4:

Data File C:\CHEM32\1\DATA\SANTANU\2013-11-04AB-SG6-251-ADH-5-254-1.D Sample Name: AB-SG6-251-ADH-5-254-1

=			
A	cq. Operator	:	ABGROUP
			Location : Vial 1
I	njection Date	:	11/4/2013 12:59:07 PM
A	cq. Method	:	5-254-1-30.M
A	nalysis Method	:	C:\CHEM32\1\METHODS\SUBHADIP\2-254-1-30.M
Г	DAD1 A S		
	DADTA, S	ig=.	254,4 Ret=360,100 (SANTANU/2013-11-04AB-SG6-251-ADH-5-254-1.D)
	mAU		821
	1750		σ

Area Percent Report	
Sorted By : Signal	
Multiplier : 1.0000	
Dilution : 1.0000	
Do not use Multiplier & Dilution Factor with Is	STDs
Signal 1: DAD1 A, Sig=254,4 Ref=360,100	
Peak RetTime Type Width Area Height	Area
# [min] [min] [mAU*s] [mAU]	%
1 9.921 BB 0.3745 5.22215e4 2096.95898	3 97.2639
2 14.251 BB 0.5566 1469.02771 39.62108	3 2.7361
Totals : 5.36905e4 2136.58006	5
*** End of Report ***	k

Condition: 2.5 mol% Pd₂(dba)₃, 7.5 mol% 8c, toluene, 0 °C, 18 h, 95% ee

HPLC data of (-)-4:

Data File C:\CHEM32\1\DATA\SUBHAJIT\2013-11-09AB-SG6-352R--ADH-5-254-1.D Sample Name: AB-SG6-352R--ADH-5-254-1 -----Acq. Operator : ABGROUP Location : Vial 1 Injection Date : 11/9/2013 12:04:20 PM Acq. Method : 5-254-1-30.M Analysis Method : C:\CHEM32\1\METHODS\SANTANU\5-254-1-30.M DAD1 A, Sig=254,4 Ref=360,100 (SUBHAJIT\2013-11-09AB-SG6-352R--ADH-5-254-1.D) mAU _ 800 600 -400 -12.529 200 0 175 125 15 10 20 Area Percent Report _____ Sorted By Signal : ; Multiplier 1.0000 Dilution 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Height Peak RetTime Type Width Area Area % # [min] [min] [mAU*s] [mAU] 1 9.082 BB 0.3441 2.33086e4 1014.13007 95.1532 2 12.529 BB 0.4798 1187.25696 37.25249 4.8468 Totals : 2.44959e4 1051.38256 *** End of Report ***

Condition: 2.5 mol% Pd₂(dba)₃, 7.5 mol% 8c, Et₂O, 0 °C, 12 h, 91% ee

HPLC data of (-)-4:

Data File C:\CHEM32\1\DATA\SANTANU\2013-11-08AB-SG6-353R--ADH-5-254-1.D

ole Name: AB-SG6-	353RADH-5-254-1
Acq. Operator	: ABGROUP
Sample Operator	: ABGROUP
Acq. Instrument	: HPLC 1260 Location : Vial 1
Injection Date	: 11/8/2013 8:02:07 PM
	Inj Volume : 5.000 μl
Acq. Method	: C:\CHEM32\1\MEIHODS\SANIANU\5-254-1-30.M
DAD1 A, Si	g=254,4 Ref=360,100 (SANTANU/2013-11-08AB-SG6-353RADH-5-254-1.D)
mAO _	90 20
1 008	
600 -	
-	
400 -	
200 -	ŝ
	, č
0-1	
	5 10 15 20 25
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Multi	plier & Dilution Factor with ISTDs
Signal 1: DAD1 A	, Sig=254,4 Ret=360,100
Peak RetTime Type	e Width Area Height Area
# [min]	[min] [mAU*s] [mAU] %
1 9.620 BB	0.3668 2.21210e4 912.56805 98.2939
2 13.453 BB	0.5111 383.96362 11.22294 1.7061
Totals :	2.25050e4 923.79099
	*** End of Report ***

Condition: 2.5 mol% Pd₂(dba)₃, 7.5 mol% 8c, Et₂O, -10 °C, 18 h, 97% ee

HPLC data of (–)-4 using (1:1) mixture of *N*-methyl bis-esters 3 and estercarbonate 11 as starting material:

Data File C:\CHEM32\1\DATA\SANTANU\2013-11-08AB-SG6-283R--ADH-5-254-1.D Sample Name: AB-SG6-283R--ADH-5-254-1 _____ Acq. Operator : ABGROUP Sample Operator : ABGROUP Acq. Instrument : HPLC 1260 Location : Vial 1 Injection Date : 11/8/2013 6:52:21 PM Inj Volume : 5.000 µl : C:\CHEM32\1\METHODS\SANTANU\5-254-1-30.M Acq. Method DAD1 A, Sig=254,4 Ref=360,100 (SANTANU/2013-11-08AB-SG6-283R--ADH-5-254-1.D) mAU 5 600 -500 -400 -300 -200 13.347 100 -0-10 Area Percent Report _____ Sorted By : Signal Multiplier 1.0000 : Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=254,4 Ref=360,100 Peak RetTime Type Width Height Area Area [min] [mAU*s] % # [min] [mAU] 9.563 BV 0.3598 1.74208e4 726.42047 99.5407 1 0.5148 80.38264 2 13.347 BV 2.39939 0.4593 Totals : 1.75012e4 728.81986 _____ *** End of Report ***

Condition: 2.5 mol% Pd₂(dba)₃, 7.5 mol% 8c, Et₂O, -10 °C, 18 h, >99% ee

Page 1 of 1 Software Version : 6.3.2.0646 2/27/2013 12:16:57 PM Date Sample Name Data Acquisition Time 9/8/2012 8:35:04 PM HPLC Instrument Name Channel Α Rack/Vial 0/0 Operator iiser 1.000000 Sample Amount 1 **Dilution Factor** : 1.000000 Cycle : 1 Result File : C:\HPLC\Data\santanu\SG5-141-ADH-5%,30 MIN, FLOW 1.rst Sequence File : C:\PenExe\TcWS\Ver6.3.2\Examples\SG5-141-ADH-5%,30 MIN, FLOW 1.seq -13.22 -11.84 N Response [mV] 10 28 ģ 12 14 16 20 22 24 26 18 Time [min] SG 5 -141 REPORT Peak Component Time Area Height Area [uV*sec] Name [uV] [%] # [min] 1 9.322 17120958.46 520826.67 45.51 2 3 11.838 16768603.58 483271.96 44.57 13.224 3729451.36 80683.96 9.91 37619013.40 1.08e+06 100.00

HPLC data of (4) (Racemic + *meso*)

HPLC data of (–)-4 using (±) ester-carbonate 11 as starting material:

	Page 1 of
Software Version : 6.3.2.0646 Sample Name : Instrument Name : HPLC Rack/Vial : 0/0 Sample Amount : 1.000000 Cycle : 1	Date : 7/18/2013 2:57:13 PM Data Acquisition Time : 11/3/2012 5:56:56 PM Channel : A Operator : iiser Dilution Factor : 1.000000
Result File : C:\HPLC\Data\santanu\SG5-287-ADH Sequence File : C:\PenExe\TcWS\Ver6.3.2\Examp	-5%-1-FLOW-238_001.rst les\SG5-287-ADH-5%-1-FLOW-238.seq
	Цинцинцинцинцинцинцинцинцинцинцинцинцинци
Peak Component Name Area [uV*sec] Height [uV] Area [%] 1 32970303.34 1.03e+06 98.8 2 371329.09 13714.31 1.1 33341632.44 1.05e+06 100.0	PEAK AREA Norm. Area [%] 98.89 1.11 100.00

Condition: 2.5 mol% Pd₂(dba)₃, 7.5 mol% 8c, Et₂O, -10 °C, 12 h, 98% ee

HPLC data of (±)-10

20314308.77 477925.57 100.00

HPLC-data of (-)-10 by using (± and meso) bis-esters 9 as starting material

Condition: 2.5 mol% Pd₂(dba)₃, 7.5 mol% 8c, Et₂O, 0 °C, 12 h, >99% ee

HPLC data of (-)-10 using (±) ester-carbonate 12 as starting material

Software Version : 6.3.2.0646 9/3/2013 9:43:12 PM Date Data Acquisition Time 9/3/2013 9:20:39 PM Sample Name HPLC Instrument Name Channel Ā Rack/Vial 0/0 Operator Dilution Factor : iiser : 1.000000 Sample Amount Cycle 1.000000 1 Result File : Sequence File : C:\PenExe\TcWS\Ver6.3.2\Examples\SG6-241IB.seq -14.24 -11.06 1500 Response [mV] 1000 500 ٩, 0 10 Time (min) 14 16 18 12 PEAK REPORT Peak Component Time Area Height Area # Name [min] [uV*sec] [uV] [%] 11.060 65962623.09 1.74e+06 98.45 1 2 14.236 1037433.84 27898.15 1.55 67000056.93 1.77e+06 100.00

Condition: 2.5 mol% Pd₂(dba)₃, 7.5 mol% 8c, Et₂O, 0 °C, 12 h, 97% ee

HPLC data of (±)-10

HPLC data of (-)-10 using (1:1) mixture of bis-esters 9 and ester-carbonate 12 as starting material

Condition: 2.5 mol% Pd₂(dba)₃, 7.5 mol% 8c, Et₂O, 0 °C, 12 h, 96% ee

Determination of diastereomeric ratio of (4) from ¹H-NMR of crude reaction mixture

400 MHz ¹H-NMR (CDCl₃) of crude 4 [racemic + meso]

400 MHz ¹H-NMR (CDCl₃) of crude 4 [entry 5, Table 2]

Determination of diastereomeric ratio of (10) from ¹H-NMR of crude reaction mixture:

400 MHz ¹H-NMR (CDCl₃) of 10 (racemic + meso)

400 MHz ¹**H-NMR** (CDCl₃) of crude (10) [Diethylether as a solvent, 0 °C and 8c as ligand]