Platinum catalyzed sequential hydroboration of decaborane: a facile approach to poly(alkenyldecaborane) with decaborane in mainchain

Xing-Hua Yua, Ke Caoa,*, Yawen Huanga, Junxiao Yanga,*, Jing Lib and Guanjun Changa

a School of Materials Science and Engineering & State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, P. R. China

b Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China

Email: caoke@swust.edu.cn, yangjunxiao@swust.edu.cn

Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014
Context

1. General information

2. Experimental

3. Spectroscopic data for products

4. Copies of 1HNMR, 11BNMR and GPC
1. General information:

The materials were obtained from different commercial sources, and the toluene, benzene was dried and freshly distilled over sodium before use. All reactions under standard conditions were monitored by thin-layer chromatography (TLC) on gel F254 plates. The silica gel (300 - 400 meshes) is used for column chromatography, and the distillation range of petroleum ether is 60-90°C. 1H NMR and 11B NMR spectra were recorded on the Bruker 400MHz or 600MHz instruments. All 1H NMR spectral data are reported in ppm relative to tetramethylsilane (TMS) as internal standard, all 11B NMR spectral data are referenced to external BF$_3$•Et$_2$O (0.00ppm) with a negative sign indicating an upfield shift. Molecular weights of the polymers were determined by gel permeation chromatography (GPC) on a Wyatt DAWN HELEOS using tetrahydrofuran (THF) as an eluent under 38°C. Polymer solutions were prepared with ~5mg/mL concentrations in THF. A loop size of 50µL was employed, and makes each injection size 0.25mg. Thermogravimetric analysis (TGA) was carried out on a Thermal Analysis SDT Q600 Simultaneous DTA-TGA under a constant flow of 99.999% argon, alumina tube, heated at 10 °C/min.

2. Experimental

2.1 Synthesis of 6-hexenyldecaborane and 6-norbornenyldecaborane

The 6-hexenyldecaborane (HD) and 6-norbornenyldecaborane (ND) was synthesized according to the method reported by Sneddon and coworkers,[1] and gave the isolated yield with 78% and 81%, respectively.

6-hexenyldecaborane. 1H NMR (600MHz, CDCl$_3$, ppm): δ 5.86-5.76 (m, 1H), 5.03-4.94 (m, 2H), 2.11-2.06 (dd, $J = 18$Hz, 6Hz, 2H), 1.59-1.54 (m, 2H), 1.50-1.43 (m, 2H), 1.37 (br, 2H), -1.77(brs, 2H), -2.05(brs, 2H).

6-norbornenyldecaborane. 1H NMR (400MHz, CDCl$_3$, ppm): δ 6.18 (brs, 1H), 6.03 (brs, 1H), 2.99-2.96 (d, $J = 18$Hz, 2H), 1.74-1.72 (m, 1H), 1.43-1.39 (m, 1H), 1.37 (brs, 1H), 1.28(brs, 2H), -1.52 (s, 2H), -2.02 (s, 2H).

2.2 Synthesis of poly(6-hexenyldecaborane) (PHD)
To a dried Schlenk tube was sequentially added 6-hexenyldecaborane (100 mg, 0.4854 mmol), PtBr$_2$ (17.2 mg, 0.0485 mmol) and 0.1mL freshly distilled benzene, then the mixture was stirred at 100°C under N$_2$ for 48h. After cooled to room temperature, the mixture was diluted with CH$_2$Cl$_2$ and filtered through a short silica gel column using CH$_2$Cl$_2$ as eluent to remove the catalyst. After evaporation of the solvent, the residue was added to n-hexane dropwise, and the polymer was precipitated, after centrifugation and dried under vacuum, the PHD was afforded as creamy white solid with 35% yield (35mg). 11B NMR (192.5MHz, CDCl$_3$, ppm): δ 24.99, 10.59~8.97 (d), 1.33, -1.82~-2.48 (d), -33.64, -36.39, -38.41. 1H NMR (400 MHz, CDCl$_3$, ppm): 1.56 (s, 4H), 1.40-1.36 (m, 4H), 1.30-1.27 (m, 4H), -1.59 (br, 3BHB), -2.05 (br, 1BHB).

2.3 Synthesis of poly(6-norbornenyldecaborane) (PND)

poly(6-norbornenyldecaborane) was synthesized in a similar manner as described for PHD with 0.5mL benzene, and the PND was obtained as creamy white solid with 55% yield (55mg). 11B NMR (192.5MHz, CDCl$_3$, ppm): δ 27.42, 12.84, 10.36, 8.85, 1.35, -3.19, -33.87, -36.56~38.33. 1H NMR (400 MHz, CDCl$_3$, ppm): 2.48 (m, 2H), 1.73-1.43 (m, 6H), 1.27 (m, 2H), -1.62 (br, 2BHB), -2.04 (br, 2BHB).

Copies of 1H NMR/13B NMR/GPC

1H NMR of HD

1H NMR of ND
1HNMR of PHD

13BNMR of PHD
1HNMR of PND

11BNMR of PND
GPC of PHD with 10\text{mol\%} \text{PtBr}_2

GPC of PND with 5\text{mol\%} \text{PtBr}_2

GPC of PND with 10\text{mol\%} \text{PtBr}_2

GPC of PND with 15\text{mol\%} \text{PtBr}_2