Electronic Supplementary Information

Synthesis of Antimicrobial Cyclodextrins Bearing Polyarylamino and Polyalkylamino Groups via Click Chemistry for Bacterial Membrane Disruption

Hatsuo Yamamura, a Yuuki Sugiyama, a Kensuke Murata, a Takanori Yokoi, a Ryuji Kurata, a Atsushi Miyagawa, a Kenji Sakamoto, b Keiko Komagoe, b Tsuyoshi Inoue, b and Takashi Katsu b

a Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)
bGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 (Japan)

E-mail: yamamura.hatsuo@nitech.ac.jp

1. Synthesis of Compounds

General

1H NMR spectra were recorded at 30 °C on a Bruker AVANCE400Plus Nanobay. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass measurements were conducted using a JEOL JMS-S3000 spectrometer. A Biotage Initiator EXP microwave reactor was used for the Huisgen reactions.

Benzylamino derivative 3

A reaction solution was prepared by dissolving octaazido-γ-CD derivative 2 (52.2 mg, 3.49×10^{-5} mol) in DMSO–H$_2$O (10:1) (10 cm3) containing N-benzyl-N-2-propynylamine (53 mg, 1.25 mol eq. to the azide group), CuSO$_4$ 5H$_2$O (6.7 mg, 0.1 mol eq.), and sodium ascorbate (69.2 mg, 1.25 mol eq.). After MW heating (120 °C, 20 min), water (50 dm3) was added and the solution lyophilized. The residue was washed with acetone and 10% aq. NH$_3$ and then lyophilized to give 3 (71.8 mg, 77%): 1H NMR (400 MHz, [D$_6$]DMSO): δ 5.12 (H1), 7.22 (Hphenyl), 7.73 (Htriazole), MS (MALDI): m/z 2659.3 [M + H]$^+$, 2780.9 [M + Na]$^+$, Found: C, 53.82; H, 5.93; N,15.51%. Calcd for C$_{128}$H$_{161}$N$_{32}$O$_{32}$+10.1 H$_2$O: C, 54.12; H, 6.39; N, 15.78%.
Phenylpentylamino derivative 5

A reaction solution was prepared by dissolving octaazido-γ-CD derivative 2 (200 mg, 1.34 × 10⁻⁴ mol) in DMSO–H₂O (10:1) (22 cm³) containing N-phenylpentyl-N-2-propynylamine (297 mg, 1.25 mol eq. to the azide group), CuSO₄ 5H₂O (26.8 mg, 0.1 mol eq.), and sodium ascorbate (265 mg, 1.25 mol eq.). After MW heating (120 °C, 90 min) and filtration, the solution was concentrated in vacuo. The residue was then washed with acetone and 10% aq. NH₃ and lyophilized to give 5 (361 mg, 87%): ¹H NMR (400 MHz, [D₆]DMSO): δ 1.21-1.48 (H CH₂), 5.09 (H1), 7.11-7.21 (Hphenyl), 7.73 (Htriazole), MS (MALDI): m/z 3144.6 [M + K]⁺, Found: C, 60.17; H, 7.01; N, 12.96%. Calcd for C₁₆₀H₂₂₄N₃₂O₃₂+7.4H₂O: C, 59.29; H, 7.43; N, 12.83%.

Cyclohexylmethylamino derivative 6

A reaction solution was prepared by dissolving octaazido-γ-CD derivative 2 (200 mg, 1.34 × 10⁻⁴ mol) in DMSO–H₂O (10:1) (22 cm³) containing N-cyclohexylmethyl-N-2-propynylamine (250 mg, 1.5 mol eq. to an azide group), CuSO₄ 5H₂O (26.8 mg, 0.1 mol eq.), and sodium ascorbate (265 mg, 1.25 mol eq.). After MW heating (120°C, 10 min) treatment followed by filtration, the solution was concentrated in vacuo. The residue was washed with acetone and 10% aq. NH₃ and lyophilized to give 6 (312 mg, 86%): ¹H NMR (400 MHz, DMSO-d₆): δ 0.78-1.59 (Hcyclohexyl), 2.27-2.22(H CH₂-cyclohexyl), 5.09 (H1), 7.73 Htriazole), MS (MALDI): m/z 2744.7 [M + K]⁺, Found: C, 54.47; H, 7.35; N, 15.04%. Calcd for C₁₂₈H₂₁₀N₃₂O₃₂+7.5H₂O: C, 54.09; H, 7.91; N, 15.77%.

Cyclopentylmethylamino derivative 8

A reaction solution was prepared by dissolving per-2,3-acetylated γ-CD octaazide 11 (50 mg, 2.30 × 10⁻⁵ mol) in DMSO–H₂O (26:3) (2.6 cm³) containing N-Boc-N-cyclopentylmethyl-N-2-propynylamine (55 mg, 1.25 mol eq. to the azide group), CuSO₄ 5H₂O (4.57 mg, 0.1 mol eq.), and sodium ascorbate (45.2 mg, 1.25 mol eq.). After MW heating (120°C, 10 min), ethyl acetate was added followed by washing with 5% aq. EDTA. Silica gel column chromatography (hexane/ethyl acetate) gave the click reaction product (60.1 mg, 64.2%). Deprotection of the Boc group with TFA followed by removal of the acetyl groups with NaOMe–MeOH gave the desired product 8 in (76.7%): ¹H NMR (400 MHz, DMSO-d₆): δ 1.15, 1.48, 1.55, 1.72, 2.09 (Hcyclopentyl), 2.85 (HCH₂-cyclopentyl), 5.10 (H1), 8.08 Htriazole), MS (MALDI): m/z 2594.4702 [M + H]⁺, 2616.4516 [M + K]⁺, Found: C, 44.65; H, 5.89; N, 11.34%. Calcd for C₁₂₀H₁₉₂N₃₂O₃₂+Na+2.6H₂O+10.3TFA: C, 44.25; H, 5.48; N, 11.74%.

Cyclobutylmethylamino derivative 9

A reaction solution was prepared by dissolving per-2,3-acetylated γ-CD octaazide 11 (30.8 mg, 1.42
× 10⁻⁵ mol) in DMSO–H₂O (15:4) (3.8 cm³) containing N-Boc-N-cyclobutylmethyl-N-2-propynylamine (32.1 mg, 1.25 mol eq. to the azide group), CuSO₄ 5H₂O (7.2 mg, 0.2 mol eq.), and sodium ascorbate (53.8 mg, 2.5 mol eq.). After MW heating (120 °C, 30 min), ethyl acetate was added followed by washing with 5% aq. EDTA. Silica gel column chromatography (CH₂Cl₂/methanol) gave the click reaction product (44.5 mg, 79.3%). Deprotection of the Boc group with TFA followed by removal of the acetyl groups with NaOMe–MeOH gave the desired product 9 in (86.6%): ¹H NMR (400 MHz, [D₆]DMSO): δ 1.68-1.87, 2.01-2.02, 2.53-2.61 (Hcyclobutyl), 2.94 (HCH₂-cyclobutyl), 5.10 (H1), 8.07 Htriazole), MS (MALDI): m/z 2482.8240 [M + H]⁺, 2504.7950 [M + Na]⁺, Found: C, 41.44; H, 5.45; N, 11.60%. Calcd for C₁₁₂H₁₇₆N₃₂O₃₂+Na+11.5 H₂O +11TFA: C, 41.39; H, 5.50; N, 11.70%.

Cyclopropylmethylamino derivative 10
A reaction solution was prepared by dissolving per-2,3-acetylated γ-CD octaazide 11 (50 mg, 2.30 × 10⁻⁵ mol) in DMSO–H₂O (5:1) (2.4 cm³) containing N-Boc-N-cyclopropylmethyl-N-2-propynylamine (48.1 mg, 1.25 mol eq. to the azide group), CuSO₄ 5H₂O (91.2 mg, 2.5 mol eq.), and sodium ascorbate (9.16 mg, 0.2 mol eq.). After MW heating (120 °C, 30 min), ethyl acetate was added followed by washing with 5% aq. EDTA. Silica gel column chromatography (CH₂Cl₂/methanol) gave the click reaction product (70.4 mg, 80.0%). Deprotection of the Boc group with TFA followed by removal of the acetyl groups with NaOMe–MeOH gave the desired product 10 in (73.1%): ¹H NMR (400 MHz, [D₆]DMSO): δ 0.29-0.31, 0.54-0.56 1.00 (Hcyclopropyl), 2.81 (HCH₂-cyclobutyl), 5.10 (H1), 8.08 Htriazole), MS (MALDI): m/z 2370.6610 [M + H]⁺, 2392.6400 [M + Na]⁺, Found: C 40.52, H 5.25, N 11.80%. Calcd for C₁₀₄H₁₆₀N₃₂O₃₂ + 10 H₂O + 11 CF₃COOH: C 40.35, H 5.19, N 12.14%.

2. Bacteria

Staphylococcus aureus FDA 209P, Bacillus subtilis 168, Escherichia coli K12 strain W3110, and Salmonella typhimurium LT2 were used in this study. S. aureus cells were grown at 37 °C in a nutrient broth. B. subtilis cells were grown at 37 °C in a medium containing 1% polypepton, 0.5% yeast extract, and 0.5% NaCl (pH was adjusted to 7 by adding NaOH). E. coli and S. typhimurium cells were grown at 37 °C in a minimal salt medium supplemented with 1% polypepton.

3 Minimum inhibitory concentrations (MICs)

MICs were determined using the liquid microdilution method with serially diluted (twofold) CDs. Cells (1 × 10⁴) were cultured at 37 °C for 20 h in Mueller–Hinton broth (0.1 cm³) containing a CD
using a 96-well microtiter plate. MIC was determined as the lowest concentration of the CD at which cells were unable to grow.

4 K⁺ efflux and cell viability

Cells were harvested in an exponential phase of growth, washed twice with buffer (100 mM choline chloride/50 mM Mops-Tris, pH 7.2) and suspended in this buffer at 2×10^9 cells cm$^{-3}$. The cells were then incubated with CD at 37 °C for 30 min, and the final volume of the cell suspension was 1 cm3. The viability of the cells was determined by counting the colonies. After incubation, 0.1 cm3 of the cell suspension was taken, diluted with physiological saline, and dispersed on an agar plate prepared with 1% polypepton, 0.5% yeast extract, 0.5% NaCl, and 1.5% agar (pH was adjusted by adding 1 M NaOH). The colonies were counted after standing overnight at 37 °C. The remaining cell suspension was centrifuged, and the amount of K⁺ in the supernatant was measured using a K⁺-selective electrode. Melittin (10 µM) and polymyxin B (200 µg cm$^{-3}$) were used to determine the 100% level of K⁺ efflux from *S. aureus* and *E. coli*, respectively. To disrupt the outer membrane structure of the *E. coli* cells, they were treated with 150 mM Tris-HCl (pH 7.2)/1 mM EDTA at 37 °C for 2 min.

5 Hemolytic activity

Rabbit erythrocytes were suspended in a buffer (150 mM NaCl/10 mM Heps-NaOH, pH 7.4) at a final concentration of 0.5% hematocrit. After incubation with a CD at 37 °C for 30 min, the hemolysis was estimated by measuring the absorbance at 540 nm. Lysolecithin (50 µM) was used to determine the 100% level of hemolysis.