Supplementary Information

Oxovanadium(V)-Induced Diastereoselective Oxidative Homocoupling of Boron Enolates

Toru Amaya,* Takaya Masuda,* Yusuke Maegawa* and Toshikazu Hirao* a,b

aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University
Yamada-oka, Suita, Osaka 565-0871, Japan
bJST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Table of Contents

Scheme S1 S2
General and references S3
General procedures for the oxidative coupling S4-5
1H NMR spectrum for 3a synthesized using procedure 2 S5
1H NMR data for boron enolate 2a-h S6-7
1H and 13C NMR, IR, and HRMS data for 1,4-diones dl-3d, meso-3d, dl-3e, meso-3e, 3f, and 3g S7-8
X-ray crystallographic analysis for dl-3d and dl-3e S9
1H and 13C NMR spectra for dl-3d S10
1H and 13C NMR spectra for meso-3d S11
1H and 13C NMR spectra for dl-3e S12
1H and 13C NMR spectra for meso-3e S13
1H and 13C NMR spectra for 3f (major isomer) S14
1H and 13C NMR spectra for 3f (minor isomer) S15
Scheme S1. Representative Configurations of Two Enolates for the Coupling Reaction in Chelation and Non-chelation Models

Chelation model

Non-chelation model
General. NMR spectra were recorded on a JEOL JNM-ECP 400 spectrometer. Chemical shifts in CDCl$_3$ were reported in ppm on the δ scale relative to a residual solvent (δ 7.26 for 1H NMR and 77.0 ppm for 13C NMR) as an internal standard. VOCl$_3$ (0.00 ppm) was used as an external standard for 51V NMR. Infrared spectra were obtained with a JASCO FT/IR-6200 spectrometer. Mass spectra were measured on a JEOL JMS-DX-303 spectrometer using fast atom bombardment (FAB) mode. Measurement for X-ray crystallography was made on a Rigaku RAXIS-RAPID imaging plate diffractometer with graphite monochromated Cu-Kα radiation.

VO(OPr-i)$_2$Cl was prepared according to the literature procedure.i VO(OPr-i)$_3$ and VO(OEt)Cl$_2$ were donated from Nichia corporation, and they were used after distillation. The dried CDCl$_3$ with MS4A was used for the reaction. The employed enones 1a,ii 1b,ii 1c,iii 1d,ii 1e,i,v and 1f,i,v are known compounds. Chalcone (1h) was purchased from WAKO Pure Chemical Industries, Ltd. 9-Borabicyclo[3,3,1]nonane (9-BBN) was purchased from Aldrich as a 0.5 M THF solution. The obtained 1,4-diones 3a,viii 3b,ix 3c,x and 3h,viii are known compounds.

References
Oxidative \(dl \) selective homocoupling of boron enolates

Procedure 1: NMR tube experiment

![Chemical structure](image)

To a CDCl\(_3\) (700 \(\mu \)L) solution of \(\alpha,\beta \)-unsaturated carbonyl compound 1 (30 \(\mu \)mol) with a portion of activated MS4A in a J-Young valve-attached NMR tube was added 0.5 M THF solution of 9-borabicyclo[3,3,1]nonane (9-BBN) (15 \(\mu \)L, 7.5 \(\mu \)mol) in \(N_2 \)-filled glove box. After the mixture was shaken at room temperature for 1 min by hand, the 9-BBN solution (15 \(\mu \)L, 7.5 \(\mu \)mol) was added again. The mixture was shaken for more 1 min by hand, followed by further addition of the 9-BBN solution (30 \(\mu \)L, 15 \(\mu \)mol). After the mixture stood at room temperature for 2 h, \(^1\)H NMR of the mixture was measured. After the formation of boron enolate 2 was confirmed, the mixture was put in refrigerator (-30 °C) for 1 h. Then, it was taken out from refrigerator. VO(OPr-i)\(_2\)Cl (17.1 \(\mu \)L, 90 \(\mu \)mol) was immediately added to the solution. The mixture was shaken for 5 sec, and then it stood in refrigerator (-30 °C) for 19 h. Then the mixture was quenched with saturated aqueous NaHCO\(_3\). The product was extracted with CH\(_2\)Cl\(_2\). The organic layer was washed with water, brine, dried over MgSO\(_4\), and evaporated \textit{in vacuo}. The residue was filtered through a short pad of silica-gel column (h = 2.5 cm, CH\(_2\)Cl\(_2\)). The mixture was evaporated \textit{in vacuo}. The yield and \(dl/meso \) ratio were determined by \(^1\)H NMR using 1,1,2,2-tetrabromoethane as an internal standard. The crude product was purified by preparative thin layer chromatography (CH\(_2\)Cl\(_2\)) to give the products. The obtained product 3 was further purified by preparative thin layer chromatography (hexane/ethylacetate = 4:1) to give the pure product.

Procedure 2: 100 mg scale reaction

Experiments except work-up were carried out in \(N_2 \)-filled glove box. Dry CH\(_2\)Cl\(_2\) (7 mL), 1.73M CH\(_2\)Cl\(_2\) solution of 1-phenylprop-2-en-1-one (1a) (437 \(\mu \)L, 0.76 mmol, which corresponds to 100 mg of 1a), and a portion of activated MS4A were added to a dried 50 mL round-bottomed flask. To the mixture was added 0.5 M THF solution of 9-borabicyclo[3,3,1]nonane (9-BBN) (1.66 mL, 0.83 mmol) at room temperature. After stirring at room temperature for 2 h, the mixture was cooled to -40 °C. Then, VO(OPr-i)\(_2\)Cl (431 \(\mu \)L, 2.27 mmol) was immediately added to the solution. The mixture was stirred at -40 °C for 24 h. Then, the flask was put out of glove box. The reaction
mixture was quenched with saturated aqueous NaHCO₃. The product was extracted with Et₂O twice. The combined organic layer was washed with water twice. The aqueous layer was extracted with Et₂O. The organic layer was washed with brine, dried over MgSO₄, and evaporated in vacuo. The residue was purified by silica-gel column chromatography to give 3a by eluting with hexane/CH₂Cl₂ = 1:2 to CH₂Cl₂. After evaporation and drying in vacuo, 2,3-dimethyl-1,4-diphenylbutane-1,4-dione (3a) (a dillac/meso diastereomeric mixture) was obtained as a white solid (93.2 mg, 0.350 mmol, 93% yield, dillac/meso = 86:14).

¹H NMR spectrum for 3a synthesized using procedure 2 (400 MHz, CDCl₃)
Boron enolates

(Z)-9-(1-phenylprop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2a)

1H NMR (400 MHz, CDCl$_3$) δ 1.13-2.00 (m, 14H), 1.66 (d, 3H, $J = 6.9$ Hz), 5.55 (q, 1H, $J = 6.9$ Hz), 7.12-7.18 (m, 1H), 7.18-7.25 (m, 2H), 7.36-7.41 (m, 2H).

(Z)-9-(1-p-tolylprop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2b)

1H NMR (400 MHz, CDCl$_3$) δ 1.07-1.91 (m, 14H), 1.59 (d, 3H, $J = 6.9$ Hz), 2.19 (s, 3H), 5.44 (q, 1H, $J = 6.9$ Hz), 6.98 (d, 2H, $J = 8.2$ Hz), 7.22 (d, 2H, $J = 8.2$ Hz).

(Z)-(4-(1-(9-borabicyclo[3.3.1]nonan-9-yloxy)prop-1-enyl)phenoxy)(tert-butyl)dime thysilane (2c)

1H NMR (400 MHz, CDCl$_3$) δ 0.07 (s, 6H), 0.86 (s, 9H), 1.08-1.94 (m, 14H), 1.59 (d, 3H, $J = 6.9$ Hz), 5.36 (q, 1H, $J = 6.9$ Hz), 6.63-6.68 (m, 2H), 7.18-7.23 (m, 2H).

(Z)-9-(1-(4-fluorophenyl)prop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2d)

1H NMR (400 MHz, CDCl$_3$) δ 1.08-1.93 (m, 14H), 1.61 (d, 3H, $J = 6.8$ Hz), 5.43 (q, 1H, $J = 6.9$ Hz), 6.85-6.91 (m, 2H), 7.32 (m, 2H).

(Z)-9-(1-(4-chlorophenyl)prop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2e)

1H NMR (400 MHz, CDCl$_3$) δ 1.06-1.70 (m, 14H), 1.58 (d, 3H, $J = 6.9$ Hz), 5.48 (q, 1H, $J = 6.9$ Hz), 7.10-7.15 (m, 2H), 7.23-7.28 (m, 2H).
(Z)-9-(1-(4-(trifluoromethyl)phenyl)prop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2f)

1H NMR (400 MHz, CDCl$_3$) δ 1.07-1.94 (m, 14H), 1.64 (d, 3H, J = 6.8 Hz), 5.65 (q, 1H, J = 6.9 Hz), 7.42-7.50 (m, 4H).

(Z)-9-(1-cyclohexylprop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2g)

1H NMR (400 MHz, CDCl$_3$) δ 0.99-1.92 (m, 25H), 1.35 (d, 3H, J = 6.9 Hz), 4.56 (q, 1H, J = 6.9 Hz).

(Z)-9-(1,3-diphenylprop-1-enyloxy)-9-borabicyclo[3.3.1]nonane (2h)

1H NMR (400 MHz, CDCl$_3$) δ 1.09-1.90 (m, 16H), 3.39 (d, 2H, J = 7.3 Hz), 5.58 (t, 1H, J = 7.3 Hz), 7.01-7.19 (m, 8H), 7.36 (m, 2H).

1,4-Diones

dl-1,4-bis(4-fluorophenyl)-2,3-dimethylbutane-1,4-dione (dl-3d)

1H-NMR (400 MHz, CDCl$_3$) δ 1.29 (m, 6H), 3.90 (m, 2H), 7.13 (m, 2H), 8.01 (m, 2H); 13C-NMR (100 MHz, CDCl$_3$) 15.66, 43.68, 115.71 (d, J_{C-F} = 22.0 Hz), 131.11 (d, J_{C-F} = 9.6 Hz), 132.39 (d, J_{C-F} = 2.9 Hz), 164.46, 202.81 ppm; IR(ATR) ν 2980, 2929, 1667, 1598, 1228, 1209, 1156, 971, 849 cm$^{-1}$; HRMS (FAB) calcd for C$_{18}$H$_{16}$F$_{2}$O$_2$: 302.1118, found [(M+H)$^+$]: 303.1199.

deso-1,4-bis(4-fluorophenyl)-2,3-dimethylbutane-1,4-dione (meso-3d)

1H-NMR (400 MHz, CDCl$_3$) δ 1.12 (m, 6H), 3.98 (m, 2H), 7.18 (m, 2H), 8.08 (m, 2H); 13C-NMR (100 MHz, CDCl$_3$) δ 17.42, 43.24, 115.91 (d, J_{C-F} = 21.1 Hz), 131.14 (d, J_{C-F} = 9.6 Hz), 133.14 (d, J_{C-F} = 2.9 Hz), 164.71, 202.01; IR(ATR) ν 2977, 2937, 1668, 1595, 1225, 1191, 1159, 978, 844 cm$^{-1}$; HRMS (FAB) calcd for C$_{18}$H$_{16}$F$_{2}$O$_2$: 302.1118, found [(M+H)$^+$]: 303.1203.
dl-1,4-bis(4-chlorophenyl)-2,3-dimethylbutane-1,4-dione (dl-3e)

\[
\text{1H-NMR (400 MHz, CDCl}_3\text{) } \delta \text{ 1.28 (m, 6H), 3.89 (m, 2H), 7.44 (m, 2H), 7.92 (m, 2H); }\text{13C-NMR (100 MHz, CDCl}_3\text{) } \delta
\]

15.58, 43.72, 128.94, 129.90, 134.32, 139.47, 203.12; IR(ATR) ν 2960, 2928, 1672, 1587, 1092, 970, 842 cm\(^{-1}\), HRMS (FAB) calced for C\(_{18}\)H\(_{16}\)Cl\(_2\)O\(_2\): 334.0527, found [(M+H)+]: 335.0604.

meso-1,4-bis(4-chlorophenyl)-2,3-dimethylbutane-1,4-dione (meso-3e)

\[
\text{1H-NMR (400 MHz, CDCl}_3\text{) } \delta \text{ 1.11 (m, 6H), 3.96 (m 2H), 7.48 (m, 2H), 7.99 (m, 2H); }\text{13C-NMR (100 MHz, CDCl}_3\text{) } \delta
\]

17.35, 43.28, 129.14, 129.87, 135.01, 139.96, 202.30; IR(ATR) ν 2955, 2928, 1670, 1588, 1091, 977, 841 cm\(^{-1}\); HRMS (FAB) calced for C\(_{18}\)H\(_{16}\)Cl\(_2\)O\(_2\): 334.0527, found [(M+H)+]: 335.0605.

2,3-dimethyl-1,4-bis(4-(trifluoromethyl)phenyl)butane-1,4-dione (3f)

Major isomer: \[
\text{1H-NMR (400 MHz, CDCl}_3\text{) } \delta \text{ 1.31 (m, 6H), 3.95 (m 2H), 7.75 (d, 2H, } J \text{ = 8.2 Hz), 8.08 (d, 2H, } J \text{ = 8.2 Hz); }\text{13C-NMR (100 MHz, CDCl}_3\text{) } \delta
\]

15.43, 44.16, 123.60 (q, J\(_{C,F} = 272.7 \text{ Hz})), 125.75, 128.77, 134.39 (q, J\(_{C,F} = 32.6 \text{ Hz})), 138.75, 203.42; IR(ATR) ν 2971, 2935, 1679, 1319, 1136, 1114, 973, 858 cm\(^{-1}\); HRMS (FAB) calced for C\(_{20}\)H\(_{16}\)F\(_6\)O\(_2\): 402.1054, found [(M+H)+]: 403.1127. Minor isomer: \[
\text{1H-NMR (400 MHz, CDCl}_3\text{) } \delta \text{ 1.17 (m, 6H), 4.04 (m 2H), 7.78 (d, 2H, } J \text{ = 8.2 Hz), 8.14 (d, 2H, } J \text{ = 8.2 Hz); }\text{13C-NMR (100 MHz, CDCl}_3\text{) } \delta
\]

17.18, 43.61, 123.53 (q, J\(_{C,F} = 272.2 \text{ Hz})), 125.91, 128.78, 134.73 (q, J\(_{C,F} = 32.6 \text{ Hz})), 139.27, 202.41; IR(ATR) ν 2984, 2951, 1680, 1309, 1136, 1108, 974, 849 cm\(^{-1}\); HRMS (FAB) calced for C\(_{20}\)H\(_{16}\)F\(_6\)O\(_2\): 402.1054, found [(M+H)+]: 403.1128.

1,4-dicyclohexyl-2,3-dimethylbutane-1,4-dione (3g)

Diastereomeric mixtures. Selectivity was calculated from the integral ratio for the methyl protons. \[
\text{1H-NMR (400 MHz, CDCl}_3\text{) } \delta \text{ 0.92-0.94 (m, } \text{-CH}_3 \text{ for minor isomer), 1.04-1.06 (m, } \text{-CH}_3 \text{ for minor isomer), 1.0-1.43 (m), 1.60-1.96 (m), 2.38-2.56 (m), 2.92-3.06 (m).} \]
X-ray structures

\textit{dl-3d}

\begin{align*}
a = & \quad 11.1477(5) \text{ Å} \\
b = & \quad 13.3381(6) \text{ Å} \\
c = & \quad 10.5647(5) \text{ Å} \\
R1 = & \quad 0.1517 \\
P2_1/c \ (\#14) & \text{ monoclinic}
\end{align*}

The data have been deposited with the Cambridge Crystallographic Data Centre: CCDC-969201.

\textit{dl-3e}

\begin{align*}
a = & \quad 15.7021(2) \text{ Å} \\
b = & \quad 9.6923(1) \text{ Å} \\
c = & \quad 10.9905(2) \text{ Å} \\
R1 = & \quad 0.0561 \\
P2_1/c \ (\#14) & \text{ monoclinic}
\end{align*}

The data have been deposited with the Cambridge Crystallographic Data Centre: CCDC-969200.
dl-1,4-bis(4-fluorophenyl)-2,3-dimethylbutane-1,4-dione (dl-3d)

dl-3d

1H-NMR (400 MHz, CDCl$_3$)

13C-NMR (100 MHz, CDCl$_3$)
meso-1,4-bis(4-fluorophenyl)-2,3-dimethylbutane-1,4-dione (*meso*-3d)

\[
\begin{align*}
\text{O} & \quad \text{F} \\
\text{F} & \quad \text{O} \\
\end{align*}
\]

meso-3d

\[^1\text{H}-\text{NMR} (400 \text{ MHz, CDCl}_3)\]

\[^{13}\text{C}-\text{NMR} (100 \text{ MHz, CDCl}_3)\]
dl-1,4-bis(4-chlorophenyl)-2,3-dimethylbutane-1,4-dione (dl-3e)

\[
\begin{array}{c}
\text{Cl} \\
| \quad | \\
\text{Cl} \\
\end{array}
\]

dl-3e

\[\text{H-NMR (400 MHz, CDCl}_3\text{)}\]

13C-NMR (100 MHz, CDCl}_3\text{)
meso-1,4-bis(4-chlorophenyl)-2,3-dimethylbutane-1,4-dione (meso-3e)

$\begin{array}{c}
\text{Cl} \\
\text{Cl} \\
\text{meso-3e}
\end{array}$

1H-NMR (400 MHz, CDCl$_3$)

13C-NMR (100 MHz, CDCl$_3$)

Electronic Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2014
2,3-dimethyl-1,4-bis(4-(trifluoromethyl)phenyl)butane-1,4-dione (3f) (major isomer)

1H-NMR (400 MHz, CDCl$_3$)

13C-NMR (100 MHz, CDCl$_3$)

Electronic Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2014
2,3-dimethyl-1,4-bis(4-(trifluoromethyl)phenyl)butane-1,4-dione (3f)
(minor isomer)

1H-NMR (400 MHz, CDCl$_3$)

13C-NMR (100 MHz, CDCl$_3$)