Supporting information:

A semiconducting microporous framework of Cd₆Ag₄(SPh)₁₆ clusters interlinked using rigid and conjugated bipyridines**

Chao Xu, Niklas Hedin*, Hua-Tian Shi, Qian-Feng Zhang*

Table of contents in supporting information

General method

Preparation of $[Cd_6Ag_4(SPh)_{16}(DMF)_4]$ (1)

Preparation of $\{ [Cd_6Ag_4(SPh)_{16}(bpe)_2] \}_n$ (2)

X-ray Crystallography

Table of crystal data, data collection and structure refinement parameters

Fig. S1 Energy-dispersive X-ray spectroscopy (EDS) of $Cd_6Ag_4(SPh)_{16}(DMF)_4$ and $\{[Cd_6Ag_4(SPh)_{16}](bpe)_2\}_n$.

Fig. S2 Three possible arrangement of inner Cd and Ag atoms in the cluster of $Cd_6Ag_4(SPh)_{16}(DMF)_4$.

Fig. S3 Comparision of expreimental and simulated powder X-ray diffraction (XRD)of $\{[Cd_6Ag_4(SPh)_{16}](bpe)_2\}_{n}$

Fig. S4 Comparisons of powder X–ray diffraction patterns of standard hexagonal CdS, cubic Ag and hybrid crystals of CdS-Ag prepared from pyrolysis of Cd₆Ag₄(SPh)₁₆(DMF)₄.

Fig. S5 Infrared spectrum of $\{[Cd_6Ag_4(SPh)_{16}](bpe)_2\}_n$, $Cd_6Ag_4(SPh)_{16}(DMF)_4$ and *trans*-1,2-Bis(4-pyridyl)ethylene (bpe).

Fig. S6 Thermal gravimetric analysis (TGA) curve of $Cd_6Ag_4(SPh)_{16}(DMF)_4$ and $\{[Cd_6Ag_4(SPh)_{16}](bpe)_2\}_n$.

General method

The solvents were purified by conventional methods and degassed prior to use. Cd(SPh)₂ was prepared by the literature procedure.^[1] PhSH, AgNO₃, and *trans*-1,2-bis(4-pyridyl)ethylene (bpe) were purchased from Sigma-Aldrich and used without further purification. All elemental analyses were carried out using a Perkin-Elmer 2400 CHN analyzer. Thermal gravimetric analysis (TGA) data were recorded on a TGA-Perkin Elmer TGA 7 analyzer. Fourier transform infrared (FT-IR) spectra were recorded using a Varian 670-IR FT-IR spectrometer equipped with an attenuated total reflectance (ATR) accessory. UV/vis absorption and solid-state reflectance spectra were recorded on a Perkin Elmer Lambda 19 UV/VIS/NIR spectrometer. BaSO₄ as 100% reflectance references was used for the solid state reflectance spectra detecting. The fluorescent spectra were recorded on a Varian Cary Eclipse Fluorescence Spectrophotometer. Energy-dispersive X-ray spectroscopy (EDS) analysis was carried out on a JEOL JSM-7401F scanning electron microscope (SEM).CO₂ adsorption isotherm was recorded on a Micromeritics ASAP2020 analyzer; the sample was soaked in CH₂Cl₂ for 3 days and then degassed at 100°C under a condition of dynamic vacuum for 12 h before the measurement.

Preparation of Cd₆Ag₄(SPh)₁₆(DMF)₄ (1)

AgNO₃ (51 mg, 0.3 mmol) was added to a solution of Cd(SPh)₂ (198 mg, 0.6 mmol) in 5 mL DMF with stirring at room temperature. After the mixture stirred overnight, a small amount of white precipitate formed. The precipitate was removed by filtration to give a colorless filtrate. Colorless crystals of 1 were obtained from slow evaporation of the filtrate. Yield: 135 mg (56 % based on Cd(SPh)₂). Anal. Calcd. for $C_{108}H_{108}N_4O_4S_{16}Ag_4Cd_6$: C, 41.24; H, 3.46; N, 1.78. Found: C, 41.17; H, 3.54; N, 1.76. IR (cm⁻¹): v (C–H) 3054 (m), v (C=O) 1640 (s), v (C–S) 685 (s).

Preparation of {[Cd₆Ag₄(SPh)₁₆](bpe)₂}_n(2)

To a colorless solution of **1** (97 mg, 0.03 mmol) in 3 mL DMF was added *trans-1*,2-bis(4-pyridyl)ethylene (18 mg, 0.1 mmol) with stirring. A yellow mixture was obtained after stirring overnight and then filtered. The yellow filtrate was evaporated at room temperature. Large yellow crystals of **2** were obtained after one week. Yield: 72 mg (65 % based on **1**). Anal. Calcd. for $C_{122}H_{100}N_4S_{16}Ag_4Cd_6$: C, 45.21; H, 3.11; N, 1.73. Found: C, 45.02; H, 3.24; N, 1.72. IR (cm⁻¹): v (C–H) 3055 (m), v (C=C) 1603 (s), v (C–S) 684 (s).

[1] I. G. Dance, R. G. Garbutt, D. C. Carig, M. L. Scudder, Inorg. Chem. 1987, 26, 4057-4064.

Photocatalysis measurement

The photocatalytic activities of **1** and **2** were evaluated by testing their behavior of degradation of Rhodamine B (RhB) aqueous solution under visible light illumination. A 500 W Xenon lamp was used as a light source. Typically, 20 mg of the catalyst and 10 mL of RhB aqueous solution (4.18 M, 20 mg/L) was mixed in a 20 mL glass vessel. The mixture was stirred for 1 h in dark to afford a homogeneous phase before the analysis. Then the vessel was irradiated by the light, a recycling water bath was used to keep the reaction temperature. At different intervals of 30 min, 60 min, 90 min, 120 min, 180 min, 1 mL of the mixture was withdrawn from the mother solution and the dispersed powder was removed by centrifugation. The concentration of RhB in the sample solution was analyzed by UV/vis spectroscopy.

X-ray Crystallography

Suitable single crystals of clusters 1 (0.07× 0.10× 0.34 mm) and 2 (0.22× 0.40× 0.41 mm) were selected and mounted on a Bruker SMART Apex 2K CCD diffractometer with graphite-monochromated Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) at 296 K. Data were measured using ω scans of 0.5° per frame, such that a hemisphere was collected. Cell parameters were retrieved using SMART software and refined using SAINT ^[2] on all observed reflections. Data reduction was performed with SAINT software which corrects for Lorentz polarization and decay. Absorption corrections were applied using SADABS.^[3] Structure was solved by direct methods using SHELXS^[4,5] and refined by least squares on F^2 (SHELXL). Cadmium, silver and sulfur atoms were described anisotropically. All carbon, nitrogen and oxygen were refined isotropically for 1 and 2. In 1, the largest peak in the final difference map had a height of 1.115 e Å⁻³ and is in the vicinity of cadmium atom. 2 include disordered solvent molecules of DMF. We employed PLATON/SQUEEZE ^[6] to remove the electron density of disordered solvent molecules and calculate approximately solvent accessible void space in the unit cell. Hydrogen atoms were placed in idealized positions and refined employing a riding model with thermal parameters 1.2× or 1.5× those of the bonded carbon atoms.

[2] Bruker Analytical X-ray Instruments Inc. SMART and SAINT+ for Windows NT (Version 6.02a), Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA (1998).

[3] G. M. Sheldrick. SADABS, University of Göttingen, Germany (1996).

[4] G. M. Sheldrick. SHELXTL Software Reference Manual (Version 5.1), Bruker AXS Inc., Madison, Wisconsin, USA (1997).

[5] G.M. Sheldrick. Acta Crystallogr., 2008, A64, 112-122.

[6] A. L. Spek, Acta Cryst., 2009, D65, 148-155

compound	1	2
empirical formula	$C_{108}H_{108}N_4O_4S_{16}Ag_4Cd_6\\$	$C_{65.63}H_{63.13}O_{1.88}N_{3.88}S_8Ag_2Cd_3$
formula weight	3144.82	1745.49
crystal system	monoclinic	tetragonal
space group	P21/c	$I4_1/a$
unit cell dimension, Å / °	$a = 20.4501(4), \alpha = 90.00$	$a = 18.3203(2), \alpha = 90.00$
	$b = 16.8939(3), \beta = 97.659(1)$	$b = 18.3203(2), \beta = 90.00$
	$c = 36.0972(8), \gamma = 90.00$	$c = 45.4431(11), \gamma = 120.00$
volume, Å ³	12359.7(4)	15252.2(4)
Ζ	4	8
density (calculated), Mg \cdot m ⁻³	1.690	1.520
absorption coefficient, mm ⁻¹	1.947	1.586
<i>F</i> (000)	6192	6920
crystal size, mm	$0.07 \times 0.10 \times 0.34$	$0.22 \times 0.40 \times 0.41$
crystal color	Colorless	Yellow
temperature, K	296(2)	296(2)
wavelength (Mo Ka), Å	0.71073	0.71073
scan type	ω	ω
reflections collected	103188	44353
independent reflections	21734 ($R_{int} = 10.38\%$)	6539 ($R_{\text{int}} = 7.69\%$)
observed reflections	9051 ($I > 2.0\sigma(I)$)	2880 (<i>I</i> > 2.0σ(<i>I</i>))
data/restraints/parameters	21734/1139/1287	6539/286/327
weight scheme σ^a	$1/[\sigma^2(F_0)^2 + 0.0512P^2 + 0.2528P]$	$1/[\sigma^2(F_0)^2 + 0.0320P^2 + 44.2200P]$
goodness-of-fit on F^2	0.936	1.045
final R^* indices $[I > 2\sigma(I)]^{b,c}$	R1 = 0.0681, w $R2 = 0.1661$	<i>R</i> 1= 0.0551, w <i>R</i> 2= 0.1421
R indices (all data)	<i>R</i> 1= 0.1614, w <i>R</i> 2= 0.2002	<i>R</i> 1= 0.1149, w <i>R</i> 2= 0.1570
largest diff. peak and hole, $e \cdot Å^{-3}$	1.115 and -1.269	0.754 and -0.457

Table S1. Crystal data, data collection and structure refinement parameters

 $^{a}P = (F_{o}^{2} + 2F_{c}^{2})/3.$

^b $R1 = ||F_0| - |F_c|| / |F_0|.$

^c wR2 = $[w(|F_o^2| - |F_c^2|)^2/w|F_o^2|^2]^{1/2}$.

Element	Weight%	Atomic%
S K	31.01	60.81
Ag L	25.83	15.05
Cd L	43.16	24.14
Totals	100.00	

(a)

(b)

Fig. S1 Energy-dispersive X-ray spectroscopy (EDS) of $Cd_6Ag_4(SPh)_{16}(DMF)_4$ (a) and $\{[Cd_6Ag_4(SPh)_{16}](bpe)_2\}_n$ (b).

Fig. S2 Three possible arrangement of inner Cd and Ag atoms in the cluster of $Cd_6Ag_4(SPh)_{16}(DMF)_4$, each μ 3-SPh group connected with one Cd and two Ag to a bond valence of 1. (Green, Cd; pink, Ag; yellow, SPh⁻; red, oxygen from DMF molecule)

Fig. S3 Comparision of expreimental and simulated powder X-ray diffraction of $\{[Cd_6Ag_4(SPh)_{16}](bpe)_2\}_{n.}$

Fig. S4 Comparisons of powder X–ray diffraction patterns of standard hexagonal CdS, cubic Ag and hybrid crystals of CdS-Ag prepared from pyrolysis of Cd₆Ag₄(SPh)₁₆(DMF)₄.

Fig. S5 Infrared (IR) spectrum of (a) $\{[Cd_6Ag_4(SPh)_{16}](bpe)_2\}_n$, (b) $Cd_6Ag_4(SPh)_{16}(DMF)_4$ and (c) *trans*-1,2-bis(4-pyridyl)ethylene (bpe).

Fig. S6 Thermal gravimetric analysis (TGA) curve of $Cd_6Ag_4(SPh)_{16}(DMF)_4$ (solid line) and $\{[Cd_6Ag_4(SPh)_{16}](bpe)_2\}_n$ (dashed line).