High-turnover visible-light photoreduction of CO\(_2\) by a Re(I) complex stabilized on dye-sensitized TiO\(_2\)

Eun-Gyeong Ha,\(^a\) Jeong-Ah Chang,\(^a\) Seong-Min Byeon,\(^a\) Chyongjin Pac,\(^b\) Dong-Myung Jang,\(^a\) Jeonghee Park,\(^a\) and Sang Ook Kang\(^a\)

\(^a\) Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong-city 339-700, Korea, E-mail: parkjh@korea.ac.kr; sangok@korea.ac.kr.

\(^b\) Yulchon Research Center, Korea University, Sejong-ro 2511, Sejong-city 339-700, Korea, E-mail: jjpac@korea.ac.kr.
Table of Contents

Experimental details

Fig. S1 IR and diffuse-reflectance absorption spectra of H-TiO$_2$ and ReC/H-TiO$_2$/Dye.

Fig. S2 CO formation for the hybrids based on S-TiO$_2$ and D-TiO$_2$.

Fig. S3 CO formation by extended irradiation for ReC/H-TiO$_2$/DA.

Fig. S4 CO formation for homogeneous solution photoreactions of ReE/triethanolamine, ReE/SD and Ru(bpy)$_3^{2+}$/ReE/SD combinations in DMF.

Fig. S5 Transmission electron microscopy images of H-TiO$_2$, D-TiO$_2$, as-prepared [001] facet-exposed TiO$_2$ and S-TiO$_2$.

Fig. S6 Transmission electron microscopy images of H-TiO$_2$, D-TiO$_2$, as-prepared [001] facet-exposed TiO$_2$ and S-TiO$_2$.

Fig. S7 XRD pattern of H-TiO$_2$, D-TiO$_2$ and S-TiO$_2$.

Fig. S8 CO formation in repetitive irradiation experiments for Dye/S-TiO$_2$/ReC, Dye/H-TiO$_2$/ReC and Dye/D-TiO$_2$/ReC.
Experimental details

Unless stated otherwise, all reagents and [Ru(bpy)$_3$]Cl$_2$ were purchased from Aldrich and used without further purification. All manipulations were performed under a dry nitrogen or argon atmosphere using standard Schlenk techniques. N,N-Dimethylformamide (DMF) was distilled from calcium hydride and stored over molecular sieves. Tetrahydrofuran (THF) and toluene were refluxed over and distilled from sodium/benzophenone before use. The 1H and 13C NMR spectra were recorded on a Varian Mercury 300 spectrometer operating at 300.1 and 75.4 MHz, respectively, for CDCl$_3$ or DMSO-d_6 solutions. Proton and carbon chemical shifts were referenced relative to the corresponding solvent signals, δ_H 7.24 and δ_C 77.0 of CHCl$_3$ and δ_H 2.49 and δ_C 39.5 of DMSO-d_6. Column chromatography was performed on silica gel (Merck 70D, 230 mesh), and TLC was done on silica-gel plates (Merck, kieselgel 60 F254, 0.20 mm). Elemental analyses and high resolution tandem mass spectrometry were performed, respectively, on a Carlo Erba Instruments CHNS-O EA 1108 analyzer and on a Jeol LTD JMS-HX 110/110A at the Korean Basic Science Institute (Ochang). The absorption and photoluminescence spectra were recorded on a Shimadzu UV-3101PC UV/Vis/NIR scanning spectrophotometer and a VARIAN Cary Eclipse fluorescence spectrophotometer, respectively. The diffuse reflectance UV-visible absorption spectra of powder samples were recorded on a Seinc spectrophotometer S-3100. The IR spectra were taken on a Cary 660 FTIR spectrometer. Cyclic voltammetry (CV) measurements were carried out for DMF solutions of the rhenium complexes or the dye (1 mM) in the presence of tetrabutylammonium hexafluorophosphate (0.1 M) at room temperature using a BAS 100B electrochemical analyzer equipped with a Pt working electrode, a platinum wire counterelectrode, and an Ag/AgNO$_3$ (0.1 M) reference. All potential values were calibrated vs. a ferrocenium/ferrocene (Fc$^+/Fc$) redox couple (−0.63 V).

Preparation of Dye-sensitized TiO$_2$/ReC Catalyst. The [001] facet exposed TiO$_2$ which had been prepared according to the published method1 was treated with 0.1 M NaOH aqueous solution to give S-TiO$_2$.2 The alkaline treatment was indispensable for efficient deposition of ReC and Dye on the particles, because the deposition of ReC and Dye was poor on the fluorinated surface of the as-prep
ared [001] TiO$_2$. H-TiO$_2$ and D-TiO$_2$ are commercially available Hombikat UV-100 and Degussa P-25, respectively. The specific Brauner-Emmet-Teller (BET) surface areas were determined to be >250 m2/g for H-TiO$_2$, 50 m2/g for D-TiO$_2$ and 110 m2/g for S-TiO$_2$. These TiO$_2$ materials were thoroughly washed with distilled water, ultrasonically treated in water, separated by centrifugation and then dried in an oven under N$_2$. The TiO$_2$ particles (0.1 g) were stirred overnight in an MeCN/tert-butanol solution of ReC (1 μmol) and then subjected to centrifugation. The collected solids were washed with the solvent and then dried in an oven under N$_2$. The Re(I) complex-deposited TiO$_2$ powders (0.1 g) were dispersed into an MeCN/tert-butanol solution of Dye (15 μmol) and allowed to stand overnight under stirring. The photocatalysts (ReC/TiO$_2$/Dye) were separated by centrifugation, washed with MeCN/tert-butanol, dried in an oven (70°C) and stored under N$_2$ in the dark. The preparation of Dye/TiO$_2$/ReC was performed by the initial loading of Dye on the TiO$_2$ particles followed by treatment with an MeCN/tert-butanol solution of ReC, while each procedure for Dye or ReC loading was identical with that described above for ReC/TiO$_2$/Dye. It was confirmed by UV-visible absorption spectroscopy that each supernatant separated after centrifugation of the Dye- and ReC-treated suspensions shows negligible absorption of Dye or ReC.

Photocatalyzed CO$_2$ Reduction. Suspensions of ReC/TiO$_2$/Dye or Dye/TiO$_2$/ReC particles (10 mg with 0.1 μmol ReC and 1.5 μmol Dye) in 3 ml DMF containing SD (0.1 M) were placed in a quartz cell (1-cm pass length; 6.0 mL total volume), bubbled with CO$_2$ for 30 min, sealed with a septum and then irradiated under stirring by a Xenon lamp (450 W, model 66924, Newport corporation); the incident light ($\lambda > 420$ nm) was obtained by passing the light from the Xenon lamp through a water layer of 10 cm path length and a glass light filter. Homogeneous-solution photoreactions were performed for 3 mL solutions of (a) ReE (1.0 mM) in 5:1 DMF/triethanolamine (TEOA), (b) ReE (1.0 mM) in DMF containing 0.1 M SD and (c) a mixture of [Ru(bpy)$_3$]Cl$_2$ (0.1 mM) and ReE (0.5 mM) in DMF containing 0.1 M SD. The irradiation setup was the same as that described above, but appropriate glass light filters were used to cut off the light
of ≤ 350 nm for (a), ≤ 400 nm for (b) and ≤ 420 nm for (c). The amounts of CO evolved in the overhead space of the cell were determined by gas chromatography (HP6890A GC equipped with a TCD detector) using a 5 A molecular sieve column. The liquid phase of the irradiated samples was subjected to HPLC analysis using a Waters 515 pump, a Waters 486 UV detector operated at 210 nm, a Rezex™ ROA-Organic Acid H+ column (300 mm × 7.8 mm) and 0.01 M H$_2$SO$_4$ aqueous solution eluent. No peak was detected at 5 min (retention time for oxalic acid) and at 9 min (retention time for formic acid).

Scheme S1. Synthesis route for ReE and ReC.

Synthesis

The preparation method for Dye was described in a previous paper.3 ReCl(CO)$_5$,4 and SD5 were prepared according to the published methods. Scheme S1 shows the synthetic route for ReE and ReC following literature methods,6 details of which are described below.

4,4'-Bis[(trimethylsilyl)methyl]-2,2'-bipyridine. To a THF solution (16 mL) of diisopropylamine (1.75 mL, 12.5 mmol) cooled to -78 °C was added a 1.6 M hexane solution of butyllithium (n-BuLi) (6.9 mL, 11 mmol). The solution was stirred at -78 °C for 10 min, warmed to 0 °C, stirred for 10 min at this temperature and then cooled to -78 °C. To this solution kept at -78 °C was added a solution of 4,4'-dimethyl-2,2'-bipyridine (0.921 g, 5 mmol) in THF (22 mL) via cannula. The resulting reaction mixture was stirred at -78 °C for 20 min, warmed to -10 °C, stirred for 25 min and then cool
ed to −78 °C. To this cold solution was added chlorotrimethylsilane (1.65 mL, 12.5 mmol) via syringe. After the solution became pale blue-green, the reaction was quenched by rapid addition of absolute ethanol (3 mL). The yellow cold reaction mixture was poured into aqueous saturated sodium bicarbonate (∼60 ml) and extracted with EtOAc; the combined organic fractions were shaken with brine (∼200 mL) and dried over Na₂SO₄. Filtration and concentration on a rotary evaporator afforded 1.6 g (40%) of 4,4’-bis[(trimethylsilyl)methyl]-2,2'-bipyridine. mp 90-92 °C; ¹H NMR (CDCl₃, 300 MHz) δ: 0.04 (s, 18 H), 2.21 (s, 4 H), 6.94 (d, 2 H), 8.05 (br s, 2 H), 8.46 (d, 2 H). HRMS (FAB) calcd for C₁₈H₂₈N₂Si₂: 328.60. Found: 328.65 [M]⁺. Anal. Calcd for C₁₈H₂₈N₂Si₂: C, 65.79; H, 8.59; N, 8.53. Found: C, 65.78; H, 8.43; N, 8.76.

4,4’-Bis(chloromethyl)-2,2'-bipyridine. A mixture of 4,4’-bis[(trimethylsilyl)methyl]-2,2'-bipyridine (1.0 g, 3.0 mmol), hexachloroethane (2.9 g, 12.2 mmol) and cesium fluoride (1.8 g, 12.2 mmol) in 20 mL acetonitrile was stirred at 60 °C for 3.5 h under a nitrogen atmosphere, cooled to 25 °C and then poured into a separate flask containing ethyl acetate and water (20 mL each). The product was extracted with EtOAc (3 × 20 mL); the combined organic fractions were shaken with brine (40 mL) and dried over Na₂SO₄. After filtration and concentration on a rotary evaporator, the residue was subjected to flash chromatography on silica gel (6:4 ethyl acetate:hexanes) to give 0.7 g (91%) of bis(chloromethyl)bipyridine as a white solid. mp 98-100 °C; ¹H NMR (CDCl₃, 300 MHz) δ: 4.63 (s, 4 H), 7.38 (dd, 2 H), 8.43 (s, 2 H), 8.70 (d, 2 H). HRMS (FAB) calcd for C₁₂H₁₀Cl₂N₂: 253.13. Found: 253.19 [M]⁺. Anal. Calcd for C₁₂H₁₀Cl₂N₂: C, 56.94; H, 3.98; N, 11.07. Found: C, 56.82; H, 4.04; N, 11.01.

4,4’-Bis(diethoxyphosphorylmethyl)-2,2'-bipyridine.⁷ A 50-mL three-neck round bottom flask containing 1.0 g of 4,4’-bis(chloromethyl)-2,2'-bipyridine (4.0 mmol) was purged and evacuated under argon (×3), and then triethyl phosphite (6.96 mL, 40 mmol) was added. The solution was refluxed overnight with stirring and cooled to room temperature. After removal of volatile materials under reduced pressure, the residue was subjected to column chromatography on silica gel using a 4:4:1 toluene:hexanes:triethylamine eluent to yield the phosphonated bipyridine 88% (1.23 g, 3.55
1H NMR (CDCl$_3$, 300 MHz) δ: 1.27 (t, 12 H), 3.19 (s, 2 H), 3.26 (s, 2 H), 4.07 (m, 8 H), 7.32 (d, 2 H), 8.33 (s, 2 H), 8.60 (d, 2 H). HRMS(FAB) calcd for C$_{20}$H$_{30}$N$_2$O$_6$P$_2$: 456.16. Found: 456.41 [M]$^+$. Anal. Calcd for C$_{20}$H$_{30}$N$_2$O$_6$P$_2$: C, 52.63; H, 6.63; N, 6.14. Found: C, 52.61; H, 6.66; N, 6.19.

fac-[Re(4,4'-Bis(diethoxyphosphorylmethyl)-2,2'-bipyridine)(CO)$_3$Cl] (ReE). A toluene solution (5 mL) containing a mixture of 4,4'-bis(diethoxyphosphorylmethyl)-2,2'-bipyridine (0.13 g, 0.29 mmol) and Re(CO)$_5$Cl (0.1 g, 0.28 mmol) was refluxed for 5 h and then cooled to room temperature. After evaporation of solvent, the remaining solid was recrystallized from methanol to give the product as a yellow solid. Yield: 0.19 g (90 %); 1H NMR (CDCl$_3$, 300 MHz) δ: 1.32 (t, 12 H), 3.25 (s, 2 H), 3.32 (s, 2 H), 4.13 (m, 8 H), 7.45 (d, 2 H), 8.20 (s, 2 H), 8.94 (d, 2 H). HRMS(FAB) calcd for C$_{23}$H$_{30}$ClN$_2$O$_9$P$_2$Re: 762.07. Found: 762.10 [M]$^+$. Anal. Calcd for C$_{23}$H$_{30}$ClN$_2$O$_9$P$_2$Re: C, 36.25; H, 3.97; N, 3.68. Found: C, 36.23; H, 3.99; N, 3.65.

fac-[Re(4,4'-Bis(dihydroxyphosphorylmethyl)-2,2'-bipyridine)(CO)$_3$Cl] (ReC). A methanol solution (12 mL) containing a mixture of ReE (0.1 g, 0.16 mmol) and 6N HCl (6 mL) was refluxed for 12 h. To this solution were added methanol (2 mL) and 1M NaHCO$_3$ (2 mL), and then yellow solid precipitated was collected by filtration. The solid was recrystallized from methanol. Yield: 0.08 g (80 %); 1H NMR (CDCl$_3$, 300 MHz) δ: 3.25 (s, 2 H), 3.33 (s, 2 H), 3.67 (br s, 4 H), 7.61 (d, 2 H), 8.54 (s, 2 H), 8.90 (d, 2 H). HRMS(FAB) calcd for C$_{15}$H$_{14}$ClN$_2$O$_9$P$_2$Re: 649.94. Found: 649.89 [M]$^+$. Anal. Calcd for C$_{15}$H$_{14}$ClN$_2$O$_9$P$_2$Re: C, 27.72; H, 2.17; N, 4.31. Found: C, 27.75; H, 2.11; N, 4.29.
Fig. S1 IR spectra of H-TiO$_2$ (a) and ReC/H-TiO$_2$/Dye (b) in KBr disc (top) and normalized diffuse-reflectance absorption spectra of H-TiO$_2$ (c) and ReC/H-TiO$_2$/Dye (d) (bottom). The IR spectrum (b) show absorptions at 2030 and 1890 – 1920 cm$^{-1}$ due to the CO ligands of ReC, at 2210 cm$^{-1}$ for the CN group of Dye and at 1300 – 1700 cm$^{-1}$ mainly attributable to the C=O, P=O and C=C bonds.
Fig. S2 Time courses of CO formation during irradiation at > 420 nm for 10 h. The left and right panels show the plots for ReC/TiO$_2$/Dye and for Dye/TiO$_2$/ReC, respectively (TiO$_2$ = H-TiO$_2$ (A, B), S-TiO$_2$ (C, D) and D-TiO$_2$ (E, F)); 10 mg of the hybrids with 0.1 µmol ReC and 1.5 µmol Dye in 3 mL DMF in the presence of 0.1 M SD.
Fig. S3 Formation of CO during irradiation for 20 h at > 420 nm; 10 mg of ReC/H-TiO$_2$/Dye with 0.1 μmol ReC and 1.5 μmol Dye in 3 mL DMF in the presence of 0.1 M SD.

Fig. S4 Formation of CO in CO$_2$-saturated homogeneous solution (3 mL); irradiation of (a) ReE (1.0 mM) in 5:1 DMF:TEOA at > 350 nm (■), (b) ReE (1.0 mM) in the presence of SD (0.1 M) in DMF at > 400 nm (●) and (c) Ru(bpy)$_3^{2+}$ (0.1 mM) in the presence of ReE (0.5 mM) and SD (0.2 M) in DMF at > 420 nm (▲).
Fig. S5 Transmission electron microscopy images of H-TiO$_2$ (a), D-TiO$_2$ (b), as-prepared [001] facet-exposed TiO$_2$ (c) and S-TiO$_2$ (d). Average sizes are 3.5 nm for H-TiO$_2$, 18 nm for D-TiO$_2$ and 20 nm (length)\times5 nm (thickness) for square-shaped nanosheet S-TiO$_2$ with \approx 90% [001] facets. Insets in (c) and (d) show the d-spacing of the (101) and (004) planes which is 3.5 and 2.3 Å, respectively, consistent with the values of the anatase phase bulk (JCPDS No. 21-1272; tetragonal $a = 3.785$ Å and $c = 9.513$ Å).
Fig. S6 XRD pattern of H-TiO$_2$, D-TiO$_2$ and S-TiO$_2$. The H–TiO$_2$ and S-TiO$_2$ are in almost pure anatase phase, while the D-TiO$_2$ consists of anatase (denoted as A) and rutile (denoted as R) tetragonal phase mixture. The peaks of A and R phases are assigned using those of the anatase phase (JCPDS No. 21-1272; tetragonal $a = 3.785$ Å and $c = 9.513$ Å) and the rutile phase (JCPDS No. 87-0920; tetragonal $a = 4.594$ Å and $c = 2.958$ Å), respectively.
Fig. S7 Formation of CO in dry DMF (–▲, –■) compared with that in the presence of 10%(v/v) H$_2$O (–●, –▼): (A) ReC/S-TiO$_2$/Dye (–▲, –●) and Dye/S-TiO$_2$/ReC (–■, –▼) and (B) ReC/D-TiO$_2$/Dye (–▲, –●) and Dye/D-TiO$_2$/ReC (–■); irradiation at > 420 nm for 10 mg of the hybrids with 0.1 μmol ReC and 1.5 μmol Dye in 3 mL DMF containing 0.1 M SD.
Fig. S8 Formation of CO in repetitive irradiation experiments for Dye/D-TiO$_2$/ReC (a) (–●–) and Dye/S-TiO$_2$/ReC (b) (–■–) in the presence of 1.5 M 2,2,2-trifluoroethanol and Dye/H-TiO$_2$/ReC in the presence of 10%(v/v) H$_2$O (c) (–▲–). Each run involves 30-min CO$_2$ bubbling in the dark followed by 400-min irradiation at > 420 nm for 10 mg of the hybrids with 0.1 µmol ReC and 1.5 µmol Dye in 3 mL DMF containing 0.1 M SD.
References

