Supporting Information

Ni-Catalyzed Asymmetric Reductive Allylation of Aldehydes with Allylic Carbonates

Zhuozhen Tan, Xiaolong Wan, Zhenhua Zang, Qun Qian,* Wei Deng,* and Hegui Gong*

Department of Chemistry, Innovative Drug Research Center and School of Materials Science and Engineering, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China

Hegui_gong@shu.edu.cn

Table of Contents

(1) Typical Nickel-Catalyzed Allylation Procedure…………………………………S2
(2) Analytical Data for Homoallylic Alcohols………………………………………S2
(3) NMR Spectra for New Compounds……………………………………………S10
(4) HPLC Charts for Homoallylic Alcohols………………………………………..S35

General Methods

All reactions were carried out under an atmosphere of nitrogen unless otherwise indicated. Anhydrous THF was distilled from sodium/benzophenone ketyl prior to use. All other solvents were technical grade unless noted. Anhydrous DMF (Acros) and other commercially available reagents were used without further purification unless noted. Column chromatography was performed using silica gel 300-400 mesh (purchased from Qingdao-Haiyang Co. China) as the solid support. All NMR spectra were recorded on Bruker Avance 500 MHz spectrometer at STP. 1H NMR and 13C NMR chemical shifts are reported in δ units, parts per million (ppm) relative to the chemical shift of residual solvent. Reference peaks for chloroform in 1H NMR and 13C NMR spectra were set at 7.26 ppm and 77.0 ppm, respectively. High-resolution mass spectra (HRMS) were obtained using Waters Micromass GCT Premier. Melting point was recorded on a micro melting point apparatus (X-4, YUHUA Co., Ltd, Gongyi, China). Enantiomer ratios were determined by chiral HPLC analysis in comparison with authentic racemic materials. Optical rotations were taken on Autopol IV-T.
Typical Nickel-Catalyzed Carbonyl Allylation Procedure

General Procedure A: To a flame-dried Schlenk tube equipped with a magnetic stir bar was loaded (S)-Bu-Pybox (2c) (7.40 mg, 0.023 mmol, 15.0 mol%) and zinc powder (29.3 mg, 0.450 mmol, 300 mol%). The tube was moved into a dry glove box, at which point Ni(ClO$_4$)$_2$·6H$_2$O (5.50 mg, 0.015 mmol, 10.0 mol%) was added. The tube was capped with a rubber septum before being moved out of the glove box. DMF (1.0 mL), aldehyde (0.150 mmol, 100 mol%) and allylic carbonate (0.225 mmol, 150 mol%) were added via syringe subsequently. The solution was stirred at room temperature overnight. The reaction mixture was directly purified by flash-column chromatography on silica gel with petroleum ether and EtOAc as eluents to give pure products. The enantioselectivity was determined by HPLC. The ratio of anti/syn were determined by 1H NMR.

General Procedure B: To a flame-dried Schlenk tube equipped with a magnetic stir bar was loaded (S)-Bu-Pybox (2c) (7.40 mg, 0.023 mmol, 15.0 mol%) and zinc powder (29.3 mg, 0.450 mmol, 300 mol%). The tube was moved into a dry glove box, at which point Ni(ClO$_4$)$_2$·6H$_2$O (5.50 mg, 0.015 mmol, 10.0 mol%) and CsI (19.5 mg, 0.075 mmol, 50.0 mol%) was added. The tube was capped with a rubber septum before being moved out of the glove box. DMF (1.0 mL), aldehyde (0.150 mmol, 100 mol%) and allylic carbonate (0.225 mmol, 150 mol%) were added via syringe subsequently. The reaction mixture was allowed to stir 12 hours under N$_2$ atmosphere at -15ºC/-25ºC.

Procedure for preparing compound 5: To a flame-dried Schlenk tube equipped with a magnetic stir bar was loaded (S)-Bu-Pybox (2c) (7.40 mg, 0.023 mmol, 15.0 mol%) and zinc powder (29.3 mg, 0.450 mmol, 300 mol%). The tube was moved into a dry glove box, at which point Ni(COD)$_2$ (4.20 mg, 0.015 mmol, 10.0 mol%) and CuI (14.3 mg, 0.075 mmol, 50.0 mol%) was added. The tube was capped with a rubber septum, and it was moved out of the glove box. DMF (1.0 mL), 4-Anisaldehyde (22.4 mg, 0.150 mmol, 100 mol%) and allyl methyl carbonate (26.1 mg, 0.225 mmol, 150 mol%) were added via syringe subsequently. After the reaction mixture was allowed to stir 12 hours under N$_2$ atmosphere at 0ºC, it was directly loaded onto a silica column without work-up. Flash column chromatography (SiO$_2$: 8% ethyl acetate in petroleum ether) gave 5 as a colorless oil.

(2) Analytical Data for Homoallylic Alcohols

(+)-1-(4-Methoxyphenyl)-3-phenylbut-3-en-1-ol (1)

Colorless oil, 95% yield (36.2 mg), 91% ee; $[\alpha]_D^{22} = +34.3$ (c = 1.00, CHCl$_3$).

1H NMR (500 MHz, CDCl$_3$): δ 2.06 (s, 1H), 2.90 (dd, $J = 8.9$, 14.3 Hz, 1H), 3.00 (ddd, $J = 0.9$, 4.5, 14.3 Hz, 1H), 3.83 (s, 3H), 4.72 (m, 1H), 5.18 (d, $J = 0.8$ Hz, 1H), 5.43 (d, $J = 1.3$ Hz, 1H), 6.93-6.88 (m, 2H), 7.27-7.50 (m, 7H).

13C NMR (125 MHz, CDCl$_3$): δ 45.9, 55.3, 71.7, 113.8, 115.7, 126.3, 127.1, 127.8, 128.5, 136.1,
145.2, 159.1. HRMS (EI) calcd for C_{17}H_{18}O_{2}: 254.1307, found 254.1304. HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 85/15, flow rate 0.8 mL/min, UV 214 nm, \(t_R = 9.7 \) min (minor), \(t_R = 11.5 \) min (major).

(S)-(−)-1-(4-Methoxyphenyl)but-3-en-1-ol (5)\(^1\)

Colorless oil, 90% yield (24.0 mg), 66% ee; [\(\alpha \)]\(^{25}\) = −38.5 (c = 0.40, CHCl\(_3\)). ¹H NMR (500 MHz, CDCl\(_3\)): δ 2.10 (s, 1H), 2.49 (t, \(J = 6.8 \) Hz, 2H), 3.80 (s, 3H), 4.67 (t, \(J = 6.5 \) Hz, 1H 2H), 5.10–5.18 (m, 2H), 5.82–5.73 (m, 1H), 6.86–6.90 (m, 2H), 7.326–7.29 (m, 2H). HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 92/8, flow rate 0.6 mL/min, UV 220 nm, \(t_R = 15.4 \) min (minor), \(t_R = 16.8 \) min (major).

(−)-1-(2-Methoxyphenyl)-3-phenylbut-3-en-1-ol (6)

Colorless oil, 96% yield (36.6 mg), 88% ee; [\(\alpha \)]\(^{25}\) = +24.8 (c = 1.00, CHCl\(_3\)). ¹H NMR (500 MHz, CDCl\(_3\)): δ 2.48 (d, \(J = 4.8 \) Hz, 1H), 2.77 (dd, \(J = 9.0, 14.3 \) Hz, 1H), 3.17 (ddd, \(J = 0.9, 4.5, 14.3 \) Hz, 1H), 3.86 (s, 3H), 5.00 (m, 1H), 5.18 (s, 1H), 5.44 (d, \(J = 1.2 \) Hz, 1H), 6.86–6.90 (m, 1H), 6.94–6.99 (m, 1H), 7.22–7.27 (m, 1H), 7.28–7.32 (m, 1H), 7.34–7.39 (m, 3H), 7.51–7.55 (m, 2H). ¹³C NMR (125 MHz, CDCl\(_3\)): δ 43.9, 55.2, 68.5, 110.3, 115.1, 120.7, 126.3, 126.6, 127.6, 128.2, 128.3, 132.0, 140.3, 145.3, 156.2. HRMS (EI) calcd for C\(_{\text{11}}\)H\(_{17}\)NO: 254.1307, found 254.1305. HPLC condition: Chiralcel OD-H, n-hexane/2-propanol 80/20, flow rate 0.7 mL/min, UV 214 nm, \(t_R = 7.4 \) min (major), \(t_R = 7.9 \) min (minor).

(−)-1-(4-(Dimethylamino)phenyl)-3-phenylbut-3-en-1-ol (7)

Colorless oil, 95% yield (38.1 mg), 85% ee; [\(\alpha \)]\(^{25}\) = +41.6 (c = 1.03, CHCl\(_3\)). ¹H NMR (500 MHz, CDCl\(_3\)): δ 1.99 (s, 1H), 2.91 (dd, \(J = 8.9, 14.3 \) Hz, 1H), 2.96 (s, 6H), 2.98 (dd, \(J = 4.5, 14.3 \) Hz, 1H), 4.67 (m, 1H), 5.18 (s, 1H), 5.41 (d, \(J = 1.2 \) Hz, 1H), 6.71–6.76 (m, 2H), 7.21–7.26 (m, 2H), 7.29–7.34 (m, 1H), 7.35–7.40 (m, 2H), 7.44–7.49 (m, 2H). ¹³C NMR (125 MHz, CDCl\(_3\)): δ 40.7, 45.6, 71.9, 112.6, 115.4, 126.4, 126.9, 127.7, 128.5, 131.9, 140.6, 145.4, 150.3. HRMS calcd for C\(_{\text{18}}\)H\(_{19}\)NO (EI): 267.1623, found 267.1622. HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 85/15, flow rate 0.8 mL/min, UV 214 nm, \(t_R = 13.2 \) min (minor), \(t_R = 16.8 \) min (major).

(+)-3-Phenyl-1-p-tolylbut-3-en-1-ol (8)

Colorless oil, 95% yield (33.9 mg), 88% ee; [\(\alpha \)]\(^{25}\) = +33.4 (c = 0.98, CHCl\(_3\)). ¹H NMR (500 MHz, CDCl\(_3\)): δ 2.07 (s, 1H), 2.39(s, 3H), 2.90 (dd, \(J = 9.0, 14.3 \) Hz, 1H), 3.02 (dd, \(J = 3.9, 14.3 \) Hz, 1H), 4.74

\(^1\) V. De Sio, A. Massa, A. Scettri, Org. Biomol. Chem. 2010, 8, 3055-3059.
(-)-3-phenyl-1-o-tolylbut-3-en-1-ol (9)

Colorless oil, 85% yield (30.3 mg), 86% ee; [α]^{25}_D = -4.4 (c = 0.98, CHCl₃).

{\text{H NMR (500 MHz, CDCl₃):} \ \delta = 2.01 (s, 1H), 2.25(s, 3H), 2.77 (dd, J = 9.5, 14.4 Hz, 1H), 3.02 (ddd, J = 9.0, 3.3, 14.5 Hz, 1H), 4.95 (m, 1H), 5.24 (s, 1H), 5.45 (d, J = 1.2 Hz, 1H), 7.11-7.14 (m, 1H), 7.15-7.20 (m, 1H), 7.22-7.27 (m, 1H), 7.30-7.34 (m, 1H), 7.35-7.40 (m, 2H), 7.45-7.49 (m, 2H), 7.54-7.57 (m, 1H).}

{\text{13C NMR (125 MHz, CDCl₃):} \ \delta = 19.0, 44.7, 68.4, 115.7, 125.3, 126.3, 127.2, 127.8, 128.4, 130.3, 134.3, 140.3, 141.9, 145.4.}

HRMS (EI) calcd for C_{17}H_{31}O: 238.1358, found 238.1356. HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 92/8, flow rate 0.6 mL/min, UV 214 nm, tᵣ = 16.3 min (minor), tᵣ = 20.0 min (major).

(+)-1-(2-isopropylphenyl)-3-phenylbut-3-en-1-ol (10)

Colorless oil, 48% yield (19.1 mg), 85% ee; [α]^{25}_D = +2.8 (c = 0.98, CHCl₃).

{\text{H NMR (500 MHz, CDCl₃):} \ \delta = 1.18 (d, J = 6.7 Hz, 3H), 1.25 (d, J = 6.7 Hz, 3H), 2.04 (s, 1H), 2.85 (ddd, J = 9.5, 14.5 Hz, 1H), 3.02 (ddd, J = 1.1, 3.4, 14.5 Hz, 1H), 3.10 (m, 1H), 5.09 (dd, J = 2.7, 9.54 Hz, 1H), 5.26 (d, J = 0.5 Hz, 1H), 5.45 (d, J = 1.3, 1H), 7.23-7.36 (m, 4H), 7.36-7.42 (m, 2H), 7.46-7.49 (m, 2H), 7.55-7.59 (m, 1H).}

{\text{13C NMR (125 MHz, CDCl₃):} \ \delta = 23.8, 24.4, 27.9, 45.6, 67.8, 115.6, 125.2, 125.5, 126.0, 126.3, 127.6, 127.8, 128.4, 140.4, 145.4, 145.8.}

HRMS (EI) calcd for C_{19}H_{27}O: 238.1671, found 238.1669. HPLC condition: Lux Amylose-2, n-hexane/2-propanol 90/10, flow rate 0.7 mL/min, UV 214 nm, tᵣ = 7.0 min (major), tᵣ = 7.5 min (minor).

(+)-1-(Furan-2-yl)-3-phenylbut-3-en-1-ol (11)

Colorless oil, 95% yield (30.5 mg), 80% ee; [α]^{25}_D = +26.2 (c = 1.03, CHCl₃).

{\text{H NMR (500 MHz, CDCl₃):} \ \delta = 2.09 (s, 1H), 3.00 (ddd, J = 8.8, 14.3 Hz, 1H), 3.15 (dddd, J = 4.9, 14.3 Hz, 1H), 4.77 (m, 1H), 5.20 (s, 1H), 5.41 (d, J = 1.0 Hz, 1H), 6.22 (d, J = 3.0 Hz, 1H), 6.32 (dd, J = 1.8, 3.0 Hz, 1H), 7.27-7.32 (m, 1H), 7.32-7.39 (m, 3H), 7.40-7.45 (m, 2H).}

{\text{13C NMR (125MHz, CDCl₃):} \ \delta = 41.9, 65.9, 106.3, 110.1, 115.9, 126.3, 127.8, 128.5, 140.2, 142.0, 144.4, 155.8.}

HRMS (EI) calcd for C_{14}H_{21}O₂: 214.0994, found 214.0995. HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 90/10, flow rate 0.6 mL/min, UV 214 nm, tᵣ = 15.2 min (minor), tᵣ = 17.0 min (major).
(S)-(+) -1,3-Diphenylbut-3-en-1-ol (12)

Colorless oil, 95% yield (32.0 mg), 87% ee; [\alpha]^23 = +28.5 (c = 1.09, CHCl3).

1H NMR (500 MHz, CDCl3): δ 2.09 (s, 1H), 2.88 (dd, J = 9.2, 14.3 Hz, 1H), 3.02 (dd, J = 3.6, 14.3 Hz, 1H), 4.73 (m, 1H), 5.18 (s, 1H), 5.43 (s, 1H), 7.29-7.47 (m, 10H). HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 90/10, flow rate 0.6 mL/min, UV 214 nm, \(t_R = 12.9 \) min (minor), \(t_R = 14.4 \) min (major). (lit: \(t_R = 34.1 \) min (R)-isomer, \(t_R = 38.2 \) min (S)-isomer (Daicel Chiralpak AD-H, flow rate 0.5 mL/min, n-hexane/2-propanol 30/1)).

(-)-1-(naphthalen-2-yl)-3-phenylbut-3-en-1-ol (13)

Colorless oil, 95% yield (39.0 mg), 73% ee; [\alpha]^26 = -0.9 (c = 1.05, CHCl3).

1H NMR (500 MHz, CDCl3): δ 2.21 (d, J = 1.9 Hz, 1H), 2.91 (dd, J = 9.6, 14.6 Hz, 1H), 3.26 (ddd, J = 1.0, 3.2, 14.6 Hz, 1H), 5.28 (d, J = 0.5 Hz, 1H), 5.45-5.51 (m, 2H), 7.23-7.37 (m, 1H), 7.38-7.44 (m, 2H), 7.46-7.53 (m, 5H), 7.71 (d, J = 7.2 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.85-7.92 (m, 1H), 7.95-8.00 (m, 1H). 13C NMR (125MHz, CDCl3): δ 45.2, 68.9, 115.8, 122.9, 123.0 125.4, 125.5, 126.5, 127.4, 127.9, 128.5, 128.9, 130.3, 133.8, 139.6, 140.5, 145.7. HRMS (EI) calcd for C20H18O: 274.1358, found 274.1362. HPLC condition: Lux Amylose-2, n-hexane/2-propanol 70/30, flow rate 0.7 mL/min, UV 214 nm, \(t_R = 6.8 \) min (major), \(t_R = 7.4 \) min (minor).

(+) -1-(4-Bromophenyl)-3-phenylbut-3-en-1-ol (14)

This compound was prepared according to the General Procedure A at 25°C. Colorless oil, 95% yield (43.2 mg), 77% ee; [\alpha]^23 = +36.8 (c = 1.05, CHCl3).

This compound was also prepared according to the General Procedure B at -25°C. 77% yield (34.8 mg), 85% ee; [\alpha]^23 = +42.0 (c = 1.00, CHCl3).

1H NMR (500 MHz, CDCl3): δ 2.11 (s, 1H), 2.82 (ddd, J = 0.6, 8.9, 14.2 Hz, 1H), 2.96 (ddd, J = 1.1, 4.4, 14.2 Hz, 1H), 4.68 (q, J = 4.3 Hz, 1H), 5.14 (d, J = 1.0 Hz, 1H), 5.41 (d, J = 1.3 Hz), 7.19-7.23 (m, 2H), 7.30-7.34 (m, 1H), 7.35-7.39 (m, 2H), 7.40-7.48 (m, 4H). 13C NMR (125 MHz, CDCl3): δ 46.0, 71.4, 116.1, 121.2, 126.2, 127.5, 127.9, 128.6, 131.4, 140.0, 142.8, 144.6. HRMS (EI) calcd for C16H15OBr: 302.0306, found 302.0307. HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 90/10, flow rate 0.6 mL/min, UV 214 nm, \(t_R = 15.2 \) min (minor), \(t_R = 17.1 \) min (major).

(-)-1-(2-Chlorophenyl)-3-phenylbut-3-en-1-ol (15)

Colorless solid. M.p: 56-58 °C, 94% yield (36.5 mg), 77% ee; [α]D = -12.6 (c = 1.05, CHCl3).

1H NMR (500 MHz, CDCl3): δ 2.28 (s, 1H), 2.84 (ddd, J = 0.4, 9.8, 14.3 Hz, 1H), 3.00 (ddd, J = 1.2, 3.1, 14.3 Hz, 1H), 5.14 (m, 1H), 5.26 (s, 1H), 5.51 (s, 1H), 7.18-7.24 (td, J = 1.7, 7.7 Hz, 1H), 7.27-7.35 (m, 3H), 7.35-7.40 (m, 2H), 7.52-7.62 (dd, J = 1.5, 7.8 Hz, 1H).

13C NMR (125 MHz, CDCl3): δ 44.01, 68.6, 116.0, 126.3, 127.0, 127.1, 127.9, 128.3, 128.4, 129.3, 131.4, 139.8, 141.3, 144.9. HRMS (EI) calcld for C18H15OCl: 258.0811, found 258.0804.

HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 90/10, flow rate 0.7 mL/min, UV 214 nm, tR = 11.0 min (minor), tR = 11.7 min (major).

(+)-Methyl-4-(1-hydroxy-3-phenylbut-3-enyl)benzoate (16)

Colorless oil, 95% yield (40.2 mg), 71% ee; [α]D = +40.6 (c = 1.02, CHCl3).

1H NMR (500 MHz, CDCl3): δ 2.28 (s, 1H), 2.84 (ddd, J = 9.0, 14.3 Hz, 1H), 3.00 (ddd, J = 4.4, 14.3 Hz, 1H), 3.91 (s, 3H), 4.77 (m, 1H), 5.14 (s, 1H), 5.41 (s, 1H), 7.29-7.34 (m, 1H), 7.34-7.41 (m, 4H), 7.42-7.46 (m, 2H), 7.97-8.02 (m, 2H).

13C NMR (125 MHz, CDCl3): δ 45.9, 52.0, 71.6, 116.1, 125.7, 126.2, 127.9, 128.6, 129.2, 129.7, 140.0, 144.5, 149.0, 166.9. HRMS (EI) calcld for C19H18O3: 282.1256, found 282.1255.

HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 90/10, flow rate 0.6 mL/min, UV 214 nm, tR = 20.3 min (minor), tR = 23.4 min (major).

(+)-3-Phenyl-1-(4-(trifluoromethyl)phenyl)but-3-en-1-ol (17)

Colorless oil, 95% yield (41.6 mg), 69% ee; [α]D = +16.6 (c = 1.05, CHCl3).

1H NMR (500 MHz, CDCl3): δ 2.28 (s, 1H), 2.84 (ddd, J = 9.1, 14.3 Hz, 1H), 3.00 (ddd, J = 0.9, 4.5, 14.3 Hz, 1H), 4.77 (m, 1H), 5.16 (d, J = 0.7 Hz, 1H), 5.43 (d, J = 1.1 Hz, 1H), 7.31-7.36 (m, 1H), 7.36-7.41 (m, 2H), 7.42-7.45 (m, 4H), 7.57-7.62 (d, J = 8.1 Hz, 2H).

13C NMR (125 MHz, CDCl3): δ 46.0, 71.4, 116.2, 124.1 (q, J = 272.4 Hz, CF3), 125.3 (q, J = 3.8 Hz), 126.1, 126.2, 127.9, 128.6, 129.7 (q, J = 32.2 Hz), 140.0, 144.5, 147.8. HRMS (EI) calcld for C17H15F3O: 292.1075, found 292.1080.

HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 90/10, flow rate 0.6 mL/min, UV 214 nm, tR = 11.1 min (minor), tR = 12.1 min (major).

(+)-(E)-2-Phenyleptada-1,5-dien-4-ol (18)

Colorless oil, 91% yield (26.5 mg), 85% ee; [α]D = +90.3 (c = +0.40, CHCl3).

1H NMR (500 MHz, CDCl3): δ 1.67-1.68 (m, 4 H), 2.66 (dd, J = 4.6, 14.1 Hz, 1H), 2.92 (dd, J = 5.0, 14.1 Hz, 1H), 4.12 (m,
1H), 5.17 (s, 1H), 5.40 (d, J = 1.1 Hz, 1H), 5.50 (ddd, J = 1.3, 6.8, 15.6 Hz, 1H), 6.55 (dq, J = 6.4, 15.6 Hz, 1H), 7.24-7.31 (m, 1H), 7.31-7.37 (m, 2H), 7.38-7.44 (m, 2H). 13C NMR (125 MHz, CDCl3): δ 17.6, 43.8, 70.6, 115.4, 126.3, 127.0, 127.7, 128.4, 133.2, 140.6, 145.0. HRMS (EI) calcd for C13H16O: 188.1201, found 188.1201. HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 90/10, flow rate 0.6 mL/min, UV 214 nm, tR = 10.3 min (minor), tR = 11.1 min (major).

(+)-(E)-1,5-Diphenylhexa-1,5-dien-3-ol (19)3

Colorless oil, 94% yield (35.3 mg), 85% ee; [α]D25 = +24.6 (c = 1.00, CHCl3).

1H NMR (500 MHz, CDCl3): δ 1.90 (s, 1H), 2.81 (dd, J = 8.3, 14.1 Hz, 1H), 2.92 (dd, J = 5.0, 14.1 Hz, 1H), 4.37 (m, 1H), 5.23 (s, 1H), 5.44 (d, J = 1.2 Hz, 1H), 6.22 (dd, J = 6.4, 15.9 Hz, 1H), 6.55 (d, J = 15.9 Hz, 1H), 7.22-7.27 (m, 1H), 7.28-7.40 (m, 7H), 7.43-7.48 (m, 2H). 13C NMR (125 MHz, CDCl3): δ 43.9, 70.6, 115.4, 126.3, 127.0, 127.7, 128.4, 128.5, 130.2, 131.5, 136.7, 140.5, 144.7. HRMS (EI) calcd for C18H18O: 250.1357, found 250.1357. HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 90/10, flow rate 0.6 mL/min, UV 214 nm, tR = 19.5 min (minor), tR = 22.4 min (major).

(+)-(E)-2-methyl-1,5-diphenylhexa-1,5-dien-3-ol (20)

Colorless oil, 87% yield (35.3 mg), 91% ee; [α]D91 = +78.5 (c = 1.01, CHCl3).

1H NMR (500 MHz, CDCl3): δ 1.87 (d, J = 2.5 Hz, 1H), 1.90 (d, J = 1.5 Hz, 3H), 2.79 (ddd, J = 1.0, 8.3, 14.2 Hz, 1H), 2.96 (ddd, J = 1.0, 4.8, 14.2 Hz, 1H), 4.25 (m, 1H), 5.23 (d, J = 0.9 Hz, 1H), 5.42 (d, J = 1.4 Hz, 1H), 6.43 (s, 1H), 7.20-7.23 (m, 3H), 7.23-7.32 (m, 5H), 7.32-7.35 (m, 2H). 13C NMR (125 MHz, CDCl3): δ 13.4, 42.0, 75.6, 115.6, 126.0, 126.4, 126.5, 127.7, 128.1, 128.5, 129.0, 137.5, 139.3, 140.6, 145.3. HRMS (EI) calcd for C20H20O: 264.1508, found 264.1510. HPLC condition: Chiralpak ID-3, n-hexane/2-propanol 95/5, flow rate 0.7 mL/min, UV 214 nm, tR = 6.9 min (major), tR = 7.9 min (minor).

(+)1,5-Diphenylhex-5-en-3-ol (21)4

This compound was prepared according to the General Procedure A at 25 °C. Colorless oil, 95% yield (35.9 mg), 68% ee; [α]D27 = +41.4 (c = 0.98, CHCl3).

This compound was also prepared according to the General Procedure B at -25 °C. 52% yield (19.5 mg), 80% ee; [α]D25 = +48.0 (c = 1.00, CHCl3).

1H NMR (500 MHz, CDCl3): δ 1.76 (s, 1H), 1.80-1.88 (m, 2H), 2.60 (dd, J = 8.8, 14.2

Hz, 1H), 2.79-2.87 (m, 2H), 3.73 (m, 1H), 5.19 (s, 1H), 5.43 (d, J = 1.2 Hz, 1H), 7.16-7.23 (m, 3H), 7.27-7.33 (m, 3H), 7.33-7.38 (m, 2H), 7.39-7.44 (m, 2H). HPLC condition: Chiralcel AD-H, n-hexane/2-propanol 90/10, flow rate 0.6 mL/min, UV 214 nm, tR = 12.0 min (minor), tR = 13.6 min (major).

(-)-3-(4-Methoxyphenyl)-1-phenylbut-3-en-1-ol (22)

This compound was prepared according to the General Procedure A at 25 °C. Colorless oil, 95% yield (36.1 mg), 72% ee; [α]D21 = +37.3 (c = 1.00, CHCl3). This compound was also prepared according to the General Procedure B at -15 °C. 60% yield (22.8 mg), 81% ee; [α]D21 = +41.0 (c = 1.00, CHCl3).

1H NMR (500 MHz, CDCl3): δ 2.18 (d, J = 2.2 Hz, 1H), 2.81 (dd, J = 9.2, 14.3 Hz, 1H), 2.99 (dd, J = 0.9, 4.2, 14.3 Hz, 1H), 3.83 (s, 3H), 4.72 (dq, J = 2.2, 9.2 Hz, 1H), 5.09 (d, J = 0.7 Hz, 1H), 5.36 (d, J = 1.3 Hz, 1H), 6.88-6.93 (m, 2H), 7.27-7.32 (m, 1H), 7.33-7.38 (m, 4H), 7.39-7.43 (m, 2H). 13C NMR (125 MHz, CDCl3): δ 46.0, 55.2, 71.9, 113.8, 114.1, 125.7, 127.3, 127.4, 128.3, 132.5, 143.9, 144.2, 159.3. HRMS (EI) calcd for C17H18O2: 254.1307, found 254.2310. HPLC condition: Lux Amylose-2, n-hexane/2-propanol 90/10, flow rate 0.7 mL/min, UV 214 nm, tR = 14.4 min (major), tR = 15.4 min (minor).

(-)-3-(4-Fluorophenyl)-1-phenylbut-3-en-1-ol (23)

Colorless oil, 60% yield (21.8 mg), 81% ee; [α]D21 = +7.8 (c = 1.10, CHCl3).

1H NMR (500 MHz, CDCl3): δ 2.08 (s, 1H), 2.86 (dd, J = 8.9, 14.3 Hz, 1H), 2.99 (dd, J = 4.3, 14.3 Hz, 1H), 4.71 (m, 1H), 5.15 (s, 1H), 5.36 (s, 1H), 7.02-7.07 (m, 2H), 7.25-7.30 (m, 1H), 7.32-7.37 (m, 4H), 7.38-7.42 (m, 2H). 13C NMR (125 MHz, CDCl3): δ 45.9, 72.1, 115.2, 115.3, 115.6, 125.7, 127.6, 127.8, 127.9, 128.7, 136.4 (d, J = 3.4 Hz), 143.8 (d, J = 29.4 Hz), 162.4 (d, J = 246.9 Hz). HRMS (EI) calcd for C16H15FO: 242.1107, found 242.1104. HPLC condition: Lux Amylose-2, n-hexane/2-propanol 80/20, flow rate 0.7 mL/min, UV 214 nm, tR = 6.6 min (minor), tR = 7.0 min (major).

(-)-1-Phenyl-3-(4-(trifluoromethyl)phenyl)but-3-en-1-ol (24)

Colorless oil, 90% yield (39.4 mg), 82% ee; [α]D21 = +17.0 (c = 1.00, CHCl3).

1H NMR (500 MHz, CDCl3): δ 2.14 (s, 1H), 2.93 (dd, J = 0.8, 8.5, 14.6 Hz, 1H), 2.98 (dd, J = 1.1, 5.1, 14.6 Hz, 1H), 4.71 (dd, J = 5.1, 8.3 Hz, 1H), 5.25 (d, J = 1.0, Hz, 1H), 5.45 (d, J = 0.8 Hz, 1H), 7.25-7.37 (m, 5H), 7.50-7.54 (m, 2H), 7.60-7.63 (m, 2H). 13C NMR (125 MHz, CDCl3): δ 45.4, 72.3, 117.5, 124.1 (q, J = 272.1 Hz), 125.3 (q, J = 3.8 Hz), 125.8, 127.7, 128.4, 129.6 (q, J = 32.5 Hz), 143.6, 143.9, 144.2. HRMS (EI) calcd for C17H15F3O: 292.1075, found 292.1073. HPLC condition:
Chiralpak ID-3, n-hexane/2-propanol 95/5, flow rate 0.7 mL/min, UV 214 nm, \(t_R = 5.0 \) min (minor), \(t_R = 5.3 \) min (major).

(S)-3-Methyl-1-phenylbut-3-en-1-ol (25)

Colorless oil, 96% yield (23.3 mg), 60% ee; \([\alpha]_D^0 = -36.8 \) (c = 1.00, CHCl3).

1H NMR (500 MHz, CDCl3): \(\delta \) 1.81 (s, 3H), 2.14 (d, \(J = 1.8 \) Hz, 1H), 2.43 (d, \(J = 7.1 \) Hz, 2H), 4.83 (t, \(J = 6.5 \) Hz, 1H), 4.86 (d, \(J = 0.9 \) Hz, 1H), 4.93 (m, 1H), 7.25-7.31 (m, 1H), 7.32-7.42 (m, 4H). 13C NMR (125 MHz, CDCl3): \(\delta \) 22.4, 48.4, 71.4, 114.1, 141.4, 125.7, 127.5, 128.4, 142.4, 144.1. HPLC condition: Lux Amylose-2, n-hexane/2-propanol 90/10, flow rate 0.7 mL/min, UV 214 nm, \(t_R = 6.9 \) min (major), \(t_R = 7.5 \) min (minor).

(+)-1-phenyl-3-o-tolybut-3-en-1-ol (26)

Colorless oil, 53% yield (18.9 mg), 41% ee; \([\alpha]_D^{13} = +5.4 \) (c = 0.95, CHCl3).

1H NMR (500 MHz, CDCl3): \(\delta \) 2.14 (d, \(J = 1.7 \) Hz, 1H), 2.33(s, 3H), 2.77 (dd, \(J = 9.5, 14.4 \) Hz, 1H), 2.83 (dd, \(J = 0.7, 4.4, 14.4 \) Hz, 1H), 4.62 (m, 1H), 5.07 (s, 1H), 5.36 (d, \(J = 0.6 \) Hz, 1H), 7.13-7.16 (m, 1H), 7.16-7.23 (m, 3H), 7.25-7.30 (m, 1H), 7.30-7.36 (m, 4H). 13C NMR (125 MHz, CDCl3): \(\delta \) 19.9, 47.9, 71.6, 117.5, 125.6, 125.8, 127.1, 127.5, 128.3, 128.4, 130.3, 134.9, 141.7, 143.8, 146.6. HRMS (EI) calcd for C18H18O2: 238.1358, found 238.1357. HPLC condition: Lux Amylose-2, n-hexane/2-propanol 80/20, flow rate 0.7 mL/min, UV 214 nm, \(t_R = 6.3 \) min (minor), \(t_R = 6.8 \) min (major).

(-)-4-methyl-3-methylene-1-phenylpentan-1-ol (27)

Colorless oil, 45% yield (12.9 mg), 51% ee; \([\alpha]_D^{15} = -35.4 \) (c = 0.90, CHCl3).

1H NMR (500 MHz, CDCl3): \(\delta \) 1.06 (d, \(J = 6.9 \) Hz, 3H), 1.08 (d, \(J = 6.9 \) Hz, 3H), 2.20 (d, \(J = 2.2 \) Hz, 3H), 2.29 (m, 1H), 2.39 (ddd, \(J = 0.5, 9.7, 14.5 \) Hz, 1H), 2.43 (ddd, \(J = 1.0, 3.8, 14.5 \) Hz, 1H), 4.81 (m, 1H), 4.90 (d, \(J = 0.9 \) Hz, 1H), 4.93 (m, 1H), 7.25-7.30 (m, 1H), 7.33-7.41 (m, 4H). HRMS (EI) calcd for C16H18O: 219.1358, found 219.1359. 13C NMR (125 MHz, CDCl3): \(\delta \) 21.5, 21.9, 45.4, 71.8, 110.2, 125.7, 127.4, 128.4, 144.1, 152.5. HPLC condition: Lux Amylose-2, n-hexane/2-propanol 80/20, flow rate 0.7 mL/min, UV 214 nm, \(t_R = 5.3 \) min (major), \(t_R = 5.6 \) min (minor).

anti-1-(4-Methoxyphenyl)-2-phenylbut-3-en-1-ol (28)

Colorless oil, 95% yield (36.2 mg), anti: syn = 99:1, 64% ee; \([\alpha]_D^0 = -3.2 \) (c = 1.00, CHCl3).

1H NMR (500 MHz, CDCl3): \(\delta \) 2.30 (d, \(J = 2.1 \) Hz, 1H), 3.53 (t, \(J = 8.4 \) Hz, 1H), 3.75 (s, 3H), 4.80 (dd, \(J = 1.2, 8.3 \) Hz, 1H), 5.21-5.29 (m, 2H), 6.25 (ddd, \(J = 7.9, 10.2, 18.1 \) Hz, 1H), 6.72-6.76 (m, 2H), 7.03-7.08 (m, 4H), 7.12-7.16 (m, 1H), 7.18-7.23 (m, 2H).
HPLC condition: Lux Amylose-2, n-hexane/2-propanol 90/10, flow rate 0.7 mL/min, UV 214 nm, \(t_R = 14.1 \) min (major), \(t_R = 16.0 \) min (minor).

1S,2R-(-)-1,2-Diphenylbut-3-en-1-ol (29)

Colorless oil, 95% yield (32.0 mg), anti:syn = 97:3, 50% ee; \([\alpha]_D^{28} = -6.7 \) (c = 1.10, CHCl₃). This compound was prepared according to the General Procedure A at -25 °C. 67% yield (21.9 mg), anti:syn = 97:3, 64% ee; \([\alpha]_D^{26} = -6.7 \) (c = 1.10, CHCl₃).

\(^1\)H NMR (500 MHz, CDCl₃): \(\delta \) 2.34 (d, \(J = 1.3 \) Hz, 1H), 3.56 (t, \(J = 8.3 \) Hz, 1H), 4.85 (d, \(J = 7.7 \) Hz, 1H), 5.21-5.29 (m, 2H), 6.26 (ddd, \(J = 8.7, 10.2, 16.8 \) Hz, 1H), 7.04-7.09 (m, 2H), 7.13-7.24 (m, 8H). \(^13\)C NMR (125 MHz, CDCl₃): \(\delta \) 59.1, 77.2, 118.4, 126.5, 126.6, 127.4, 127.9, 128.2, 128.3, 137.8, 140.6, 141.8. **HPLC chiral condition:** Chiralcel AD-H, n-hexane/2-propanol 98/2, flow rate 0.9 mL/min, UV 214 nm, \(t_R = 24.0 \) min (major), \(t_R = 26.2 \) min (minor).

2-Methyl-1-phenylbut-3-en-1-ol (30)

Colorless oil obtained from table 3, entry 4: 95% yield (23.1 mg), anti:syn = 59:41; 60% ee (for anti), 60% ee (for syn); \([\alpha]_D^{28} = -49.1 \) (c = 1.00, CHCl₃); colorless oil obtained from table 3, entry 5: 95% yield (23.3 mg), anti:syn = 59:41, 66% ee (for anti), 66% ee (for syn); \([\alpha]_D^{28} = -55.0 \) (c = 1.01, CHCl₃).

\(^1\)H NMR (500 MHz, CDCl₃): (a) anti-isomer: \(\delta \) 0.88 (d, \(J = 6.8 \) Hz, 3H), 2.16 (d, \(J = 2.3 \) Hz, 1H), 2.49 (dq, \(J = 7.3, 15.3 \) Hz, 1H), 4.36 (dd, \(J = 1.4, 7.9 \) Hz, 1H), 5.16-5.24 (m, 2H), 5.81 (ddd, \(J = 7.6, 10.3, 17.2 \) Hz, 1H), 7.24-7.38 (m, 5H); (b) syn-isomer: \(\delta \) 1.02 (d, \(J = 6.8 \) Hz, 3H), 1.96 (d, \(J = 2.3 \) Hz, 1H), 2.59 (m, 1H), 4.61 (m, 1H), 5.04 (m, 1H), 5.07 (m, 1H), 5.76 (m, 1H), 7.24-7.38 (m, 5H). **HPLC condition:** Chiralcel IC, n-hexane/2-propanol 98/2, flow rate 0.7 mL/min, UV 214 nm, syn: \(t_R = 10.2 \) min (minor)(1S,2R), \(t_R = 11.2 \) min (major) (1R,2S); anti: \(t_R = 11.9 \) min (minor) (1R,2R), \(t_R = 12.9 \) min (major) (1S,2S).

(3) NMR Spectra for Homoallylic Alcohols

1-(4-Methoxyphenyl)-3-phenylbut-3-en-1-ol (1)
1-(4-Methoxyphenyl)but-3-en-1-ol (5)

1-(2-Methoxyphenyl)-3-phenylbut-3-en-1-ol (6)
1-(4-(Dimethylamino)phenyl)-3-phenylbut-3-en-1-ol (7)
3-Phenyl-1-p-tolybut-3-en-1-ol (8)
3-phenyl-1-o-tolylbut-3-en-1-ol (9)
1-(2-isopropylphenyl)-3-phenylbut-3-en-1-ol (10)
1-(Furan-2-yl)-3-phenylbut-3-en-1-ol (11)
(+)-1,3-Diphenylbut-3-en-1-ol (12)
1-(Naphthalen-2-yl)-3-phenylbut-3-en-1-ol (13)
(+)-1-(4-Bromophenyl)-3-phenylbut-3-en-1-ol (14)
(-)-1-(2-Chlorophenyl)-3-phenylbut-3-en-1-ol (15)
Methyl-4-(1-hydroxy-3-phenylbut-3-enyl)benzoate (16)
3-Phenyl-1-(4-(trifluoromethyl)phenyl)but-3-en-1-ol (17)
(E)-2-Phenylepta-1,5-dien-4-ol (18)
(E)-1,5-Diphenylhexa-1,5-dien-3-ol (19)
(E)-2-methyl-1,5-diphenylhexa-1,5-dien-3-ol (20)
3-(4-Methoxyphenyl)-1-phenylbut-3-en-1-ol (22)
3-(4-fluorophenyl)-1-phenylbut-3-en-1-ol (23)
1-phenyl-3-(4-(trifluoromethyl)phenyl)but-3-en-1-ol (24)
(S)-3-Methyl-1-phenylbut-3-en-1-ol (25)
1-phenyl-3-o-tolybut-3-en-1-ol (26)

![Chemical structure image]

NMR Spectra

- **Chemical Shifts**:
 - 7.39, 7.33, 7.29, 7.27, 7.20, 7.19, 7.17, 7.13, 7.12, 6.92, 5.97, 4.65, 4.57, 2.85, 2.81, 2.79, 2.77, 2.73, 2.14, 2.10, 2.05
 - 146.60, 143.88, 138.89, 130.32, 128.83, 127.45, 127.16, 125.99, 117.51

- **Assignments**:
 - Phenyl: 7.39, 7.33, 7.29, 7.27, 7.20, 7.19, 7.17, 7.13, 7.12
 - Tolybutyl: 6.92, 5.97, 4.65, 4.57, 2.85, 2.81, 2.79, 2.77, 2.73, 2.14, 2.10, 2.05

1-H NMR

- **Integration**:
 - 7.162, 4.798, 0.919
4-methyl-3-methylene-1-phenylpentan-1-ol (27)
anti-1-(4-Methoxyphenyl)-2-phenylbut-3-en-1-ol (28)

(1S,2R)-(−)-1,2-Diphenylbut-3-en-1-ol (29)

22, anti/syn: 97/3
2-Methyl-1-phenylbut-3-en-1-ol (30)
For (table 3, entry 4)

For (table 3, entry 5)
(4) HPLC Charts for Homoallylic Alcohols

(+)-1-(4-Methoxyphenyl)-3-phenylbut-3-en-1-ol (1)

PDA Chart 214 nm 4 nm

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Resolution Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.748</td>
<td>552334</td>
<td>36436</td>
<td>4.275</td>
<td>6.290</td>
</tr>
<tr>
<td>2</td>
<td>11.586</td>
<td>12369144</td>
<td>543121</td>
<td>95.725</td>
<td>93.710</td>
</tr>
<tr>
<td>总计</td>
<td>12921475</td>
<td>579577</td>
<td>100.000</td>
<td>100.000</td>
<td></td>
</tr>
</tbody>
</table>

C:\LabSolutions\DataFiles\数据路径72.lcd
(S)-1-(4-Methoxyphenyl)but-3-en-1-ol (5)

Shimadzu LCsolution Report####

![Chromatogram](image)

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Resolution Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.395</td>
<td>11346787</td>
<td>527809</td>
<td>16.845</td>
<td>22.613</td>
</tr>
<tr>
<td>2</td>
<td>16.816</td>
<td>56012294</td>
<td>1806253</td>
<td>83.155</td>
<td>77.387</td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>67359081</td>
<td>2334062</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
(+-1-(2-Methoxyphenyl)-3-phenylbut-3-en-1-ol (6)

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret Time (min)</th>
<th>Peak Name</th>
<th>Height (mAU)</th>
<th>Area (mAU*min)</th>
<th>Rel. Area (%)</th>
<th>Amount</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.43</td>
<td>n.a.</td>
<td>3683.258</td>
<td>630.886</td>
<td>49.94</td>
<td>n.a.</td>
<td>BM*</td>
</tr>
<tr>
<td>2</td>
<td>7.92</td>
<td>n.a.</td>
<td>3466.734</td>
<td>632.403</td>
<td>50.06</td>
<td>n.a.</td>
<td>MB*</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>7149.992</td>
<td>1263.289</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret Time (min)</th>
<th>Peak Name</th>
<th>Height (mAU)</th>
<th>Area (mAU*min)</th>
<th>Rel. Area (%)</th>
<th>Amount</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.45</td>
<td>n.a.</td>
<td>760.628</td>
<td>121.461</td>
<td>93.25</td>
<td>n.a.</td>
<td>BM*</td>
</tr>
<tr>
<td>2</td>
<td>7.95</td>
<td>n.a.</td>
<td>51.723</td>
<td>8.796</td>
<td>6.75</td>
<td>n.a.</td>
<td>MB*</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>812.351</td>
<td>130.256</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>
(+)-1-(4-(Dimethylamino)phenyl)-3-phenylbut-3-en-1-ol (7)
(+)-3-Phenyl-1-p-tolylbut-3-en-1-ol (8)
(+)-1-(2-isopropylphenyl)-3-phenylbut-3-en-1-ol (10)
(+)-1-(Furan-2-yl)-3-phenylbut-3-en-1-ol (11)
(S)-(+) 1,3-Diphenylbut-3-en-1-ol (12)
(-)-1-(Naphthalen-2-yl)-3-phenylbut-3-en-1-ol (13)
(+)-1-(4-Bromophenyl)-3-phenylbut-3-en-1-ol (14)

Shimadzu LCsolution Report

PDA Ch1 214nm 4nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Resolution</th>
<th>Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.150</td>
<td>767741</td>
<td>385580</td>
<td>49.041</td>
<td>53.764</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>17.076</td>
<td>7977672</td>
<td>331591</td>
<td>50.959</td>
<td>46.236</td>
<td></td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>15655083</td>
<td>717171</td>
<td>100.000</td>
<td>100.000</td>
<td></td>
</tr>
</tbody>
</table>

PDA Ch1 214nm 4nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Resolution</th>
<th>Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.222</td>
<td>1693613</td>
<td>84257</td>
<td>11.774</td>
<td>13.993</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>17.187</td>
<td>12691050</td>
<td>51787</td>
<td>88.226</td>
<td>86.007</td>
<td></td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>14384663</td>
<td>602134</td>
<td>100.000</td>
<td>100.000</td>
<td></td>
</tr>
</tbody>
</table>

C:\LabSolutions\Data\1zz\数据\1344089585\1.001.lcd
With Csl (50%) at -25 °C
(-)-1-(2-Chlorophenyl)-3-phenylbut-3-en-1-ol (15)
(+)-Methyl-4-(1-hydroxy-3-phenylbut-3-enyl)benzoate (16)
PDA Ch1 214nm 4nm

<table>
<thead>
<tr>
<th>Peak</th>
<th>Resolution Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.337</td>
<td>4407872</td>
<td>158499</td>
<td>14.196</td>
<td>16.703</td>
</tr>
<tr>
<td>2</td>
<td>23.425</td>
<td>26642303</td>
<td>790406</td>
<td>85.804</td>
<td>83.297</td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>31050176</td>
<td>948904</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
(+)-3-Phenyl-1-(4-(trifluoromethyl)phenyl)but-3-en-1-ol (17)
(+)-(E)-2-Phenylhepta-1,5-dien-4-ol (18)
(+)-(E)-1,5-Diphenylhexa-1,5-dien-3-ol (19)
(+)-(E)-2-methyl-1,5-diphenylhexa-1,5-dien-3-ol (20)

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret.Time</th>
<th>Peak Name</th>
<th>Height</th>
<th>Area</th>
<th>Rel.Area</th>
<th>Amount</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mAU</td>
<td>mAU*min</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.87</td>
<td>n.a.</td>
<td>1145.460</td>
<td>144.246</td>
<td>50.04</td>
<td>n.a.</td>
<td>BMB*</td>
</tr>
<tr>
<td>2</td>
<td>7.83</td>
<td>n.a.</td>
<td>881.695</td>
<td>144.028</td>
<td>43.96</td>
<td>n.a.</td>
<td>BMB*</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2027.155</td>
<td>288.274</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret.Time</th>
<th>Peak Name</th>
<th>Height</th>
<th>Area</th>
<th>Rel.Area</th>
<th>Amount</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mAU</td>
<td>mAU*min</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.88</td>
<td>n.a.</td>
<td>3434.469</td>
<td>452.596</td>
<td>95.25</td>
<td>n.a.</td>
<td>BMB*</td>
</tr>
<tr>
<td>2</td>
<td>7.91</td>
<td>n.a.</td>
<td>140.001</td>
<td>22.551</td>
<td>4.75</td>
<td>n.a.</td>
<td>BMB*</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3574.470</td>
<td>475.146</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>
(+)-1,5-Diphenylhex-5-en-3-ol (21)
(+)-3-(4-Methoxyphenyl)-1-phenylbut-3-en-1-ol (22)

![Chemical Structure Image]

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret.Time</th>
<th>Peak Name</th>
<th>Height</th>
<th>Area</th>
<th>Rel.Area</th>
<th>Amount</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.43 min</td>
<td>n.a.</td>
<td>70.063</td>
<td>20.640</td>
<td>60.02%</td>
<td>n.a.</td>
<td>BMB</td>
</tr>
<tr>
<td>2</td>
<td>15.46 min</td>
<td>n.a.</td>
<td>64.062</td>
<td>20.619</td>
<td>49.98%</td>
<td>n.a.</td>
<td>BMB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>134.115</td>
<td>41.259</td>
<td>100.00%</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

![UV Chromatogram Image]

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret.Time</th>
<th>Peak Name</th>
<th>Height</th>
<th>Area</th>
<th>Rel.Area</th>
<th>Amount</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.40 min</td>
<td>n.a.</td>
<td>350.668</td>
<td>103.261</td>
<td>86.09%</td>
<td>n.a.</td>
<td>BMB*</td>
</tr>
<tr>
<td>2</td>
<td>16.44 min</td>
<td>n.a.</td>
<td>52.123</td>
<td>16.686</td>
<td>13.91%</td>
<td>n.a.</td>
<td>BMB*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>402.991</td>
<td>119.947</td>
<td>100.00%</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

S56
(+)-3-(4-fluorophenyl)-1-phenylbut-3-en-1-ol (23)
(+)-1-phenyl-3-(4-(trifluoromethyl)phenyl)but-3-en-1-ol (24)
(S)-3-Methyl-1-phenylbut-3-en-1-ol (25)
(+)-1-phenyl-3-o-tolybut-3-en-1-ol (26)
(-)-4-methyl-3-methylene-1-phenylpentan-1-ol (27)
anti-1-(4-Methoxyphenyl)-2-phenylbut-3-en-1-ol (28)

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret. Time (min)</th>
<th>Peak Name</th>
<th>Height (mAU)</th>
<th>Area (mAU*min)</th>
<th>Rel. Area (%)</th>
<th>Amount</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.27</td>
<td>n.a.</td>
<td>1747.876</td>
<td>166.810</td>
<td>75.39</td>
<td>n.a.</td>
<td>BMB*</td>
</tr>
<tr>
<td>2</td>
<td>5.57</td>
<td>n.a.</td>
<td>552.778</td>
<td>54.457</td>
<td>24.61</td>
<td>n.a.</td>
<td>bMB*</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>2300.654</td>
<td>221.267</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret. Time (min)</th>
<th>Peak Name</th>
<th>Height (mAU)</th>
<th>Area (mAU*min)</th>
<th>Rel. Area (%)</th>
<th>Amount</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.15</td>
<td>n.a.</td>
<td>697.538</td>
<td>202.371</td>
<td>50.03</td>
<td>n.a.</td>
<td>BMB</td>
</tr>
<tr>
<td>2</td>
<td>16.00</td>
<td>n.a.</td>
<td>595.411</td>
<td>202.159</td>
<td>49.97</td>
<td>n.a.</td>
<td>BMB*</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>1282.949</td>
<td>404.530</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>
(1S,2R)-(−)-1,2-Diphenylbut-3-en-1-ol (29)
2-Methyl-1-phenylbut-3-en-1-ol (30)
For (Table 3, entry 4)
For (Table 3, entry 5)

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret. Time (min)</th>
<th>Peak Name</th>
<th>Height (mAU)</th>
<th>Area (mAU*min)</th>
<th>Rel. Area (%)</th>
<th>Amount (%)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.19</td>
<td>n.a.</td>
<td>46.033</td>
<td>9.206</td>
<td>8.24</td>
<td>n.a.</td>
<td>BMB</td>
</tr>
<tr>
<td>2</td>
<td>11.21</td>
<td>n.a.</td>
<td>175.214</td>
<td>37.567</td>
<td>33.61</td>
<td>n.a.</td>
<td>BM</td>
</tr>
<tr>
<td>3</td>
<td>11.93</td>
<td>n.a.</td>
<td>57.838</td>
<td>13.051</td>
<td>11.68</td>
<td>n.a.</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>12.94</td>
<td>n.a.</td>
<td>207.803</td>
<td>51.955</td>
<td>46.48</td>
<td>n.a.</td>
<td>MB</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>488.889</td>
<td>111.779</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

For (Table 3, entry 5)

<table>
<thead>
<tr>
<th>No.</th>
<th>Ret. Time (min)</th>
<th>Peak Name</th>
<th>Height (mAU)</th>
<th>Area (mAU*min)</th>
<th>Rel. Area (%)</th>
<th>Amount (%)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.21</td>
<td>n.a.</td>
<td>679.166</td>
<td>130.505</td>
<td>27.18</td>
<td>n.a.</td>
<td>BM</td>
</tr>
<tr>
<td>2</td>
<td>11.20</td>
<td>n.a.</td>
<td>612.951</td>
<td>130.757</td>
<td>27.21</td>
<td>n.a.</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>11.98</td>
<td>n.a.</td>
<td>483.892</td>
<td>109.866</td>
<td>22.87</td>
<td>n.a.</td>
<td>M*</td>
</tr>
<tr>
<td>4</td>
<td>12.88</td>
<td>n.a.</td>
<td>442.822</td>
<td>109.313</td>
<td>22.75</td>
<td>n.a.</td>
<td>MB*</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>2218.831</td>
<td>480.540</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Ret.Time</td>
<td>Peak Name</td>
<td>Height mAU</td>
<td>Area mAU*min</td>
<td>Rel.Area %</td>
<td>Amount</td>
<td>Type</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>10.14</td>
<td>n.a.</td>
<td>94.655</td>
<td>18.360</td>
<td>7.01</td>
<td>n.a.</td>
<td>BMB</td>
</tr>
<tr>
<td>2</td>
<td>11.15</td>
<td>n.a.</td>
<td>421.204</td>
<td>90.847</td>
<td>34.66</td>
<td>n.a.</td>
<td>BM</td>
</tr>
<tr>
<td>3</td>
<td>11.86</td>
<td>n.a.</td>
<td>120.681</td>
<td>27.846</td>
<td>10.62</td>
<td>n.a.</td>
<td>MB</td>
</tr>
<tr>
<td>4</td>
<td>12.80</td>
<td>n.a.</td>
<td>494.483</td>
<td>125.031</td>
<td>47.71</td>
<td>n.a.</td>
<td>BMB</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td>1131.033</td>
<td>262.083</td>
<td>100.00</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>