Synergistic catalysis: Highly diastereoselective benzoazole addition to Morita-Baylis-Hillman carbonates

Victor Cebana, Piotr Putaja,b, Marta Meazzaa, Mateusz Pitaka, Simon J. Colesa, Jan Vesselyb, Ramon Rios*a

aSchool of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
bDepartment of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 43 Praha 2, Czech Republic.

Supporting information

General: The general reaction is:

\begin{align*}
\text{R}_1 \text{R}_2 \text{N}^\text{O} \quad + \quad \text{R}_1 \text{R}_2 \text{O}^\text{Boc} \quad \text{COOMe} \\
\quad \text{Toluene, rt, 14h} \\
\quad \text{AgOAc 10 mol\%} \\
\quad \text{DABCO 10 mol\%} \\
\quad \text{R}_1 \text{R}_2 \text{N}^\text{O} \quad \text{COOMe} \\
\end{align*}

The benzoxazoles(1) were synthesized and analysed following the procedure from the article: “Diastereo- and Enantioselective Pd(II)-Catalyzed Additions of 2-Alkylazaarenes to N-Boc Imines and Nitroalkenes” (\textit{J. Am. Chem. Soc.} 2012, 134, 18193−18196).

The MBH-carbonates(2) were synthesized and analysed following the procedure from the article “Construction of adjacent quaternary and tertiary stereocenters via an organocatalytic allylic alkylation of Morita-Baylis-Hillman carbonates” (\textit{Adv. Synth. Catal.} 2007, 349, 281 – 286).

Thin layer chromatography (TLC) was performed on Merck TLC Silicagel 60 F\textsubscript{254}. Product spots were visualized by UV-light at 254nm, and developed with potassium permanganate. Column chromatography was effected using silica gel (Geduran Si60, 40-63μm). Infra-red spectra were recorded on a Nicolet 280 FT-IR. 1H-NMR, 13C-NMR, 19F-NMR were recorded with Bruker AV300, Bruker DPX400. High resolution mass spectra were recorded using a MaXis (Bruker Daltonics, Bremen, Germany) mass spectrometer equipped with a Time of Flight (TOF) analyser.
Final compounds corresponding to the Scheme 2: Study of MBH-carbonates reaction with benzoxazole.

(**+)methyl 2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)-3-phenylpentanoate (3a’)

To a solution of 2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 19 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(phenyl)methyl)acrylate (2a) (2 equiv, 58 mg, 0.2 mmol), Pd(OAc)₂ (10 mol%, 2 mg, 0.01 mmol), 1,4-diaza-bicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. D.r. is 2:1. The reaction mixture was purified by column chromatography (10:1 Hexane/EtOAc) to obtain 18 mg of desired product as oil. The product yield is 50%.

1H-NMR (CDCl₃, 300 MHz): Diastereomer 1: 8.35 (d, J = 2.0 Hz, 1H), 8.22 (dd, J = 8.8 Hz, J = 2.1 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.31-7.20 (m, 5H), 6.10 (s, 1H), 5.77 (s, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.8 (m, 1H), 3.54 (s, 3H), 1.20 (d, J = 6.9 Hz, 3H). Diastereomer 2: 8.2 (d, J = 2.0 Hz, 1H), 8.12 (dd, J = 8.8 Hz, J = 2.1 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.16-6.93 (m, 5H), 6.38 (s, 1H), 5.84 (s, 1H), 4.34 (d, J = 11.2 Hz, 1H), 4.00 (m, 1H), 3.66 (s, 3H), 1.45 (d, J = 6.9 Hz, 3H).

(**+)methyl 2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)-3-(p-tolyl)pentanoate (3a)

To a solution of 2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 19 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(p-tolyl)methyl)acrylate (2b) (4 equiv, 120 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diaza-bicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at 0°C. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (7:1 Hexane/EtOAc) to obtain 34 mg of desired product as oil. The product yield is 92%. HR-MS (m/z) for C₂₀H₁₉N₂O₅ calculated [M+H]⁺ 367.1288, measured [M+H]⁺ 367.1280. IR (cm⁻¹): 2985, 1720, 1620, 1524, 1343, 1150. ¹H-NMR (CDCl₃, 300 MHz): 8.41 (d, J = 2.2 Hz, 1H), 8.29 (dd, J = 2.2 Hz, J = 8.8 Hz), 7.76 (d, 1H, J = 8.8 Hz), 7.40-7.25 (m, 5H, phenyl), 6.19 (s, 1H), 5.86 (d, 1H, J = 0.7 Hz), 4.45 (d, 1H, J = 11.7 Hz), 3.90 (m, 1H), 3.61 (s, 3H), 2.27 (s, 3H), 1.19 (d, 3H, J = 6.6 Hz).

¹³C-NMR (CDCl₃, 75 MHz): 174.2, 166.4, 149.7, 146.5, 145.0, 141.6, 139.3, 128.7, 128.6, 127.4, 124.9, 120.4, 119.6, 119.4, 107.2, 106.9, 52.0, 50.7, 38.2, 18.4.

(**+)methyl 2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)-3-(p-tolyl)pentanoate (3b)

To a solution of 2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 19 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(p-tolyl)methyl)acrylate (2b) (4 equiv, 122 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diaza-bicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (5:1 Hexane/EtOAc) to obtain 43 mg of the desired product as oil. The product yield is 90%. MS (ESI+) m/z: 381.1 [M+H]+. IR (cm⁻¹): 2985, 2950, 1720, 1626, 1524, 1343, 1149. ¹H-NMR (CDCl₃, 300 MHz): 8.33 (d, 1H, J = 2.2 Hz), 8.20 (dd, 1H, J = 2.2 Hz, J = 8.8 Hz), 7.68 (d, 1H, J = 8.8 Hz), 7.16 (d, 2H, J = 8.1 Hz), 7.08 (d, 2H, J = 8.1 Hz), 6.08 (s, 1H), 5.74 (s, 1H), 4.32 (d, 1H, J = 12.1 Hz), 3.79 (m, 1H), 3.53 (s, 3H), 2.27 (s, 3H), 1.19 (d, 3H, J = 6.9 Hz). ¹³C-NMR (CDCl₃, 75 MHz):
(±)methyl 3-(4-bromophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate (3c)

To a solution of 2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 100 mg, 0.52 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-((4-bromophenyl)((tert-butoxycarbonyl)oxy)methyl)acrylate (2c) (4 equiv, 768 mg, 2.08 mmol), silver acetate (10 mol%, 12 mg, 0.052 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 6 mg, 0.052 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (5:1 Hexane/EtOAc) to obtain 188 mg of the desired product as oil. The product yield is 80%. HR-MS (m/z) for C₂₀H₁₈BrN₂O₅ calculated [M+H]+ 445.0394, measured [M+H]+ 445.0386. IR (cm⁻¹): 2989, 2951, 1717, 1624, 1524, 1342, 1148. ¹H-NMR (CDCl₃, 300 MHz): 8.33 (d, 1H, J=2.2 Hz), 8.21 (dd, 1H, J=2.2 Hz, J=8.8 Hz), 7.68 (d, 1H, J=7.7 Hz), 7.40 (d, 2H, J=8.4 Hz), 7.16 (d, 2H, J=8.4 Hz), 6.77 (s, 1H), 5.76 (d, 1H, J=0.7 Hz), 4.33 (d, 1H, J=11.7 Hz), 3.79 (m, 1H), 3.54 (s, 3H), 1.19 (d, 3H, J=6.9 Hz).

13C-NMR (CDCl₃, 75 MHz): 173.8, 166.2, 149.6, 146.4, 145.1, 141.1, 138.4, 131.9, 130.3, 125.2, 120.3, 119.7, 107.2, 52.1, 50.2, 37.9, 18.3.

(±)methyl 3-(4-fluorophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate (3d)

To a solution of 2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 19 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-fluorophenyl)methyl)acrylate (2d) (4 equiv, 124 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (5:1 Hexane/EtOAc) to obtain 32 mg of the desired product as oil. The product yield is 82%. HR-MS (m/z) for C₂₀H₁₈FN₂O₅ calculated [M+H]+ 385.1194, measured [M+H]+ 385.1200. IR (cm⁻¹): 2946, 1724, 1625, 1527, 1341, 1151. ¹H-NMR (CDCl₃, 300 MHz): 8.34 (d, 1H, J=2.2 Hz), 8.21 (dd, 1H, J=2.2 Hz, J=8.8 Hz), 7.68 (d, 1H, J=8.8 Hz), 7.40 (d, 2H, J=8.4 Hz), 7.16 (d, 2H, J=8.4 Hz), 6.77 (s, 1H), 5.76 (d, 1H, J=0.7 Hz), 4.33 (d, 1H, J=11.7 Hz), 3.79 (m, 1H), 3.54 (s, 3H), 1.19 (d, 3H, J=6.9 Hz). ¹³C-NMR (CDCl₃, 75 MHz): 173.8, 166.2, 149.6, 146.4, 145.1, 141.1, 138.4, 131.9, 130.3, 125.2, 121.33, 120.5, 119.7, 107.2, 52.1, 50.2, 37.9, 18.3.

19F-NMR (CDCl₃, 300 MHz): -115.2 ppm.

(±)methyl 2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)-3-(4-nitrophenyl)pentanoate (3e)

To a solution of 2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 19 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tertbutoxycarbonyl)oxy)(4-nitrophenyl)methyl)acrylate (2e) (4 equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (5:1 Hexane/EtOAc) to obtain 41 mg of the desired product as white solid (melting point T = 136 °C). The product yield is 99%. HR-MS (m/z) for C₂₀H₁₈N₃O₇ calculated [M+H]+ 412.1139, measured [M+H]+ 412.1146. IR(cm⁻¹): 2986, 2950, 1719, 1604, 1520,
H-NMR (CDCl$_3$, 300 MHz): 8.35 (d, 1H, J=1.9 Hz), 8.23 (dd, 1H, J=2.3 Hz, J=8.7 Hz), 8.16 (d, 2H, J=9.0 Hz), 7.70 (d, 1H, J=8.7 Hz), 7.49 (d, 2H, J=8.7 Hz), 6.19 (s, 1H), 5.85 (d, 1H, J=1.1 Hz), 4.50 (d, 1H, J=11.7 Hz), 3.92-3.80 (m, 1H), 3.56 (s, 3H), 1.21 (d, 3H, J=7.2 Hz).

C-NMR (CDCl$_3$, 75 MHz): 173.1, 165.9, 149.6, 147.3, 147.0, 146.2, 140.4, 129.6, 126.2, 124.0, 120.6, 119.8, 107.2, 52.2, 37.7, 18.3.

(±)methyl 3-(3-bromophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate (3f)

To a solution of 2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 19 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(3-bromophenyl)methyl)acrylate (2f) (4 equiv, 148 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diaza-bicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (7:1 Hexane/EtOAc) to obtain 43 mg of the desired product as oil. The product yield is 97%. HR-MS (m/z) for C$_{20}$H$_{18}$BrN$_2$O$_5$ calculated [M+H]$^+$ 445.0394, measured [M+H]$^+$ 445.0397. IR (cm$^{-1}$): 2985, 2950, 1718, 1618, 1527, 1343, 1150.

H-NMR (CDCl$_3$, 300 MHz): 8.34 (d, 1H, J=2.2 Hz), 8.21 (dd, 1H, J=2.2 Hz, J=8.8 Hz), 7.68 (d, 1H, J=8.8 Hz), 7.45-7.10 (m, 4H), 6.14 (s, 1H), 5.78 (s, 1H), 4.33 (d, 1H, J=11.7 Hz), 3.85-3.70 (m, 1H), 3.54 (s, 3H), 1.20 (d, 3H, J=6.9 Hz).

C-NMR (CDCl$_3$, 75 MHz): 173.7, 166.2, 149.6, 146.4, 145.1, 141.7, 140.9, 131.5, 130.6, 130.3, 127.5, 125.5, 122.8, 120.5, 119.7, 107.2, 50.3, 38.0, 18.4.

(±)methyl 3-(4-chlorophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate (3g)

To a solution of 2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 19 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4 equiv, 148 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diaza-bicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (7:1 Hexane/EtOAc) to obtain 32 mg of the desired product as oil. The product yield is 80%. HR-MS (m/z) for C$_{20}$H$_{18}$ClN$_2$O$_5$ calculated [M+H]$^+$ 401.0899, measured [M+H]$^+$ 401.0902. IR (cm$^{-1}$): 2989, 2950, 1718, 1618, 1527, 1343, 1150. H-NMR (CDCl$_3$, 300 MHz): 8.34 (d, 1H, J=2.2 Hz), 8.21 (dd, 1H, J=2.2 Hz, J=8.8 Hz), 7.68 (d, 1H, J=8.8 Hz), 7.45-7.10 (m, 4H), 6.14 (s, 1H), 5.78 (s, 1H), 4.33 (d, 1H, J=11.7 Hz), 3.85-3.70 (m, 1H), 3.55 (s, 3H), 1.20 (d, 3H, J=6.9 Hz). C-NMR (CDCl$_3$, 75 MHz): 173.7, 166.2, 149.6, 146.4, 145.1, 141.7, 140.9, 131.5, 130.6, 130.3, 127.5, 125.5, 122.8, 120.5, 119.7, 107.2, 50.3, 38.0, 18.4.

(±)methyl 3-(2-bromophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate (3i)

To a solution of 2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 19 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(2-bromophenyl)methyl)acrylate (2i) (4 equiv, 148 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diaza-bicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (5:1 Hexane/EtOAc) to obtain 26 mg of the desired product as
white solid (melting point T = 138°C). The product yield is 60%. HR-MS (m/z) for C_{20}H_{18}BrN_{2}O_{5} calculated [M+H]^+ 445.0394, measured [M+H]^+ 445.0397. IR(cm⁻¹): 2983, 2950, 1720, 1625, 1523, 1346, 1153. ^1H-NMR (CDCl₃, 300 MHz): 8.38-8.33 (d, J = 1.8 Hz, 1H), 8.25-8.19 (dd, J = 2.2 Hz, J = 8.8 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.59-7.54 (dd, J = 1.1 Hz, J = 7.7 Hz, 1H), 7.34-7.21 (m, 2H), 7.10-7.03 (ddd, J = 2.2 Hz, J = 6.6 Hz, J = 8.8 Hz, 1H), 5.80 (d, J = 0.7 Hz, 1H), 5.00 (d, J = 11.7 Hz, 1H), 3.92-3.75 (m, 1H), 3.53 (s, 3H), 1.26 (d, J = 6.9 Hz, 3H). ^13C-NMR (CDCl₃, 75 MHz): 173.7, 166.3, 149.7, 146.4, 140.4, 138.5, 133.5, 128.8, 127.8, 126.6, 120.5, 119.7, 107.3, 52.0, 48.9, 38.7, 17.3.

Final compounds corresponding to the Scheme 3: Study of benzoxazole reactivity with MBH-carbonate.

(±)-methyl 4-(5-chloro-6-nitrobenzo[d]oxazol-2-yl)-3-(4-chlorophenyl)-2-methylenepentanoate (3l)

To a solution of 5-chloro-2-ethyl-6-nitrobenzo[d]oxazole (1 equiv, 23 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4 equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (5:1 Hexane/EtOAc) to obtain 47 mg of the desired product as white solid (melting point T = 138 °C). The product yield is 95%. HR-MS (m/z) for C_{20}H_{17}Cl_{2}N_{2}O_{5} calculated [M+H]^+ 435.0509, measured [M+H]^+ 445.0509. IR(cm⁻¹): 2993, 2951, 1720, 1627, 1151. ^1H-NMR (CDCl₃, 400 MHz): 8.00 (s, 1H), 7.74 (s, 1H), 7.3-7.1 (m, 4H), 6.11 (s, 1H), 5.74 (s, 1H), 4.31 (d, J = 11.6 Hz, 1H), 3.80-3.70 (m, 1H), 3.55 (s, 3H), 1.18 (d, J = 6.9 Hz, 3H). ^13C-NMR (CDCl₃, 100 MHz): 174.4, 166.2, 147.9, 144.8, 141.1, 137.7, 133.3, 130.0, 129.0, 125.2, 122.3, 108.6, 52.1, 50.2, 37.9, 18.3.

(±)-methyl 3-(4-chlorophenyl)-2-methylene-4-(oxazolo[4,5-b]pyridin-2-yl)pentanoate(3m)

To a solution of 2-ethyloxazolo[4,5-b]pyridine (1equiv, 15 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4 equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (4:1 Hexane/EtOAc) to obtain 23 mg of the desired product as oil. The product yield is 65%. HR-MS (m/z) for C_{19}H_{18}Cl_{2}N_{2}O_{3} calculated [M+H]^+ 357.1000, measured [M+H]^+ 357.1004. IR (cm⁻¹): 2986, 2947, 1720, 1624, 1151. ^1H-NMR (CDCl₃, 400 MHz): 8.57-8.53 (dd, J = 1.5 Hz, J = 4.9 Hz, 1H), 7.83-7.78 (dd, J = 1.5 Hz, J = 8.1 Hz, 1H), 7.37-7.25 (m, 5H), 6.21 (s, 1H), 5.92 (d, J = 1.0 Hz, 1H), 4.45 (d, J = 11.7 Hz, 1H), 3.92-3.82 (m, 1H), 3.63 (s, 3H), 1.27 (d, J = 6.9 Hz, 3H). ^13C-NMR (CDCl₃, 100 MHz): 174.4, 166.2, 147.9, 144.8, 141.1, 137.7, 133.3, 130.0, 129.0, 125.4, 119.8, 118.2, 52.0, 50.0, 37.9, 18.3.
(±)methyl 3-(4-chlorophenyl)-2-methylene-4-(5-nitrobenzo[d]oxazol-2-yl)pentanoate (3n)

To a solution of 2-ethyl-5-nitrobenzo[d]oxazole (1equiv, 20 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4 equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (4:1 Hexane/EtOAc) to obtain 38 mg of the desired product as oil. The product yield is 90%. HR-MS (m/z) for C_{20}H_{18}ClN_{2}O_{5} calculated [M+H]^+ 401.0899, measured [M+H]^+ 401.0889. IR (cm⁻¹): 2986, 2954, 1720, 1617, 1528, 1346, 1151. 1H-NMR (CDCl₃, 300 MHz): 8.52-8.47 (d, J = 2.2 Hz, 1H), 8.25-8.19 (dd, J = 2.2 Hz, J = 8.8 Hz, 1H), 7.55-7.49 (d, J = 9.2 Hz, 1H), 7.30-7.19 (m, 4H), 6.11 (s, 1H), 5.77 (s, 1H), 4.33 (d, J = 12.1 Hz, 1H), 3.83-3.69 (m, 1H), 3.54 (s, 3H), 1.19 (d, J = 7.0 Hz, 3H).

13C-NMR (CDCl₃, 75 MHz): 172.1, 166.3, 154.1, 145.2, 141.5, 141.2, 137.9, 133.2, 130.0, 128.9, 125.2, 120.9, 116.2, 110.7, 52.1, 50.1, 37.8, 18.3.

(±)methyl 3-(4-chlorophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)heptanoate (3o)

To a solution of 2-butyl-6-nitrobenzo[d]oxazole (1equiv, 22 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (5:1 Hexane/EtOAc) to obtain 41 mg of the desired product as oil. The product yield is 92%. HR-MS (m/z) for C_{22}H_{22}ClN_{2}O_{5} calculated [M+H]^+ 429.1212, measured [M+H]^+ 429.1208. IR (cm⁻¹): 2958, 2872, 1720, 1624, 1528, 1346, 1147. 1H-NMR (CDCl₃, 300 MHz): 8.34 (d, J = 1.8 Hz, 1H), 8.21 (dd, J = 2.2 Hz, J = 8.8 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.29-7.20 (m, 4H), 6.06 (s, 1H), 5.77 (s, 1H), 4.36 (d, J = 12.1 Hz, 1H), 3.74-3.61 (m, 1H), 3.53 (s, 3H), 1.70-1.59 (m, 1H), 1.47-1.35 (m, 1H), 1.10-1.00 (m, 2H), 0.69 (t, J = 7.0 Hz, 3H). 13C-NMR (CDCl₃, 75 MHz): 173.1, 166.3, 154.1, 145.2, 141.5, 141.2, 137.9, 133.2, 130.0, 128.9, 125.2, 120.9, 116.2, 110.7, 52.1, 49.5, 43.5, 34.6, 20.4, 13.6.

(±)methyl 4-chloro-3-(4-chlorophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)butanoate (3p)

To a solution of 2-(chloromethyl)-6-nitrobenzo[d]oxazole (1equiv, 21 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4 equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (5:1 Hexane/EtOAc to obtain 41 mg of the desired product as oil. The product yield is 92 %. HR-MS (m/z) for C_{22}H_{22}ClN_{2}O_{5} calculated [M+H]^+ 429.1212, measured [M+H]^+ 429.1208. IR (cm⁻¹): 2958, 2872, 1720, 1624, 1528, 1346, 1147. 1H-NMR (CDCl₃, 300 MHz): 8.34 (d, J = 1.8 Hz, 1H), 8.21 (dd, J = 2.2 Hz, J = 8.8 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.29-7.20 (m, 4H), 6.06 (s, 1H), 5.77 (s, 1H), 4.36 (d, J = 12.1 Hz, 1H), 3.74-3.61 (m, 1H), 3.53 (s, 3H), 1.70-1.59 (m, 1H), 1.47-1.35 (m, 1H), 1.10-1.00 (m, 2H), 0.69 (t, J = 7.0 Hz, 3H). 13C-NMR (CDCl₃, 75 MHz): 173.1, 166.3, 154.1, 145.2, 141.5, 141.2, 137.9, 133.2, 130.0, 128.9, 125.2, 120.9, 116.2, 110.7, 52.1, 49.5, 43.5, 34.6, 20.4, 13.6.
{\pm} \text{methyl 3-(4-chlorophenyl)-2-methylene-4-(3-nitropyridin-4-yl)butanoate (3q)}

To a solution of 4-methyl-3-nitropyridine (1 equiv, 14 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4 equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (7:1 Hexane/EtOAc) to obtain 6 mg of the desired product as oil. The product yield is 17%. MS (ESI+) \text{m/z}: 347.0 [M+H].

IR (cm\(^{-1}\)): 2951, 1722, 1627, 1522, 1352, 1138.

\(^1\)H-NMR (CDCl\(_3\), 400 MHz): 9.09 (s, 1H), 8.57 (d, \(J = 4.8\) Hz, 1H), 7.23 (d, \(J = 7.8\) Hz, 2H), 7.04 (d, \(J = 7.8\) Hz, 2H), 6.99 (d, \(J = 5.0\) Hz, 1H), 5.73 (s, 1H), 4.24 (t, \(J = 7.6\) Hz, 1H), 3.67 (s, 3H), 3.59-3.37 (dd, \(J = 9.4\) Hz, \(J = 13.6\) Hz, 1H).

\(^{13}\)C-NMR (CDCl\(_3\), 100 MHz): 166.5, 152.7, 145.9, 141.8, 138.6, 133.1, 129.3, 128.8, 125.5, 52.1, 45.9, 36.5.

{\pm} \text{methyl 3-(4-chlorophenyl)-2-methylene-4-(4-nitrobenzo[d]oxazol-2-yl)pentanoate (3r)}

To a solution of 2-ethyl-4-nitrobenzo[d]oxazole (1 equiv, 20 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4 equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (4:1 Hexane/EtOAc) to obtain 30 mg of the desired product as oil. The product yield is 75%. HR-MS (m/z) for C\(_{20}\)H\(_{18}\)ClN\(_2\)O\(_5\) calculated [M+H]\(^+\) 401.0899, measured [M+H]\(^+\) 401.0898. IR (cm\(^{-1}\)): 2990, 2951, 1720, 1624, 1528, 1340, 1147.

\(^1\)H-NMR (CDCl\(_3\), 300 MHz): 8.09 (d, \(J = 8.1\) Hz, 1H), 7.75 (d, \(J = 7.7\) Hz, 1H), 7.39 (t, \(J = 8.1\) Hz, 1H), 7.28-7.17 (m, 4H), 6.11 (s, 1H), 5.87 (s, 1H), 4.38 (d, \(J = 12.1\) Hz, 1H), 3.95-3.82 (m, 1H), 3.55 (s, 3H), 1.20 (d, \(J = 7.0\) Hz, 1H).

\(^{13}\)C-NMR (CDCl\(_3\), 100 MHz): 172.5, 166.3, 152.3, 141.0, 138.1, 135.8, 133.2, 130.0, 128.9, 125.5, 124.2, 120.8, 116.6, 52.1, 49.7, 38.1, 18.4.

{\pm} \text{methyl 3-(4-chlorophenyl)-2-methylene-4-(5-nitropyridin-2-yl)butanoate (3t)}

To a solution of 2-methyl-5-nitropyridine (1 equiv, 14 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4 equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diazabicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (5:1 Hexane/EtOAc) to obtain 7 mg of the desired product as oil. The product yield is 20%. MS (ESI+) \text{m/z}: 347.0 [M+H].

IR (cm\(^{-1}\)): 2951, 1717, 1631, 1524, 1352, 1145. \(^1\)H-NMR (CDCl\(_3\), 400 MHz): 9.02 (s, 1H), 8.50 (s, 1H), 7.15 (d, \(J = 7.8\) Hz, 2H), 6.96 (d, \(J = 7.8\) Hz, 2H), 6.91 (d, \(J = 4.7\) Hz, 1H), 6.31 (s, 1H), 5.65 (s, 1H), 4.16 (t, \(J = 7.6\) Hz, 1H), 3.60 (s, 3H), 3.53 (dd, \(J = 4.0\) Hz, \(J = 12.0\) Hz, 1H), 3.33 (dd, \(J = 9.3\) Hz, \(J = 9.3\) Hz, 1H).

\(^{13}\)C-NMR (CDCl\(_3\), 100 MHz): 166.5, 152.7, 146.0, 141.8, 138.6, 133.1, 129.3, 128.8, 125.5, 52.1, 45.9, 36.5.
(±)-methyl 4-(6-acetoxybenzo[d]oxazol-2-yl)-3-(4-chlorophenyl)-2-methylenepentanoate (3w)

To a solution of methyl 2-ethylbenzo[d]oxazole-6-carboxylate (1 equiv, 21 mg, 0.1 mmol) in anhydrous toluene (0.1 mol/L) was added methyl 2-(((tert-butoxycarbonyl)oxy)(4-chlorophenyl)methyl)acrylate (2g) (4 equiv, 135 mg, 0.4 mmol), silver acetate (10 mol%, 2 mg, 0.01 mmol), 1,4-diaza-bicyclo[2.2.2]octane (10 mol%, 1 mg, 0.01 mmol). The reaction was stirred for 14 hours at room temperature. The conversion was checked by NMR. The reaction mixture was purified by column chromatography (7:1 Hexane/EtOAc) to obtain 24 mg of the desired product as oil. The product yield is 58%. HR-MS (m/z) for C_{22}H_{21}ClNO_{5} calculated [M+H]^+ 414.1103, measured [M+H]^+ 414.1106. IR (cm\(^{-1}\)): 2990, 2950, 1716, 1624, 1147, 1079. \(^1\)H-NMR (CDCl\(_3\), 400 MHz): 8.11 (s, 1H), 7.98 (d, \(J = 8.3\) Hz, 1H), 7.61 (d, \(J = 8.3\) Hz, 1H), 7.27-7.23 (d, \(J = 8.7\) Hz, 2H), 7.23-7.19 (d, \(J = 8.7\) Hz, 2H), 6.10 (s, 1H), 5.77 (s, 1H), 4.33 (d, \(J = 11.7\) Hz, 1H), 3.88 (s, 3H), 3.79-3.69 (m, 1H), 3.53 (s, 3H), 1.17 (d, \(J = 6.9\) Hz, 3H). \(^{13}\)C-NMR (CDCl\(_3\), 100 MHz): 172.0, 166.3, 155.6, 146.3, 142.7, 141.0, 138.2, 133.1, 130.0, 128.9, 125.4, 119.8, 118.2, 52.0, 50.0, 38.0, 18.3.
Final compounds corresponding to the Scheme 2: Study of MBH-carbonates reaction with benzoxazole.

\((\pm)\)methyl 2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)-3-phenylpentanoate(3a')
(±)methyl 2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)-3-phenylpentanoate (3a)
(±)methyl 2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)-3-(p-tolyl)pentanoate (3b)
(±)methyl 3-(4-bromophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate(3c)
(+)-methyl 3-(4-fluorophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate(3d)
(±)methyl 2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)-3-(4-nitrophenyl)pentanoate(3e)
(±)methyl 3-(3-bromophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate(3f)
(±)methyl 3-(4-chlorophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate(3g)
(±)methyl 3-(2-bromophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)pentanoate(3i)
Final compounds corresponding to the Scheme 3: Study of benzoxazole reactivity with MBH-carbonate.

(±)methyl 4-(5-chloro-6-nitrobenzo[d]oxazol-2-yl)-3-(4-chlorophenyl)-2-methylenepentanoate(3I)
(±)-methyl 3-(4-chlorophenyl)-2-methylene-4-oxazol[4,5-b]pyridin-2-yl)pentanoate (3m)
(±)-methyl 3-(4-chlorophenyl)-2-methylene-4-(5-nitrobenzo[d]oxazol-2-yl)pentanoate (3n)
(±)-methyl 3-(4-chlorophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)heptanoate(3o)
$^{(+)}$methyl 4-chloro-3-(4-chlorophenyl)-2-methylene-4-(6-nitrobenzo[d]oxazol-2-yl)butanoate (3p)
(±)methyl 3-(4-chlorophenyl)-2-methylene-4-(3-nitropyridin-4-yl)butanoate(3q)
(±)methyl 3-(4-chlorophenyl)-2-methylene-4-(4-nitrobenzo[d]oxazol-2-yl)pentanoate (3r)
(+)-methyl 3-(4-chlorophenyl)-2-methylene-4-(5-nitropyridin-2-yl)butanoate (3t)
(+)-methyl 4-({6-acetoxybenzo[\text{d}]oxazol-2-yl})-3-(4-chlorophenyl)-2-methylenepentanoate(3w)