Electronic Supplementary Information

Co$_2$N$_x$/Nitrogen-doped Reduced Graphene Oxide for Enzymeless Glucose Detection

Lingjun Kong, Zhiyu Ren, Shichao Du, Jun Wu and Honggang Fu*

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China; School of Chemistry and Materials Science, Heilongjiang University, 74# Xuefu Road, Nangang District, Harbin 150080, People’s Republic of China.

Corresponding author E-mail: fuhg@vip.sina.com; zyren@hlju.edu.cn

Tel.: +86 451 8660 4330,
Fax: +86 451 8666 1259

Webpage: www.fuhonggang.cn
Experiment section

1.1 Reduced graphene oxide (rGO) modified with poly(diallyldimethylammonium chloride) (PDDA).

In a typical preparation, graphene oxide (GO) was prepared from natural graphite by using a modified Hummers method. 0.1 g GO was dispersed with 50 mL of deionized water under sonication. After 30 min, 0.375 mL of aqueous hydrazine (N\textsubscript{2}H\textsubscript{4}, 35 wt%) and 3.75 mL of aqueous ammonia (NH\textsubscript{3}·H\textsubscript{2}O, 30 wt%) were added to the GO suspension in turn, stirred for 5 h at room temperature. Then, a given amount of PDDA were dropped into the solution and stirred for 5 h. The obtained solids were separated by a centrifuge and washed with deionized water and anhydrous ethanol in turn.

1.2 Synthesis of Co nanosheets.

The synthesis of Co nanosheets is according to our previous work. Briefly, 0.2 mmol of Co(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O was dissolved in 20 mL of deionized water. Equal volume of ethanol solution containing OAm (3.5 mmol L-1) was added. After stirring for 3 min, 20 mL of toluene was added and stirred for 5 min. Then, the mixture was transferred to separatory funnel and kept for several minutes. The organic solution in upper layer was separated, washed thoroughly with water and transferred into the three-necked bottle with high-purity N\textsubscript{2} protection with stirring. After heated to 45 °C, aqueous NaBH\textsubscript{4} (0.01 mol L-1) was added dropwise and reacted for 2 h at the corresponding temperature. The mol ratio of NaBH\textsubscript{4} and Co ions is 5:1. After standing, the black products precipitated into water layer and were separated by magnetism. After washing by water and ethanol for several times, the Co nanosheets were obtained.

1.3 Electrostatic assembly of Co nanosheets and modified rGO.

A certain amount of modified rGO and Co nanosheets were dispersed into 50 mL deionized water. After 30 min sonication, the mixture was stirred for 5 h at room temperature. During the process, Co nanosheets assembled with the modified rGO through the electrostatic co-precipitation method. The resulting precipitate was washed with anhydrous ethanol, dried at room temperature, and denoted as Co/rGO.
1.4 Synthesis of Co$_2$N$_x$/NG

The prepared Co/rGO was nitrided in a tube furnace at 500 °C for 2 h with a flowing NH$_3$ rate of 100 mL·min$^{-1}$. After natural cooling, the black Co$_2$N$_x$/NG samples were obtained. At the same time, in order to study the effect of nitridation temperature and the ratio of Co and rGO on the electrocatalytic performance, the different samples of Co$_2$N/NG were also prepared (the detailed experimental parameters were displayed in Table S1). In addition, in order to compare electrocatalytic performance, N-doped reduced graphene oxide (NG) was also prepared by using 3 mol·L$^{-1}$ HCl to remove Co$_2$N$_x$.

Table S1 The experimental parameters of the synthesized Co$_2$N$_x$/NG composites.

<table>
<thead>
<tr>
<th>Samples</th>
<th>The initial dosage ratio of Co and rGO (g)</th>
<th>Nitridation temperature (°C)</th>
<th>Cobalt content calculated from TG analyses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co$_2$N$_x$/NG-500-1</td>
<td>5:1</td>
<td>500</td>
<td>77.70</td>
</tr>
<tr>
<td>Co$_2$N$_x$/NG-500-2</td>
<td>3:1</td>
<td>500</td>
<td>72.77</td>
</tr>
<tr>
<td>Co$_2$N$_x$/NG-500-3</td>
<td>7:1</td>
<td>500</td>
<td>82.14</td>
</tr>
<tr>
<td>Co$_2$N$_x$/NG-400-1</td>
<td>5:1</td>
<td>400</td>
<td>77.70</td>
</tr>
<tr>
<td>Co$_2$N$_x$/NG-800-1</td>
<td>5:1</td>
<td>800</td>
<td>77.70</td>
</tr>
</tbody>
</table>

2.1 Characterization

Scanning electron microscopy (SEM) images were recorded with a Hitachi S-4800 field emission scanning electron microscope operating at 15 kV. Transmission electron microscopy (TEM) images were performed on a JEM-3010 electron microscope (JEOL, Japan) with an acceleration voltage of 300 kV. X-ray diffraction (XRD) patterns were obtained by a Rigaku D/max-IIIB diffractometer using Cu Kα radiation (λ = 1.5406 Å). X-ray photoelectron spectroscopy (XPS) measures were performed with AXIS UL TRA DLD. Thermogravimetric (TG) analysis was performed on TA Q600 under a stream of air at a heating rate of 10 °C min$^{-1}$.

3.1 Electrochemical measurements

Electrochemical experiments were performed in a conventional three-electrode system, using a saturated calomel electrode (SCE) and a Pt sheet as the reference and the counter electrode, respectively. A 0.4 cm diameter glass carbon (GC) used as working electrode was polished with 30 nm Al$_2$O$_3$ paste, followed by washing with...
water and isopropanol. Five milligrams of material mixed with 50 μL of 5 wt % Nafion ionomer was dispersed in 0.1 mL of ethanol solution. After the material ink was sonicated for 0.5 h, a volume of the ink was dropped on a GC electrode and left to dry. An electrolyte of 0.1 M NaOH solution was used. Electrochemical activity and stability of material to glucose were tested with a BAS 100B electrochemical workstation. Electrochemical impedance spectra (EIS) were performed using Versa STAT 3 in 0.1 M KCl containing 2 mM K₃[Fe(CN)₆]/K₄[Fe(CN)₆] (1:1) mixture.
Results and discussion

Fig. S1 TG curves of Co$_2$N$_x$/NG-500-1, Co$_2$N$_x$/NG-500-2, and Co$_2$N$_x$/NG-500-3.

Fig. S2 shows the XRD patterns of Co$_2$N$_x$/NG nitrided at different temperatures. Diffraction peaks can’t be identified until the nitridation temperature reaches 400 °C. Co gradual transforms into Co$_2$N$_x$ (including Co$_2$N and Co$_2$N$_{0.67}$) and then to Co$_{5.47}$N, as the nitridation temperature increases. When the nitridation temperature reaches 500 °C, four high-intensity crystal peaks at 41.58°, 42.82°, 44.12°, and 48.51° can be perfectly assigned to the diffraction from (002), (111), (021), and (021) planes of the orthorhombic Co$_2$N, respectively (JCPDS: 06-0647). The crystal peaks at 44.35° can be perfectly assigned to the diffraction from (101) plane of the hexagonal Co$_2$N$_{0.67}$ (JCPDS: 06-0691). With increasing the nitridation temperature up to 600 °C, the diffraction peaks of Co$_{5.47}$N appear and the cubic Co$_{5.47}$N is the main phase at 800 °C (JCPDS: 41-0943).

Fig. S2 Typical XRD patterns of Co$_2$N$_x$/NG prepared at different nitriding
temperature.

Fig. S3 Typical TEM images of Co nanosheets (a, b), Co/rGO (c) and Co$_2$N$_x$ prepared at 500 °C (d).

Fig. S4 N$_2$ adsorption-desorption isotherms of Co$_2$N$_x$/NG-500-1, NG and Co$_2$N$_x$.

Fig. S5 HRTEM images of Co$_2$N$_x$/NG-500-1 (the original image of Fig. 2c)
Fig. S6 CVs of Co$_2$N$_x$/NG-500-1 electrode in 0.1 M NaOH aqueous solution measured at different scan rates (25-200 mV·s$^{-1}$).

Fig. S7 CVs of Co$_2$N$_x$/NG-500-1 electrode in 0.1 M NaOH aqueous solution with different glucose concentrations (0-7.5 mM).

Table S2. Comparison of the analytical performance of different glucose biosensors.

<table>
<thead>
<tr>
<th>Electrode materials</th>
<th>Detection limit (μM)</th>
<th>Sensitivity (mA mM$^{-1}$ cm$^{-2}$)</th>
<th>Linear range (mM)</th>
<th>Response time (s)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co$_2$O$_4$ NPs</td>
<td>0.13</td>
<td>0.005-0.8</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$ NPs</td>
<td>200</td>
<td>0.5-10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D GE/Co$_3$O$_4$</td>
<td>0.025</td>
<td>3.39</td>
<td>--0.08</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>GE/Co$_3$O$_4$</td>
<td>10</td>
<td>0.05-0.3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-rGO</td>
<td>1</td>
<td>0.813</td>
<td>0.001-0.11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>RGO-Ni(OH)$_2$</td>
<td>0.6</td>
<td>0.011</td>
<td>0.002-3.1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CuO/GO</td>
<td>0.69</td>
<td>0.263</td>
<td>0.028-2.03</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Cu-Co-Ni</td>
<td>3.05</td>
<td>0.105</td>
<td>0.01-4.30</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Co$_2$N$_x$/NG-500-1</td>
<td>6.93</td>
<td>1.167</td>
<td>0.01-4.75</td>
<td>5 s</td>
<td>This work</td>
</tr>
</tbody>
</table>
Fig. S8 CVs of Co$_2$N$_x$/NG-500-1, Co$_2$N$_x$/NG-500-2, Co$_2$N$_x$/NG-500-3, Co$_2$N$_x$, and NG electrodes in 0.1 M NaOH aqueous solution, scan rate: 50 mV s$^{-1}$.

Fig. S9 (a) CVs of Co$_2$N$_x$/NG-400-1, Co$_2$N$_x$/NG-500-1 and Co$_2$N$_x$/NG-800-1 electrodes in 0.1 M NaOH aqueous solution, scan rate: 50 mV s$^{-1}$. (b) Chronoamperometric curves for Co$_2$N$_x$/NG-400-1, Co$_2$N$_x$/NG-500-1 and Co$_2$N$_x$/NG-800-1, constant voltage test under 0.25 V vs SCE.

Notes and references

