Supporting Information

Scalable Pinacol Coupling Reaction Utilizing Inorganic Electride
[Ca$_2$N]$^+$:e$^-$ as an Electron Donor

Ye Ji Kim,a,b,† Sun Min Kim,a,‡ Hideo Hosono,c Jung Woon Yang,*a and Sung Wng Kim*,a,b

a Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
b IBS Center for Integrated Nanostructure Physics, Institute for Basic Science, Daejeon 305-701, Republic of Korea
c Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

$†$ These authors contributed equally to this work.

E-mail: kimsungwng@skku.edu (S.W.K); Fax: (+82)-31-299-4279; Tel: (+82)-31-299-6274
E-mail: jwyang@skku.edu (J.W.Y); Fax: (+82)-31-299-4279; Tel: (+82)-31-299-4276

Contents

General Methods S2
Characterization Data for Products S3
References S7
1H NMR and 13C NMR Spectra of the Products S8
Calibrations and Results of Ion Chromatography S20
General Methods

Thin-layer chromatography (TLC) was performed on Merck silica gel 60 F254. 1H NMR spectra were recorded on a Varian at 500 MHz in CDCl$_3$ (δ 7.26 ppm) or DMSO-d_6 (δ 2.50 ppm), 13C NMR spectral measurements were performed at 125 MHz using CDCl$_3$ (δ 77.16 ppm) or DMSO-d_6(δ 39.52 ppm). The terms m, s, d, t, q, quint., and sept. represent multiplet, singlet, doublet, triplet, quadruplet, quintuplet, and septet, respectively, and the term br means a broad signal. Commercial grade reagents and solvents were used without further purification.

The measurement of X-ray diffraction patterns for Ca(OMe)$_2$ was made over a 20 range from 5° to 40° along with a step size of 0.02° and scanning speed was set at 1° at 1°min$^{-1}$ with filtered Cu K$_\alpha$ radiation λ=0.15418 nm (Rigaku Smart Lab, Japan).

Ion chromatography was performed on Metrohm 833 IC plus with conductivity detector (solvent: 1.7mM HNO$_3$ + 0.7mM PDCA in DI water, temperature: room temperature, fluent speed : 0.9mL/min). Analytic sample was prepared by the following procedure: Each sample was taken from the individual reaction mixture using micro-glass filters. To make more accurate analysis, it diluted with deionized water (200 times less than in the original sample).

Synthesis of dicalcium nitride [Ca$_2$N]$^+$$^-$$e^{-}$ electride

A stoichiometric polycrystalline dicalcium nitride ([Ca$_2$N]$^+$$^-$$e^{-}$) was synthesized by the solid-state reaction of calcium nitride(Ca$_3$N$_2$) powders and calcium metals. Mixture of Ca$_3$N$_2$ powders and calcium chips at a molar ratio of 1:1 were pressed into a pellet form under pressure (20–30 MPa). The pellet was fully covered with molybdenum foil and annealed at 800 °C for 48 hrs under vacuum (~10$^{-3}$ Pa). Then, the sample was quenched into water. To improve homogeneity of dicalcium nitride [Ca$_2$N]$^+$$^-$$e^{-}$, the synthesized sample was ground into a powder in an agate mortar in nitrogen-filled glovebox and re-annealed under the same conditions.

Procedure for pinacol coupling reaction of aromatic aldehyde

Dicalcium nitride [Ca$_2$N]$^+$$^-$$e^{-}$ (94 mg, 1 mmol) was added to a suspension of aldehyde (0.5 mmol) in dry THF and MeOH in 1:1 mixture at room temperature. The reaction was stirred until TLC analysis indicated complete consumption of the starting material, and then the reaction mixture was quenched with water and 5% HCl and, extracted with EtOAc or Et$_2$O (5 mL×3). The combined organic layers were dried over MgSO$_4$ and concentrated under vacuum. The crude residue was purified by flash chromatography on silica gel (EtOAc/Hexanes) to give the corresponding 1,2-vic-diol.
Characterization Data for Products

1,2-Bis(4-chlorophenyl)ethane-1,2-diol (Table 2, Entry 1)

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{Cl} & \quad \text{Cl} \\
\text{2a}
\end{align*}
\]

The physical and spectral data were identical to those previously reported for this compound.\(^1\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(dl\) [\emph{meso}] \(\delta\): 6.95-7.31 (m, 8H), 4.60[4.82] (s, 2H); \(^1\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 137.93, 137.78, 133.88, 128.40, 128.36, 128.33, 78.55, 77.16 ppm.

1,2-Bis(4-fluorophenyl)ethane-1,2-diol (Table 2, Entry 2)

\[
\begin{align*}
\text{F} & \quad \text{F} \\
\text{2b}
\end{align*}
\]

The physical and spectral data were identical to those previously reported for this compound.\(^3\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(dl\) [\emph{meso}] \(\delta\): 6.85-7.20 (m, 8H), 4.61[4.82] (s, 2H); \(^1\)C NMR (125 MHz, CDCl\(_3\)) \(dl\) [\emph{meso}] \(\delta\): 162.55[162.63] (d, \(J = 175\) Hz), 135.48[135.31] (d, \(J = 2.5\) Hz), 128.76[128.82] (d, \(J = 6.25\) Hz), 115.21[115.20] (d, \(J = 15\) Hz), 78.86[77.39] ppm.

1,2-Bis(3-(trifluoromethyl)phenyl)ethane-1,2-diol (Table 2, Entry 3)

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{F} \\
\text{2c}
\end{align*}
\]

\(^1\)H NMR (500 MHz, DMSO-\(d_6\)) \(dl\) [\emph{meso}] \(\delta\): 7.25-7.62 (m, 8H), 5.70[5.63] (s, 2H), 4.85[4.71] (s, 2H) \(^1\)C NMR (125 MHz, DMSO-\(d_6\)) \(dl\) [\emph{meso}] \(\delta\): 143.32[144.22], 131.11[131.47], 128.13[128.36], 128.05 [128.24] (q, \(J = 22.5\) Hz), 124.38[124.43] (q, \(J = 193\) Hz), 123.53[123.76] (q, \(J = 2.5\) Hz), 123.35(q, \(J = 2.5\)Hz), 75.83[76.10] ppm.
1,2-Bis(3-bromophenyl)ethane-1,2-diol (Table 2, Entry 4)

![2d](image)

The physical and spectral data were identical to those previously reported for this compound.\(^3\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 6.89-7.47 (m, 8H), 4.60[4.77] (s, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 141.97[141.88], 131.36[131.37], 129.99[130.23], 129.84[129.83], 125.81[125.87], 122.56[122.53], 78.37[77.28] ppm.

1,2-Bis(3-chlorophenyl)ethane-1,2-diol (Table 2, Entry 5)

![2e](image)

The physical and spectral data were identical to those previously reported for this compound.\(^4\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 7.08-7.70 (m, 8H), 4.62[4.79] (s, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 141.59[141.49], 134.27[134.24], 129.45[129.42], 128.32, 126.96[127.19], 125.22[125.27], 77.20[78.32] ppm.

1,2-Bis(2-chlorophenyl)ethane-1,2-diol (Table 2, Entry 6)

![2f](image)

The physical and spectral data were identical to those previously reported for this compound.\(^3\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 7.08-7.70 (m, 8H), 5.58[5.34] (s, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 137.36[136.51], 132.74[133.50], 129.58[129.00], 129.29[129.25], 128.94[128.88], 73.12[72.21] ppm.
1,2-Diphenylethane-1,2-diol (Table 2, Entry 7)

![Chemical Structure](image)

The physical and spectral data were identical to those previously reported for this compound.\(^1\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 7.11-7.40 (m, 10H), 4.69[4.82] (s, 2H); \(^1^3\)C NMR (125 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 139.96[139.88], 128.27[128.38], 128.07[128.25], 127.07[127.22], 79.24[78.23] ppm.

1,2-Di(naphthalene-2-yl)ethane-1,2-diol (Table 2, Entry 8)

![Chemical Structure](image)

The physical and spectral data were identical to those previously reported for this compound.\(^1\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 7.26-7.86 (m, 14H), 5.54[5.41] (s, 2H), 4.90[4.83] (s, 2H); \(^1^3\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 138.31, 131.90, 131.70, 126.83, 126.51, 126.19, 124.98, 124.83, 124.61, 124.55, 77.49 ppm.

1,2-Di-\(m\)-tolylethane-1,2-diol (Table 2, Entry 9)

![Chemical Structure](image)

The physical and spectral data were identical to those previously reported for this compound.\(^3\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 6.86-7.29 (m, 8H), 4.67[4.72] (s, 2H), 2.28[2.34] (s, 3H); \(^1^3\)C NMR (125 MHz, CDCl\(_3\)) \(dl\) [meso] \(\delta\): 140.09[140.07], 137.90[138.17], 128.74[129.11], 128.13[128.37], 127.58[127.92], 124.11[124.40], 78.92[78.38] ppm.
1,2-Bis(3-methoxyphenyl)ethane-1,2-diol (Table 2, Entry 10)

The physical and spectral data were identical to those previously reported for this compound.¹

¹¹H NMR (500 MHz, CDCl₃) dl [meso] δ: 6.64-7.31 (m, 8H), 4.65[4.77] (s, 2H), 3.70[3.73] (s, 6H); ¹³C NMR (125 MHz, CDCl₃) dl [meso] δ: 159.52[159.66], 141.64[141.53], 129.28[129.38], 119.37[119.57], 113.80[114.10], 112.33[112.41], 78.98[78.10], 55.31[55.33] ppm.

2,2,5,5-Tetramethylhexane-3,4-diol (Table 2, Entry 11)

The physical and spectral data were identical to those previously reported for this compound.⁵

¹¹H NMR (500 MHz, CDCl₃) dl [meso] δ: 3.33[3.25] (s, 2H), 0.91[1.01] (s, 18H); ¹³C NMR (125 MHz, CDCl₃) dl [meso] δ: 75.12[80.57], 35.39[35.84], 25.99[26.73] ppm.

2,3-Diphenylbutane-2,3-diol (Table 2, Entry 12)

The physical and spectral data were identical to those previously reported for this compound.²

¹¹H NMR (500 MHz, CDCl₃) dl [meso] δ: 7.14-7.30 (m, 10H), 2.57[2.27] (s, 2H), 1.50[1.58] (s, 6H); ¹³C NMR (125 MHz, CDCl₃) dl [meso] δ: 143.54[143.90], 127.50[127.43], 127.29[127.19], 127.05[127.04], 78.98[78.72], 25.09[25.25] ppm.
References

1,2-Bis(4-chlorophenyl)ethane-1,2-diol (Table 2, Entry1)
1,2-Bis(4-fluorophenyl)ethane-1,2-diol (Table 2, Entry 2)

[Chemical structure image]

[1H NMR spectrum]

[13C NMR spectrum]
1,2-Bis(3-(trifluoromethyl)phenyl)ethane-1,2-diol (Table 2, Entry 3)
1,2-Bis(3-bromophenyl)ethane-1,2diol (Table 2, Entry 4)
1,2-Bis(3-chlorophenyl)ethane-1,2-diol (Table 2, Entry 5)
1,2-Bis(2-chlorophenyl)ethane-1,2-diol (Table 2, Entry 6)
1,2-Diphenylethane-1,2diol (Table 2, Entry 7)
1,2-Di(naphthalene-2-yl)ethane-1,2-diol (Table 2, Entry 8)

![Chemical Structure](image)

Spectral Data

H NMR (CDCl3):

- δ (ppm): 2.85, 11.86, 0.16, 0.89, 0.16, 1.00, 0.82, 1.67, 4.09
- δ (ppm): 2.50, 2.50, 2.50, 3.33, 4.83, 4.90, 5.41, 5.54, 7.31, 7.31, 7.33, 7.33, 7.40, 7.41, 7.42, 7.42, 7.67, 7.68, 7.70, 7.73, 7.74, 7.74, 7.75, 7.79, 7.80, 7.80, 7.81

C NMR (CDCl3):

- δ (ppm): 130.40, 130.62, 130.77, 131.97, 132.30, 132.62, 137.48, 137.69, 144.09

Notes:

- Yeji-naphthyl
- Yeji-naphthyl

Additional Details:

- 2h
1,2-Di-<i>m</i>-tolyethane-1,2-diol (Table 2, Entry 9)
1,2-Bis(3-methoxyphenyl)ethane-1,2-diol (Table 2, Entry 10)
2,2,5,5-Tetramethylhexane-3,4-diol (Table 2, Entry 11)
2,3-Diphenylbutane-2,3-diol (Table 2, Entry 12)
Calibrations and Results of Ion Chromatography

1) NH\textsubscript{4}+ cation calibration curve

Function: \(A = 4.15059 \times 10^{-3} + 0.0211598 \times Q \)
Relative standard deviation: 2.732093%
Correlation coefficient: 0.999834

<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc.(mg/L)</th>
<th>Volume((\mu)L)</th>
<th>Dilution</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1</td>
<td>0.500</td>
<td>10</td>
<td>1.0</td>
<td>0.109</td>
</tr>
<tr>
<td>Standard 2</td>
<td>1.000</td>
<td>10</td>
<td>1.0</td>
<td>0.203</td>
</tr>
<tr>
<td>Standard 3</td>
<td>5.000</td>
<td>10</td>
<td>1.0</td>
<td>1.086</td>
</tr>
<tr>
<td>Standard 4</td>
<td>10.000</td>
<td>10</td>
<td>1.0</td>
<td>2.109</td>
</tr>
</tbody>
</table>

2) Ca2+ cation calibration curve

Function: \(A = 0.00617120 + 0.0154480 \times Q \)
Relative standard deviation: 1.194612%
Correlation coefficient: 0.999950
<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc.(mg/L)</th>
<th>Volume(μL)</th>
<th>Dilution</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1</td>
<td>0.500</td>
<td>10</td>
<td>1.0</td>
<td>0.138</td>
</tr>
<tr>
<td>Standard 2</td>
<td>1.000</td>
<td>10</td>
<td>1.0</td>
<td>0.211</td>
</tr>
<tr>
<td>Standard 3</td>
<td>5.000</td>
<td>10</td>
<td>1.0</td>
<td>0.844</td>
</tr>
<tr>
<td>Standard 4</td>
<td>10.000</td>
<td>10</td>
<td>1.0</td>
<td>1.602</td>
</tr>
</tbody>
</table>

3) THF Sample Result

![Graph showing cation concentrations over time]

Sample

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electride</td>
<td>[Ca₂N]⁺·e⁻ (94 mg, 1 mmol)</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>4-chlorobenzaldehyde (70.3 mg, 0.5 mmol)</td>
</tr>
<tr>
<td>Solvent</td>
<td>THF 4 mL</td>
</tr>
<tr>
<td>Washed Solvent</td>
<td>THF 8 mL</td>
</tr>
<tr>
<td>Dilution</td>
<td>200 times</td>
</tr>
<tr>
<td>Pressure / Flow</td>
<td>7.88 MPa / 0.700 mL/min</td>
</tr>
</tbody>
</table>

Result

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Retention Time (min)</th>
<th>Area (μS/cm)×min</th>
<th>Height (μS/cm)</th>
<th>Concentration (ppm)</th>
<th>Component name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.827</td>
<td>0.1127</td>
<td>0.351</td>
<td>invalid</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3.523</td>
<td>0.2556</td>
<td>2.205</td>
<td>0.025</td>
<td>Na</td>
</tr>
<tr>
<td>3</td>
<td>4.748</td>
<td>0.0181</td>
<td>0.117</td>
<td>0.096</td>
<td>K</td>
</tr>
<tr>
<td>4</td>
<td>9.813</td>
<td>0.1364</td>
<td>0.385</td>
<td>0.483</td>
<td>Ca</td>
</tr>
</tbody>
</table>
4) MeOH Sample Result

![Baseline and peaks](image)

<table>
<thead>
<tr>
<th>Sample</th>
<th>[Ca$_2$N]$^+\cdot$e$^-$ (94 mg, 1 mmol)</th>
<th>4-chlorobenzaldehyde (70.3 mg, 0.5 mmol)</th>
<th>MeOH 4 mL</th>
<th>MeOH 4 mL</th>
<th>200 times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldehyde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washed Solvent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure / Flow</td>
<td></td>
<td></td>
<td>7.88 MPa</td>
<td>0.700 mL/min</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Result</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak #</td>
<td>Retention Time (min)</td>
<td>Area (μS/cm)\timesmin</td>
<td>Height (μS/cm)</td>
<td>Concentration (ppm)</td>
<td>Component name</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>3.530</td>
<td>0.2902</td>
<td>2.543</td>
<td>0.208</td>
<td>Na</td>
</tr>
<tr>
<td>2</td>
<td>3.852</td>
<td>0.3584</td>
<td>2.841</td>
<td>1.674</td>
<td>NH$_4$</td>
</tr>
<tr>
<td>3</td>
<td>4.752</td>
<td>0.0206</td>
<td>0.132</td>
<td>0.122</td>
<td>K</td>
</tr>
<tr>
<td>4</td>
<td>9.768</td>
<td>0.3036</td>
<td>0.858</td>
<td>1.566</td>
<td>Ca</td>
</tr>
</tbody>
</table>
5) MeOH/THF Sample Result

![Graph showing cation concentration over time.]

Sample

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electride</td>
<td>([\text{Ca}_2\text{N}]^+\cdot\text{e}^-) (94 mg, 1 mmol)</td>
</tr>
<tr>
<td>Aldehyde</td>
<td>4-chlorobenzaldehyde (70.3 mg, 0.5 mmol)</td>
</tr>
<tr>
<td>Solvent</td>
<td>MeOH 2 mL / THF 2 mL</td>
</tr>
<tr>
<td>Washed Solvent</td>
<td>MeOH 8 mL</td>
</tr>
<tr>
<td>Dilution</td>
<td>200 times</td>
</tr>
<tr>
<td>Pressure / Flow</td>
<td>7.88 MPa / 0.700 mL/min</td>
</tr>
</tbody>
</table>

Result

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Retention Time (min)</th>
<th>Area ((\mu\text{S/cm})\times\text{min})</th>
<th>Height ((\mu\text{S/cm}))</th>
<th>Concentration (ppm)</th>
<th>Component name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.530</td>
<td>0.2973</td>
<td>2.626</td>
<td>0.246</td>
<td>Na</td>
</tr>
<tr>
<td>2</td>
<td>3.582</td>
<td>0.2661</td>
<td>2.156</td>
<td>1.238</td>
<td>NH(_4)</td>
</tr>
<tr>
<td>3</td>
<td>4.753</td>
<td>0.0221</td>
<td>0.140</td>
<td>0.137</td>
<td>K</td>
</tr>
<tr>
<td>4</td>
<td>9.783</td>
<td>0.2306</td>
<td>0.648</td>
<td>1.093</td>
<td>Ca</td>
</tr>
</tbody>
</table>