
Pi Wang, Yong Yao and Min Xue*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China; Fax and Tel: +86-571-8795-3189; Email address: xuemin@zju.edu.cn.

Electronic Supplementary Information (ESI)

1. Materials and methods S2
2. Proton NMR spectra of G and WP5 S3
3. NOESY NMR spectrum of WP5⇒G in D2O S4
4. Stoichiometry and association constant determination for WP5⇒G and WP5⇒paraquat in H2O S4
5. UV−vis investigation of WP5⇒G S8
6. Electrospray ionization mass spectrum of G with KCN S8
7. References S12
1. Materials and methods

All reagents were commercially available and used as supplied without further purification. Compounds WP5S1 and GS2 were prepared according to the published procedures. NMR spectra were recorded with a Bruker Avance DMX 500 spectrophotometer or a Bruker Avance DMX 400 spectrophotometer using the deuterated solvent as the lock and the residual solvent or TMS as the internal reference. Low-resolution electrospray ionization mass spectra were recorded with a Bruker Esquire 3000 Plus spectrometer. High-resolution mass spectrometry experiments were performed with a Bruker Daltonics Apex III spectrometer. 2D 1H-1H NOESY spectrum was collected on a Bruker Advance DMX-500 spectrometer. Mass spectra were obtained on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with an ESI interface and an ion trap analyzer. UV-vis spectra were taken on a Shimadzu UV-2550 UV-vis spectrophotometer. The fluorescence experiments were conducted on a RF-5301 spectrofluorophotometer (Shimadzu Corporation, Japan). Isothermal titration calorimetric (ITC) measurements were performed on a VP-ITC micro-calorimeter (Microcal, USA). HRMS were obtained on a Bruker 7-Tesla FT-ICRMS equipped with an electrospray source (Billerica, MA, USA). The melting points were collected on a SHPSIC WRS-2 automatic melting point apparatus.
2. Proton NMR spectra of G and WP5

Figure S1. 1H NMR spectrum (400 Hz, DMSO- d_6, 298 K) of G.

Figure S2. 1H NMR spectrum (400 Hz, D$_2$O, 298 K) of WP5.
3. NOESY NMR spectrum of WP5 \rightarrow G in D$_2$O

![Partial NOESY NMR spectrum](image)

Figure S3. Partial NOESY NMR spectrum (500 MHz, D$_2$O, 298 K) of 10.0 mM WP5 and G.

4. Stoichiometry and association constant determination for WP5 \rightarrow G and WP5 \rightarrow paraquat in H$_2$O

To determine the stoichiometries and association constants of WP5 \rightarrow G and WP5 \rightarrow paraquat, 1H NMR titrations were done. By a non-linear curve-fitting method, the association constants between the guests and hosts were calculated. By a mole ratio plot, the stoichiometries were determined.

(a) Stoichiometry and association constant determination for WP5 \rightarrow G in H$_2$O

The non-linear curve-fitting was based on the equation53

$$\Delta\delta = (\Delta_c/[[WP5]_0]) (0.5[G]_0 + 0.5([[WP5]_0 + 1/K_a) - (0.5 ([G]_0^2 + (2[G]_0(1/K_a - [WP5]_0)) + (1/K_a + [WP5]_0)^2)^0.5))$$

(Eq. S1)

Where $\Delta\delta$ is the chemical shift change of H$_3$ on WP5 at [G]$_0$, Δ_c is the chemical shift change of H$_3$ when the host is completely complexed, [WP5]$_0$ is the fixed initial concentration of the host, and [G]$_0$ is the varying concentration of guest G.
Figure S4. 1H NMR spectra (400 MHz, D$_2$O, 293 K) of WP5 at a concentration of 1.00 mM with different concentrations of G: (a) 0.00 mM; (b) 0.196 mM; (c) 0.385 mM; (d) 0.566 mM; (e) 0.741 mM; (f) 0.909 mM; (g) 1.07 mM; (h) 1.23 mM; (i) 1.53 mM; (j) 1.94 mM; (k) 2.48 mM; (l) 3.10 mM; (m) 3.94 mM.

Figure S5. The chemical shift changes of H$_3$ on WP5 upon addition of G. The red solid line was obtained from the non-linear curve-fitting using Eq. S1.
Figure S6. Mole ratio plot for the complexation between WP5 and G, indicating a 1 : 1 stoichiometry.

(b) Stoichiometry and association constant determination for WP5 \rightleftarrows paraquat in H$_2$O

$$\Delta \delta = (\Delta_{\infty}/[\text{paraquat}]_0) (0.5[\text{WP5}]_0 + 0.5([\text{paraquat}]_0 + 1/K_a) - (0.5 ([\text{WP5}]_0^2 + (2[\text{WP5}]_0(1/K_a - [\text{paraquat}]_0)) + (1/K_a + [\text{paraquat}]_0)^2)^{0.5})) \quad \text{(Eq. S2)}$$

Where $\Delta \delta$ is the chemical shift change of H$_k$ on paraquat at [WP5]$_0$, Δ_{∞} is the chemical shift change of H$_k$ when the guest is completely complexed, [paraquat]$_0$ is the fixed initial concentration of the guest, and [WP5]$_0$ is the varying concentration of host WP5.

Figure S7. 1H NMR spectra (400 MHz, D$_2$O, 293 K) of paraquat at a concentration of 1.00 mM with different concentrations of WP5: (a) 0.00 mM; (b) 0.196 mM; (c) 0.385 mM; (d) 0.566 mM; (e) 0.741 mM; (f) 0.909 mM; (g) 1.07 mM; (h) 1.23 mM; (i) 1.53 mM; (j) 1.94 mM; (k) 2.48 mM; (l) 3.10 mM; (m) 3.94 mM.
Figure S8. The chemical shift changes of H_K on paraquat upon addition of WP5. The red solid line was obtained from the non-linear curve-fitting using Eq. S2.

$R^2 = 0.989$

$K_s = (1.32 \pm 0.25) \times 10^5 \text{ M}^{-1}$

Figure S9. Mole ratio plot for the complexation between WP5 and paraquat, indicating a 1 : 1 stoichiometry.
5. UV−vis investigation of WP5→G

Figure S10. UV−vis spectra of 10.0 μM G in the presence of 0.200, 0.400, 0.600, 0.800, 1.00, and 1.20 equiv of WP5 in water.

6. Electrospray ionization mass spectrum of G with KCN

Figure S11. Electrospray ionization mass spectrum of G with KCN. The peak at m/z 250.1 corresponding to [G + K]^+ was clearly observed.
Figure S12. (Top): The fluorescence intensities at 490 nm and 430 nm for G (3.00 µM) at varied pH values. (Bottom): The fluorescence intensities at 490 nm and 430 nm for G (3.00 µM) in the presence of CN⁻ (20.0 equiv) at varied pH values.
Figure 13. 1H NMR spectra (400 MHz, D$_2$O, 298 K): (a) 10.0 mM G; (b) 10.0 mM G and WP5; (c) 10.0 mM WP5.

Figure S14. Partial 1H NMR spectra (400 MHz, D$_2$O, 298 K): (a) WP5 (10.0 mM); (b) a solution of G (10.0 mM) and WP5 (10.0 mM), pH = 7.4; (c) a solution of 2.00 mL of aqueous HCl solution (37%), and 0.5 mL of G (10.0 mM) and WP5 (10.0 mM), pH = 6.0; (d) a solution of 1.5 mg of NaOH, 2.00 mL of aqueous HCl solution (37%), and 0.5 mL of G (10.0 mM) and WP5 (10.0 mM), pH = 7.4; (e) G (10.0 mM).
Figure S15. Partial 1H NMR spectra (400 MHz, DMSO-d_6, 298 K): (a) G (10.0 mM); (b) G (10.0 mM) upon the addition of KCN (1.00 equiv).

Figure S16. Fluorescence intensity ratio (F_{432}/F_{490}) of G (3.00 µM) upon addition of 20 equiv. of various anion specie in Tris-HCl buffer (10.0 mM, pH = 6.0). From left to right: (1) no anion (blank); (2) G + CN$^-$; (3) G + F$^-$; (4) G + Cl$^-$; (5) G + Br$^-$(6) G + I$^-$(7) G + NO$_3^-$; (8) G + HSO$_4^-$; (9) G + SCN$^-$; (10) G + AcO$^-$; (11) G + C$_6$H$_5$CO$_2^-$; (12) G + N$_3^-$; (13) G + CH$_3$S$^-$; (14) G + ClO$_4^-$; (15) G + H$_2$PO$_4^-$.
Figure S17. The energy-minimized structures of $\text{WP5} \rightarrow \text{G}$ obtained by PM6 semiempirical molecular orbital methods: (a) $\text{WP5} \rightarrow \text{G}$ (top view), (b) $\text{WP5} \rightarrow \text{G}$ (side view).

References:

