Supporting Information

List of Contents

(A) Materials and equipment

(B) Typical experimental procedure

(C) Analytical data

(D) References

(E) Spectra
(A) Materials and equipment

Reagents were obtained commercially and used as received. Solvents were purified and dried by standard methods. For substrates 2 were prepared according the literature methods.\(^1\) \(^1\)H NMR spectra were recorded on a Bruker-400 NMR spectrometer using TMS as an internal standard. Chemical shift values (\(\delta\)) are given in ppm. Coupling constants (\(J\)) were measured in Hz. GC-MS analyses were performed on a SHIMADZU QP2010. High Resolution mass spectrometer (HRMS) spectra were recorded on a Bruker micrOTOF-Q II analyzer. 200-300 mesh silica gel was used for column chromatography.

(B) Typical experimental procedure

Typical Experimental Procedure for the Synthesis of substituted benzoxazoles (3):

To a Schlenk tube were added arylsulfonyl chlorides 1 (0.45 mmol), 2-isocyanobiphenyls 2 (0.30 mmol), MeCN (2.0 mL), Eosin Y (5 mol%), K$_2$HPO$_4$ (0.45 mmol), Then the tube was charged with argon, and was stirred at room temperature with the irradiation of a 5 W blue LED for about 10-12 h. After the reaction was finished, the reaction mixture was diluted in 35 mL ethyl acetate, washed with a saturated solution of brine (8 mL), saturated NaHCO$_3$ (10 mL), a saturated solution of brine (8 mL), dried (Na$_2$SO$_4$) and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the substituted phenanthridines 3.

(C) Analytical data

6-phenylphenanthridine (3aa): \(^2\)

\(^1\)H NMR (400 MHz, CDCl$_3$) \(\delta\): 8.70 (d, \(J = 8.4\) Hz, 1H), 8.63 (d, \(J = 8.0\) Hz, 1H), 8.30-8.27 (m, 1H), 8.13 (d, \(J = 8.0\) Hz, 1H), 7.89-7.84 (m, 1H), 7.81-7.68 (m, 4H), 7.64-7.52 (m, 4H); \(^13\)C NMR (100 MHz, CDCl$_3$) \(\delta\): 161.1, 143.7, 139.8, 133.3, 130.5, 130.4, 129.6, 128.9, 128.7, 128.6, 128.3, 127.0, 126.7, 125.0, 123.2, 122.0, 121.6; LRMS (EI 70 ev) m/z (%): 255 (M$^+$); HRMS m/z (ESI) calcd for C$_{19}$H$_{14}$N (M+H)$^+$ 256.1127, found 256.1123.
6-p-tolylphenanthridine (3ab): 2

1H NMR (400 MHz, CDCl$_3$) δ: 8.67 (d, $J = 8.4$ Hz, 1H), 8.59-8.57 (m, 1H), 8.23 (dd, $J = 8.0$ Hz, $J = 0.8$ Hz, 1H), 8.12 (dd, $J = 8.4$ Hz, $J = 0.8$ Hz, 1H), 7.82-7.80 (m, 1H), 7.76-7.59 (m, 5H), 7.39-7.35 (m, 2H), 2.46 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 161.4, 143.4, 138.1, 136.5, 133.0, 130.4, 130.1, 129.6, 129.1, 129.0, 128.9, 128.8, 127.2, 126.5, 123.4, 122.1, 121.6, 21.4; LRMS (EI 70 ev) m/z (%):269 (M$^+$); HRMS m/z (ESI) calcd for C$_{20}$H$_{16}$N (M+H)$^+$ 270.1283, found 270.1287.

6-(4-methoxyphenyl)phenanthridine (3ac): 2

1H NMR (400 MHz, CDCl$_3$) δ: 8.70 (d, $J = 8.4$ Hz, 1H), 8.59 (d, $J = 7.2$ Hz, 1H), 8.27-8.22 (m, 1H), 8.13 (d, $J = 8.0$ Hz, 1H), 7.85-7.80 (m, 1H), 7.75-7.56 (m, 5H), 7.08 (d, $J = 8.8$ Hz, 2H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 160.3, 160.0, 143.1, 133.4, 132.2, 131.0, 130.4, 130.1, 129.0, 128.6, 127.1, 126.6, 125.4, 123.3, 122.1, 121.8, 113.6, 55.2; LRMS (EI 70 ev) m/z (%):285 (M$^+$); HRMS m/z (ESI) calcd for C$_{20}$H$_{16}$NO (M+H)$^+$ 286.1232, found 286.1226.

6-(4-fluorophenyl)phenanthridine (3ad): 3

1H NMR (400 MHz, CDCl$_3$) δ: 8.73 (d, $J = 8.4$ Hz, 1H), 8.71-8.67 (m, 1H), 8.26 (dd, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 8.10 (d, $J = 7.2$ Hz, 1H), 7.91-7.86 (m, 1H), 7.82-7.68 (m, 4H), 7.64-7.60 (m, 1H), 7.37-7.30 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 164.3 (d, $J = 245.7$ Hz), 160.1, 143.3, 135.2 (d, $J = 3.4$ Hz), 133.3, 131.4 (d, $J = 8.2$ Hz), 130.6, 130.0, 128.8, 128.5, 127.2, 127.0, 125.4, 123.5, 122.3, 122.0, 116.2 (d, $J = 22.3$ Hz); LRMS (EI 70 ev) m/z (%):273 (M$^+$); HRMS m/z (ESI) calcd for C$_{19}$H$_{13}$FN (M+H)$^+$ 274.1033, found 274.1031.
6-(4-chlorophenyl)phenanthridine (3ae):

1H NMR (400 MHz, CDCl$_3$) δ: 8.71 (d, $J = 8.0$ Hz, 1H), 8.60 (d, $J = 8.4$ Hz, 1H), 8.21 (d, $J = 8.0$ Hz, 1H), 8.09 (d, $J = 7.6$ Hz, 1H), 7.88-7.81 (m, 1H), 7.75-7.68 (m, 4H), 7.62 (dd, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 7.49 (d, $J = 8.0$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ: 161.2, 143.6, 138.1, 135.2, 133.4, 131.1, 130.5, 130.1, 129.2, 128.4, 128.0, 127.3, 126.6, 125.1, 123.4, 122.2, 122.0; LRMS (EI 70 ev) m/z (%): 289 (M$^+$), 288; HRMS m/z (ESI) calcd for C$_{19}$H$_{13}$ClN (M+H)$^+$ 290.0737, found 290.0740.

6-o-tolylphenanthridine (3af):

1H NMR (400 MHz, CDCl$_3$) δ: 8.70 (d, $J = 8.0$ Hz, 1H), 8.63 (dd, $J = 8.4$ Hz, $J = 1.2$ Hz, 1H), 8.22 (d, $J = 7.6$ Hz, 1H), 7.85-7.81 (m, 1H), 7.77-7.72 (m, 1H), 7.69-7.64 (m, 2H), 7.60-7.55 (m, 1H), 7.41-7.34 (m, 4H), 2.31 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 162.3, 143.7, 138.9, 136.6, 133.1, 130.8, 130.2, 129.8, 129.2, 128.7, 128.3, 128.0, 127.2, 127.1, 126.3, 125.5, 123.8, 122.3, 122.0; LRMS (EI 70 ev) m/z (%): 269 (M$^+$); HRMS m/z (ESI) calcd for C$_{20}$H$_{16}$N (M+H)$^+$ 270.1283, found 270.1281.

6-m-tolylphenanthridine (3ag):

1H NMR (400 MHz, CDCl$_3$) δ: 8.71 (d, $J = 8.4$ Hz, 1H), 8.58 (d, $J = 8.0$ Hz, 1H), 8.21 (dd, $J = 7.6$ Hz, $J = 1.2$ Hz, 1H), 8.09 (d, $J = 8.4$ Hz, 1H), 7.86-7.82 (m, 1H), 7.77-7.73 (m, 1H), 7.70-7.65 (m, 1H), 7.62-7.58 (m, 1H), 7.55 (s, 1H), 7.49-7.41 (m, 2H), 7.31 (d, $J = 6.8$ Hz, 1H), 2.39 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 162.1, 143.3, 139.5, 138.1, 133.3, 130.6, 130.1, 129.9, 129.3, 129.0, 128.7, 128.1, 127.1, 126.8, 126.4, 125.3, 123.6, 121.9, 121.7, 21.7; LRMS (EI 70 ev) m/z (%): 269 (M$^+$); HRMS m/z (ESI) calcd for C$_{20}$H$_{16}$N (M+H)$^+$ 270.1283, found 270.1277.
6-(2,4-dichlorophenyl)phenanthridine (3ah):

1H NMR (400 MHz, CDCl$_3$) δ: 8.76 (d, $J = 8.4$ Hz, 1H), 8.68 (dd, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 8.30-8.25 (m, 1H), 7.93-7.88 (m, 1H), 7.83-7.76 (m, 2H), 7.70-7.62 (m, 3H), 7.52-7.47 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 159.4, 143.6, 137.2, 135.3, 134.4, 133.1, 132.0, 131.0, 130.3, 129.4, 129.0, 128.1, 127.6, 127.4, 127.2, 125.2, 124.1, 122.2, 122.0; LRMS (EI 70 ev) m/z (%): 325 (M$^+$+1), 324 (M$^+$), 323; HRMS m/z (ESI) calcd for C$_{19}$H$_{12}$Cl$_2$N (M+H)$^+$ 324.0347, found 324.0352.

6-(thiophen-2-yl)phenanthridine (3ai):

1H NMR (400 MHz, CDCl$_3$) δ: 8.70 (d, $J = 8.4$ Hz, 1H), 8.60-8.55 (m, 1H), 8.19 (d, $J = 8.0$ Hz, 1H), 7.86-7.81 (m, 1H), 7.74-7.63 (m, 4H), 7.55 (d, $J = 4.8$ Hz, 1H), 7.25-7.21 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ: 154.6, 143.4, 142.3, 133.2, 130.7, 130.2, 129.1, 128.8, 128.0, 127.8, 127.4, 127.1, 126.8, 124.7, 123.5, 122.2, 121.8; LRMS (EI 70 ev) m/z (%): 261 (M$^+$); HRMS m/z (ESI) calcd for C$_{17}$H$_{12}$NS (M+H)$^+$ 262.0690, found 262.0694.

2-methyl-6-phenylphenanthridine (3ba):

1H NMR (400 MHz, CDCl$_3$) δ: 8.66 (d, $J = 8.0$ Hz, 1H), 8.34 (s, 1H), 8.11, (d, $J = 8.0$ Hz, 1H), 8.04 (d, $J = 8.4$ Hz, 1H), 7.79-7.75 (m, 1H), 7.70-7.67 (m, 2H), 7.53-7.44 (m, 5H), 2.49 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 160.7, 142.1, 139.6, 136.4, 133.1, 130.5, 130.1, 129.8, 129.5, 128.7, 128.4, 128.3, 126.8, 125.2, 123.2, 122.1, 121.2; 269 (M$^+$); HRMS m/z (ESI) calcd for C$_{20}$H$_{16}$N (M+H)$^+$ 270.1283, found 270.1285.
2-chloro-6-phenylphenanthridine (3ca):

1H NMR (400 MHz, CDCl$_3$) δ: 8.63 (d, $J = 8.4$ Hz, 1H), 8.56 (d, $J = 3.6$ Hz, 1H), 8.15 (d, $J = 8.4$ Hz, 1H), 8.08 (d, $J = 8.4$ Hz, 1H), 7.90-7.87 (m, 1H), 7.71-7.61 (m, 4H), 7.57-7.50 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 161.2, 142.0, 139.3, 133.1, 132.4, 131.7, 131.2, 129.8, 129.4, 129.1, 129.0, 128.6, 127.9, 125.3, 124.8, 122.4, 122.0; LRMS (EI 70 ev) m/z (%): 289 (M$^+$); HRMS m/z (ESI) calcd for C$_{19}$H$_{13}$ClN (M+H)$^+$ 290.0737, found 290.0742.

![3ca](image)

2,4-dimethyl-6-phenylphenanthridine (3da):

1H NMR (400 MHz, CDCl$_3$) δ: 8.67 (d, $J = 8.4$ Hz, 1H), 8.22 (s, 1H), 8.13 (dd, $J = 8.0$ Hz, $J = 1.2$ Hz, 1H), 7.79-7.75 (m, 3H), 7.56-7.46 (m, 4H), 7.41 (s, 1H); 2.81 (s, 3H), 2.73 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 158.6, 140.7, 140.0, 137.2, 136.1, 133.5, 131.2, 130.0, 129.9, 128.4, 128.3, 128.2, 126.5, 124.7, 123.4, 122.2, 119.1, 22.3, 18.4; LRMS (EI 70 ev) m/z (%): 283 (M$^+$); HRMS m/z (ESI) calcd for C$_{21}$H$_{18}$N (M+H)$^+$ 284.1439, found 284.1437.

![3da](image)

5-phenyldibenzo[b,h][1,5]naphthyridine (3ea):

1H NMR (400 MHz, CDCl$_3$) δ: 9.49 (d, $J = 7.6$ Hz, 1H), 8.98 (s, 1H), 8.39 (d, $J = 8.8$ Hz, 1H), 8.12 (dd, $J = 3.2$ Hz, $J = 2.0$ Hz, 2H), 7.99-7.96 (m, 1H), 7.87-7.74 (m, 4H), 7.64-7.52 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 163.1, 148.2, 143.0, 139.4, 136.5, 136.1, 134.2, 131.4, 130.3, 129.8, 129.7, 129.7, 129.3, 128.8, 128.7, 128.6, 128.5, 127.4, 126.5, 124.6; LRMS (EI 70 ev) m/z (%): 306 (M$^+$); HRMS m/z (ESI) calcd for C$_{23}$H$_{14}$N$_2$ (M+H)$^+$ 307.1235, found 307.1229.

![3ea](image)

8-methoxy-6-phenylphenanthridine (3fa):

1H NMR (400 MHz, CDCl$_3$) δ: 8.59 (d, $J = 8.4$ Hz, 1H), 8.51-8.47 (m, 1H), 8.17 (dd, $J = 7.6$ Hz, $J = 1.2$ Hz, 1H), 7.74-7.67 (m, 2H), 7.63-7.58 (m, 2H), 7.55-7.48 (m, 3H), 7.44-7.40 (m, 2H), 3.87 (s,
3H; 13C NMR (100 MHz, CDCl$_3$) δ: 159.7, 158.3, 143.1, 139.2, 130.3, 130.0, 129.3, 128.4, 128.0, 127.8, 127.1, 124.1, 121.5, 121.1, 116.1, 114.5, 110.0, 56.1; LRMS (EI 70 ev) m/z (%): 285 (M$^+$); HRMS m/z (ESI) calcd for C$_{20}$H$_{16}$NO (M+H)$^+$ 286.1232, found 286.1231.

8-chloro-6-phenylphenanthridine (3ga): 2

1H NMR (400 MHz, CDCl$_3$) δ: 8.61 (d, $J = 8.0$ Hz, 1H), 8.53 (d, $J = 7.6$ Hz, 1H), 8.19 (d, $J = 8.0$ Hz, 1H), 8.00 (d, $J = 2.8$ Hz, 1H), 7.79-7.74 (m, 2H), 7.70-7.63 (m, 3H), 7.58-7.50 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 159.3, 143.1, 139.2, 133.0, 131.6, 131.2, 130.2, 129.5, 129.2, 128.9, 128.4, 127.7, 127.0, 126.1, 124.3, 123.0, 121.8; LRMS (EI 70 ev) m/z (%): 290 (M+1)$^+$, 289 (M$^+$); HRMS m/z (ESI) calcd for C$_{19}$H$_{13}$ClN (M+H)$^+$ 290.0737, found 290.0744.

5-phenylbenzo[i]phenanthridine (3ha): 1

1H NMR (400 MHz, CDCl$_3$) δ: 8.67-8.63 (m, 2H), 8.31 (d, $J = 8.4$ Hz, 1H), 8.20 (d, $J = 8.8$ Hz, 1H), 7.94 (d, $J = 8.0$ Hz, 1H), 7.80-7.76 (m, 2H), 7.72-7.69 (m, 1H), 7.62-7.59 (m, 2H), 7.51-7.46 (m, 4H), 7.23-7.19 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ: 159.7, 144.2, 143.6, 134.4, 133.2, 132.6, 130.4, 129.7, 129.3, 129.1, 129.0, 128.6, 128.5, 128.2, 127.0, 126.5, 126.1, 123.7, 122.4, 121.5, 120.2; LRMS (EI 70 ev) m/z (%): 305(M$^+$); HRMS m/z (ESI) calcd for C$_{23}$H$_{16}$N (M+H)$^+$ 306.1282, found 306.1279.

9-chloro-6-phenylphenanthridine (3ia): 2

1H NMR (400 MHz, CDCl$_3$) δ: 8.61 (s, 1H), 8.52 (d, $J = 8.4$ Hz, 1H), 8.22 (d, $J = 8.0$ Hz, 1H), 8.04 (d, $J = 8.8$ Hz, 1H), 7.80 (t, $J = 7.6$ Hz, 1H), 7.70-7.67 (m, 3H), 7.55-7.50 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 160.6, 144.0, 139.4, 137.1, 134.5, 130.6, 130.1, 129.4, 129.0, 128.8, 128.4, 127.6, 127.2, 123.5, 122.7, 122.0, 121.8; LRMS (EI 70 ev) m/z (%): 290 (M+1)$^+$, 289 (M$^+$), 288; HRMS m/z
(ESI) calcd for C_{19}H_{13}ClN (M+H)^+ 290.0737, found 290.0731.

![Structure of 7-chloro-6-phenylphenanthridine](image)

7-chloro-6-phenylphenanthridine (3ja):

^1^H NMR (400 MHz, CDCl\textsubscript{3}) δ: 8.67 (d, J = 8.0 Hz, 1H), 8.58 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 8.24 (d, J = 8.0 Hz, 1H), 8.07 (dd, J = 8.0 Hz, J = 1.2 Hz, 1H), 7.82-7.78 (m, 1H), 7.70-7.64 (m, 4H), 7.59-7.54 (m, 3H); ^1^C NMR (100 MHz, CDCl\textsubscript{3}) δ: 160.9, 143.6, 139.0, 136.1, 133.7, 131.4, 130.2, 129.9, 129.1, 128.6, 128.3, 127.4, 127.1, 125.6, 123.4, 122.5, 122.0; LRMS (EI 70 ev) m/z (%): 290 (M+1)^+, 289 (M^+), 288, 161; HRMS m/z (ESI) calcd for C_{19}H_{13}ClN (M+H)^+ 290.0737, found 290.0734.

(D) References

1H NMR of Compound 3aa
13C NMR of Compound 3aa
1H NMR of Compound 3ab
13C NMR of Compound 3ab
1H NMR of Compound 3ac
13C NMR of Compound 3ac
1H NMR of Compound 3ad
13C NMR of Compound 3ad
1H NMR of Compound 3ae
13C NMR of Compound 3ae
1H NMR of Compound 3af
13C NMR of Compound 3af
1H NMR of Compound 3ag
13C NMR of Compound 3ag
1H NMR of Compound 3ah
13C NMR of Compound 3ah
1H NMR of Compound 3ai
13C NMR of Compound 3ai
1H NMR of Compound 3ba
13C NMR of Compound 3ba
1H NMR of Compound 3ca
13C NMR of Compound 3ca
$^1\text{H NMR of Compound 3da}$
13C NMR of Compound 3da
H NMR of Compound 3ea
13C NMR of Compound 3ea
1H NMR of Compound 3fa
13C NMR of Compound 3fa
1H NMR of Compound 3ga
13C NMR of Compound 3ga
1H NMR of Compound 3ha
13C NMR of Compound 3ha
1H NMR of Compound 3ia
13C NMR of Compound 3ia
1H NMR of Compound 3ja
13C NMR of Compound 3ja