Electronic Supplementary Information

A simple access to \(N\)-(un)substituted isoquinolin-1(2\(H\))-ones: unusual formation of regioisomeric isoquinolin-1(4\(H\))-ones

R. Gangadhara Chary,\(^a,b\) G. Dhananjaya,\(^a\) K. Vara Prasad,\(^a\) S. Vaishaly,\(^a\) Y. S. S. Ganesh,\(^a\) Balakrishna Dulla,\(^c\) K. Shiva Kumar,\(^c\) and Manojit Pal\(^c\)*

\(^a\)Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Limited, Bollaram Road Miyapur, Hyderabad 500 049, India
\(^b\)Chemistry Division, JNT University, Kukatpally, Hyderabad 500085, Andhra Pradesh, India
\(^c\)Dr Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India

E-mail: manojitpal@rediffmail.com
Table S-1. Cu-mediated synthesis of isoquinolin-1(2\(H\))-ones (3).n.

\[
\begin{align*}
1 \text{a} + 2 \text{a} & \xrightarrow{\text{Cu(OAc)}_2, \text{Cs}_2\text{CO}_3, \text{PEG-400}, 80-90^\circ\text{C}} 3 \text{a} \\
1 \text{a} + 2 \text{b} & \xrightarrow{\text{Cu(OAc)}_2, \text{Cs}_2\text{CO}_3, \text{PEG-400}, 80-90^\circ\text{C}} 3 \text{b} \\
1 \text{a} + 2 \text{c} & \xrightarrow{\text{Cu(OAc)}_2, \text{Cs}_2\text{CO}_3, \text{PEG-400}, 80-90^\circ\text{C}} 3 \text{c}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Iodoamide (1)</th>
<th>Terminal alkyne (2)</th>
<th>Product (3)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(\text{I}_1\text{CONH}\text{R}^1\text{R}^2)</td>
<td>(\text{R}^3\text{C} = \text{C}\text{R}^3)</td>
<td>(\text{R}^1\text{N} = \text{O}\text{R}^2\text{R}^3)</td>
<td>3.0</td>
<td>81.0</td>
</tr>
<tr>
<td>2.</td>
<td>(\text{I}_1\text{CONH}\text{R}^1\text{R}^2)</td>
<td>(\text{C}_{\text{C}1}\text{H}{11}\text{R}^3\text{C} = \text{C}\text{R}^3)</td>
<td>(\text{R}^1\text{N} = \text{O}\text{R}^2\text{R}^3)</td>
<td>3.0</td>
<td>76.0</td>
</tr>
<tr>
<td>3.</td>
<td>(\text{I}_1\text{CONH}\text{R}^1\text{R}^2)</td>
<td>(\text{C}_{\text{C}3}\text{H}{13}\text{R}^3\text{C} = \text{C}\text{R}^3)</td>
<td>(\text{R}^1\text{N} = \text{O}\text{R}^2\text{R}^3)</td>
<td>3.0</td>
<td>68</td>
</tr>
</tbody>
</table>
4. \[
\begin{align*}
\text{CONH} & \quad \text{Cl} \\
1a & \\
\text{C} & \quad \text{O} & \quad \text{H} \\
\end{align*}
\]

2d

3d

5. \[
\begin{align*}
\text{CONH} & \quad \text{Br} \\
1a & \\
\text{C} & \quad \text{O} & \quad \text{H} \\
\end{align*}
\]

2e

3e

6. \[
\begin{align*}
\text{CONH} & \quad \text{O} \\
1a & \\
\text{C} & \quad \text{O} & \quad \text{H} \\
\end{align*}
\]

2f

3f

7. \[
\begin{align*}
\text{CONH} & \quad \text{H} \\
1a & \\
\text{C} & \quad \text{O} & \quad \text{H} \\
\end{align*}
\]

2g

3g

8. \[
\begin{align*}
\text{CONH} & \quad \text{OH} \\
1a & \\
\text{C} & \quad \text{O} & \quad \text{H} \\
\end{align*}
\]

2h

3h
<table>
<thead>
<tr>
<th></th>
<th>14.</th>
<th>15.</th>
<th>16.</th>
<th>17.</th>
<th>18.</th>
<th>19.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>2g</td>
<td>3n</td>
<td>1c</td>
<td>2b</td>
<td>3o</td>
<td>1d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
All the reactions were carried out by using 1 (1.0 mmol), terminal 2 (1.0 mmol), Cs$_2$CO$_3$ (2.0 mmol), and anhyd Cu(OAc)$_2$ (0.2 mmol) in PEG-400 (5.0 mL) at 80-90 °C under nitrogen.

Isolated yield.

Table S-2. Synthesis of isoquinolin-1(4H)-ones (4)

![Chemical structures](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Terminal alkyne (2)</th>
<th>Product (4)</th>
<th>Time (h)</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td>4.0</td>
<td>81</td>
</tr>
</tbody>
</table>
All the reactions were carried out by using 1 (1.0 mmol), terminal 2 (1.0 mmol), Cs$_2$CO$_3$ (2.0 mmol), and anhyd Cu(OAc)$_2$ (2.0 mmol) in PEG-400 (5.0 mL) at 80-90 ºC under nitrogen. Isolated yield.
General methods: Unless stated otherwise, solvents and chemicals were obtained from commercial sources and were used without further purification. Reactions were monitored by thin layer chromatography (TLC) on silica gel plates (60 F254), visualizing with ultraviolet light or iodine spray. Flash chromatography was performed on silica gel (230-400 mesh) using hexane and ethyl acetate. 1H and 13C NMR spectra were determined in DMSO-d_6 and CDCl$_3$ solutions by using 400 or 100 MHz spectrometers, respectively. Proton chemical shifts (δ) are relative to tetramethylsilane (TMS, δ = 0.00) as internal standard and expressed in ppm. Spin multiplicities are given as s (singlet), d (doublet), t (triplet) and m (multiplet) as well as b (broad). Coupling constants (J) are given in hertz. Infrared spectra were recorded on a FT-IR spectrometer. Melting points were determined using melting point B-540 apparatus and are uncorrected. HRMS was determined using waters LCT premier XETOF ARE-047 apparatus.

Preparation of N-(3,5-dimethylphenyl)-2-iodobenzamide (1a):

![Scheme of N-(3,5-dimethylphenyl)-2-iodobenzamide preparation]

To a suspension of 2-iodobenzoic acid (20 mmol) in dry toluene was added SOCl$_2$ (120 mmol) and the mixture was heated at 80 °C for 3 h. After evaporation of the volatile materials, CH$_2$Cl$_2$ (40 mL) and triethylamine (50 mmol) were added. The solution was cooled to 0 °C and was added 3,5-dimethylaniline (20 mmol). After 1 h at room temperature, a saturated aqueous solution of NaHCO$_3$ (50 mL) was added to this mixture. The white precipitate formed was filtered, washed with water and dried to give the title compound as a white powder (yield 88%); 1H NMR (400 MHz, CDCl$_3$) δ 7.92 (d, J=7.8 Hz, 1H), 7.52 (dd, J=7.4 Hz, 1.5 Hz, 1H), 7.44 (t, J=7.3 Hz, 1H), 7.33 (s, 1H), 7.27 (s, 2H), 7.15 (td, J=7.8,1.5 Hz, 1H), 6.82 (s, 1H), 2.34 (s, 6H).

Preparation of 2-iodo-N-(4-methoxyphenyl)benzamide (1b):
To a suspension of 2-iodobenzoic acid (20 mmol) in dry toluene was added SOCl₂ (120 mmol) and the mixture was heated at 80 °C for 3 h. After evaporation of the volatile materials, CH₂Cl₂ (40 mL) and triethylamine (50 mmol) were added. The solution was cooled to 0 °C and was added 4-methoxy aniline (20 mmol). After 1 h at room temperature, a saturated aqueous solution of NaHCO₃ (50 mL) was added to this mixture. The white precipitate formed was filtered, washed with water and dried to give the title compound as a white powder (yield 86%); ¹H NMR (400 MHz, DMSO-d₆) δ 10.24 (s, 1H), 7.92 (d, J=7.8 Hz, 1H), 7.62 (d, J=8.8 Hz, 2H), 7.44-7.51 (m, 2H), 7.22 (td, J=7.8, 0.2 Hz, 1H), 6.92 (d, J=8.8 Hz, 2H), 3.74 (s, 3H).

Preparation of 2-iodo-N-phenylbenzamide (1c):

To a suspension of 2-iodobenzoic acid (20 mmol) in dry toluene was added SOCl₂ (120 mmol) and the mixture was heated at 80 °C for 3 h. After evaporation of the volatile materials, CH₂Cl₂ (40 mL) and triethylamine (50 mmol) were added. The solution was cooled to 0 °C and was added aniline (20 mmol). After 1 h at room temperature, a saturated aqueous solution of NaHCO₃ (50 mL) was added to this mixture. The white precipitate formed was filtered, washed with water and dried to give the title compound as a white powder (yield 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.54 (m, 4H), 7.32-7.38 (m, 6H).

Preparation of 3-chloro-2-iodo-N-(4-methoxyphenyl)benzamide (1d):

To a suspension of 2-iodobenzoic acid (20 mmol) in dry toluene was added SOCl₂ (120 mmol) and the mixture was heated at 80 °C for 3 h. After evaporation of the volatile materials, CH₂Cl₂ (40 mL) and triethylamine (50 mmol) were added. The solution was cooled to 0 °C and was added 4-methoxy aniline (20 mmol). After 1 h at room temperature, a saturated aqueous solution of NaHCO₃ (50 mL) was added to this mixture. The white precipitate formed was filtered, washed with water and dried to give the title compound as a white powder (yield 86%); ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.54 (m, 4H), 7.32-7.38 (m, 6H).
To a suspension of 3-chloro-2-iodo-benzoic acid (5 mmol) in dry toluene was added SOCl₂ (30 mmol) and the mixture was heated at 80 °C for 3 h. After evaporation of the volatile materials, CH₂Cl₂ (20 mL) and triethylamine (12 mmol) were added. The solution was cooled to 0 °C and was added 4-methoxy aniline (20 mmol). After 1 h at room temperature, a saturated aqueous solution of NaHCO₃ (50 mL) was added to this mixture. The white precipitate formed was filtered, washed with water and dried to give the title compound as a white powder (yield 78%); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J=8.3 Hz, 1H), 7.68 (t, J=8.8 Hz, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.19 (d, J=7.3 Hz, 2H), 6.98 (d, J=8.3 Hz, 2H), 3.85 (s, 3H).

Preparation of 2-iodo-3-methoxy-Ν-(4-methoxyphenyl)benzamide (1e):

To a suspension of 2-Iodo-3-methoxybenzoic acid (5 mmol) in dry toluene was added SOCl₂ (30 mmol) and the mixture was heated at 80 °C for 3 h. After evaporation of the volatile materials, CH₂Cl₂ (20 mL) and triethylamine (12 mmol) were added. The solution was cooled to 0 °C to which was added 4-methoxy aniline (5 mmol). After 1 h at room temperature a saturated aqueous solution of NaHCO₃ (25 mL) was added to this mixture. The brown precipitate formed was filtered, washed with water and dried to give the title compound as a brown powder (yield 65%); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J=7.3 Hz, 2H), 7.35-7.39 (m, 2H), 7.09 (dd, J=7.3, 1.5 Hz, 1H), 6.86-6.93 (m, 3H), 3.92 (s, 3H), 3.82 (s, 3H).

Preparation of 2-iodobenzamide (1f):
To a suspension of 2-iodobenzoic acid (20 mmol) in dry toluene was added SOCl$_2$ (120 mmol) and the mixture was heated at 80°C for 3 h. After evaporation of the volatile materials, CH$_2$Cl$_2$ (40 mL) and triethylamine (50 mmol) were added. The solution was cooled to 0 °C and bubbled with gaseous ammonia. After 1 h at room temperature, a saturated aqueous solution of NaHCO$_3$ (50 mL) was added to this mixture. The white precipitate formed was filtered, washed with water and dried to give the title compound as a white powder (yield 85%); 1H NMR (400 MHz, DMSO-d_6) δ 7.86 (dd, J=7.8, 1 Hz, 1H), 7.80 (s, 1H), 7.49 (s, 1H), 7.42 (td, J=7.3, 1.0 Hz, 1H), 7.34 (dd, J=7.4,1.5 Hz, 1H), 7.14 (td, J=7.8, 1.9 Hz, 1H).

N-(4-methoxyphenyl)-2-(phenylethynyl)benzamide (5):

Yellow color solid; 1H NMR (400 MHz, CDCl$_3$): δ 8.18 (d, J=7.3 Hz, 1H), 7.84 (d, J=7.4 Hz, 1H), 7.78 (t, J=7.4 Hz, 1H), 7.62 (t, J=7.4 Hz, 1H), 7.11 (s, 1H), 6.89-6.99 (m, 7H), 6.67 (d, J=8.3 Hz, 2H), 3.66 (s, 3H); ES-MS: m/z[M +1]: 328.40.

General procedure for the preparation of compound 3:

To a mixture of 2-iodobenzamide 1 (1.0 mmol), Cu(OAc)$_2$ (0.2 mmol) and Cs$_2$CO$_3$ (2.0 mmol) in polyethylene glycol (5.0 mL) was added terminal alkyne 2 (1.0 mmol) at room temperature and the mixture was stirred for 10-15 min under nitrogen at the same temperature. The mixture was then heated to 80-90 °C and stirred under nitrogen for the time mentioned in Table 2 (or Table S-
1). The reaction was monitored by TLC. After completion of the reaction, the mixture was diluted with EtOAc (10 mL) and filtered through celite. The filtrate was collected and washed with water (2 x 20 mL). The EtOAc layer was collected, and concentrated under low vacuum. The residue obtained was purified by column chromatography (petroleum ether-EtOAc) to give the desired product 3.

2-(3,5-Dimethylphenyl)-3-phenylisoquinolin-1(2H)-one (3a)

![Chemical structure of 3a](image)

White color solid; Yield: 81%; mp: 136-138 °C; IR (CHCl\(_3\)): 3019, 1691, 1654, 1599 \(\text{cm}^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.07 (d, \(J=7.3 \text{ Hz}, 1\text{H}\)), 7.79 (d, \(J=7.4 \text{ Hz}, 2\text{H}\)), 7.72 (d, \(J=7.8 \text{ Hz}, 1\text{H}\)), 7.62 (t, \(J=7.8 \text{ Hz}, 1\text{H}\)), 7.54 (t, \(J=7.4 \text{ Hz}, 1\text{H}\)), 7.35 (t, \(J=7.4 \text{ Hz}, 3\text{H}\)), 7.54 (t, \(J=7.4 \text{ Hz}, 2\text{H}\)), 6.88 (s, 1H), 6.29 (s, 1H), 2.40 (s, 6H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 153.7, 148.1, 145.2, 138.2 (2C), 137.4, 134.0, 132.0, 129.6, 129.5, 129.1 (2C), 128.5 (2C), 127.4, 126.7, 123.7, 121.9 (2C), 119.5, 103.1, 21.3 (2C); HRMS: \(m/z\)[M +1] calcld for C\(_{23}\)H\(_{20}\)NO: 326.1545; found: 326.1561

2-(3,5-Dimethylphenyl)-3-(4-pentylphenyl)isoquinolin-1(2H)-one (3b)

![Chemical structure of 3b](image)

Pale yellow solid; Yield: 76%; mp: 85-90 °C; IR (CHCl\(_3\)): 3018, 1687, 1656, 1602 \(\text{cm}^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.02 (d, \(J=7.3 \text{ Hz}, 1\text{H}\)), 7.70 (d, \(J=8.3 \text{ Hz}, 3\text{H}\)), 7.57-7.62 (m, 1H), 7.49-7.53 (m, 1H), 7.21 (s, 2H), 7.15 (d, \(J=7.8 \text{ Hz}, 2\text{H}\)), 6.87 (s, 1H), 6.25 (s, 1H), 2.61 (t, \(J=7.3 \text{ Hz}, 2\text{H}\)), 2.40 (s, 6H), 1.34-1.39 (m, 2H), 1.26-1.32 (m, 2H), 1.11-1.15 (m, 2H), 0.88 (t, \(J=7.3 \text{ Hz}, 3\text{H}\)); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 154.0, 147.5, 145.2, 142.6, 138.2, 137.5, 132.0, 131.3, 127.6, 126.6, 123.8, 122.2, 121.8 (2C), 119.5, 103.1, 21.3 (2C); HRMS: \(m/z\)[M +1] calcld for C\(_{30}\)H\(_{26}\)NO: 430.1842; found: 430.1847
129.4, 129.3 (2C), 129.1 (3C), 128.7, 126.7, 123.7, 121.9 (2C), 119.4, 103.3, 35.7, 31.4, 31.0,
22.5, 21.3 (2C), 14.0; HRMS: \(m/z [M + 1] \) calcd for C\(_{28}\)H\(_{30}\)NO: 396.2327; found: 396.2345.

2-(3,5-Dimethylphenyl)-3-hexylisoquinolin-1\((2H) \)-one (3c)

![Structural formula](image)

Colorless liquid; Yield: 68%; IR (CHCl\(_3\)): 3017, 1697, 1666, 1593 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 8.37 (d, \(J=7.3 \) Hz, 1H), 7.49 (t, \(J=7.4 \) Hz, 1H), 7.36 (t, \(J=7.4 \) Hz, 1H), 7.18 (d, \(J=7.9 \) Hz, 1H), 6.85 (s, 2H), 6.75 (s, 1H), 5.99 (s, 1H), 2.31-2.36 (m, 8H), 1.53-1.61 (m, 2H), 1.26-1.37 (m, 6H), 0.88 (t, \(J=7.3 \) Hz, 3H); \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta \) 156.3, 150.2, 146.4, 137.9, 134.0, 132.1, 127.3 (2C), 125.1, 124.5, 123.4, 120.5 (3C), 101.7, 33.1, 31.6, 28.5, 26.8, 22.5, 21.3 (2C), 14.0; HRMS: \(m/z [M + 1] \) calcd for C\(_{23}\)H\(_{28}\)NO: 334.2171; found: 334.2189

3-(3-Chloropropyl)-2-(3,5-dimethylphenyl)isoquinolin-1\((2H) \)-one (3d)

![Structural formula](image)

Gummy mass; Yield: 71.0%; IR (CHCl\(_3\)): 3015, 1695, 1662, 1595 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 8.30 (d, \(J=7.8 \) Hz, 1H), 7.50 (t, \(J=7.8 \) Hz, 1H), 7.37 (t, \(J=7.8 \) Hz, 1H), 7.18 (d, \(J=7.8 \) Hz, 1H), 6.79 (s, 2H), 6.74 (s, 1H), 6.03 (s, 1H), 3.52 (t, \(J=6.3 \) Hz, 2H), 2.52 (t, \(J=7.4 \) Hz, 2H), 2.32 (s, 6H), 1.99-2.05 (m, 2H); \(^13\)C NMR (400 MHz, CDCl\(_3\)): \(\delta \) 154.2, 149.8, 146.3, 138.1, 133.6, 132.2, 127.7, 127.3, 125.2, 124.7, 123.4, 120.2 (3C), 102.7, 43.7, 30.3, 29.7, 21.4 (2C); HRMS: \(m/z [M + 1] \) calcd for C\(_{20}\)H\(_{21}\)NOCl: 326.1312; found: 326.1329.

5. 3-(4-Bromophenyl)-2-(3,5-dimethylphenyl)isoquinolin-1\((2H) \)-one (3e)
Off-white color solid; Yield: 83%; mp: 122-124; IR (CHCl₃): 3014, 1692, 1655, 1590 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J=7.9 Hz, 1H), 7.70 (d, J=7.9 Hz, 1H), 7.59-7.65 (m, 3H), 7.48-7.56 (m, 2H), 7.43-7.46 (m, 1H), 7.15 (s, 2H), 6.88 (s, 1H), 6.19 (s, 1H), 2.39 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 145.2, 138.3, 137.6, 137.2, 133.0, 132.1, 131.7 (2C), 130.7, 130.5, 129.8 (2C), 126.8, 123.7, 121.6 (3C), 121.2, 119.5, 101.8, 21.3 (2C); HRMS: m/z[M+1]calcd for C₂₃H₁₉NOBr: 404.0650; found: 404.0633.

2-(3,5-Dimethylphenyl)-3-(4-(pentyloxy)phenyl)isoquinolin-1(2H)-one (3f)

Yellow color solid; Yield: 79%; mp: 80-84 °C; IR (CHCl₃): 3015, 1685, 1603, 1510 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J=7.3 Hz, 1H), 7.72 (d, J=8.3 Hz, 2H), 7.68 (d, J=7.3 Hz, 1H), 7.59 (t, J=7.3 Hz, 1H), 7.49 (t, J=7.4 Hz, 1H), 7.2 (s, 2H), 6.86 (d, J=8.3 Hz, 3H), 6.22 (s, 1H), 3.97 (t, J=6.9 Hz, 2H), 2.39 (s, 6H), 1.76-1.83 (m, 2H), 1.34-1.52 (m, 4H), 0.96 (t, J=7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 154.0, 146.5, 145.4, 138.1, 137.7, 131.9, 130.9, 130.5 (2C), 129.2, 129.1, 128.8, 126.5, 123.6, 121.8 (2C), 119.2, 114.6 (2C), 103.0, 67.9, 28.9, 28.1, 22.4, 21.3 (2C), 14.0; HRMS: m/z[M+1]calcd for C₂₈H₃₀NO₂: 412.2277; found: 412.2291.

2-(3,5-Dimethylphenyl)-3-(p-tolyl)isoquinolin-1(2H)-one (3g)
Yellow color solid; Yield: 75%; mp: 124-126 °C; IR (CHCl$_3$): 3014, 1680, 1602, 1505 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 8.01 (d, J=7.8 Hz, 1H), 7.62-7.70 (m, 3H), 7.60 (t, J=7.8 Hz, 1H), 7.51 (t, J=6.5 Hz, 1H), 7.26 (s, 2H), 7.15 (d, J=7.8 Hz, 2H), 6.87 (s, 1H), 6.24 (s, 1H), 2.40 (s, 6H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 153.7, 147.4, 145.3, 138.1, 137.5, 137.4, 131.9, 131.1, 129.5, 129.4, 129.3 (2C), 129.2, 129.0 (2C), 126.6, 123.6, 121.9 (2C), 119.3, 103.1, 21.3 (3C); HRMS: m/z[M+1] calcd for C$_{24}$H$_{22}$NO : 340.1701; found: 340.1718.

2-(3,5-Dimethylphenyl)-3-(1-hydroxycyclohexyl)isoquinolin-1(2H)-one (3h)

Light yellow solid; Yield: 68%; mp: 116-119 °C; IR (Neat): 3586, 3017, 1597, 1666, 1593 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.97 (d, J=7.3 Hz, 1H), 7.58 (d, J=3.2 Hz, 2H), 7.50-7.53 (m, 1H), 7.00 (s, 2H), 6.81 (s, 1H), 5.56 (s, 1H), 2.33 (s, 6H), 1.85-1.92 (m, 2H), 1.68-1.79 (m, 4H), 1.46-1.56 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 153.2, 147.5, 145.1, 138.1, 136.9, 132.1, 132.0, 129.6, 129.3, 126.5, 123.5, 121.5 (2C), 119.5, 110.5, 71.5, 38.3 (2C), 25.3, 22.3 (2C), 21.2 (2C); HRMS: m/z[M + 1] calcd for C$_{23}$H$_{26}$NO$_2$: 348.1964; found: 348.1963.

2-(4-Methoxyphenyl)-3-phenylisoquinolin-1(2H)-one (3i)
Yellow color solid; Yield: 82%; mp: 168-170 °C, IR (CHCl₃): 3020, 1690, 1654, 1502 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J=7.8 Hz, 1H), 7.78 (d, J= 7.9 Hz, 2H), 7.72 (d, J=7.9 Hz, 1H), 7.50-7.62 (m, 4H), 7.37 (t, J=7.4 Hz, 2H), 7.26 (s, 1H), 6.98 (d, J=8.8 Hz, 2H), 6.27 (s, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 153.0, 148.2, 138.5, 137.3, 134.0, 131.9, 129.6, 129.0 (2C), 128.6 (3C), 127.4, 125.5 (2C), 123.5, 119.5, 113.9 (2C), 102.8, 55.4; HRMS: m/z(M + 1) calcd for C₂₂H₁₈NO₂: 328.1338; found 328.1351.

2-(4-Methoxyphenyl)-3-(4-pentylphenyl)isoquinolin-1(2H)-one (3j)

Yellow color solid; Yield: 77%; mp: 101-103 °C; IR (CHCl₃): 3019, 1690, 1655, 1505 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J=7.8 Hz, 1H), 7.70 (d, J=7.8 Hz, 2H), 7.50-7.59 (m, 5H), 7.18 (d, J=8.4 Hz, 2H), 6.98 (dd, J= 6.8, 2 Hz, 2H), 6.25 (s, 1H), 3.88 (s, 3H), 2.61 (t, J=7.8 Hz, 2H), 1.54-1.63 (m, 2H), 1.24-1.38 (m, 4H), 0.90 (t, J=7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 153.0, 147.5, 142.5, 138.6, 137.4, 131.7, 131.3, 129.5, 129.3, 129.0 (2C), 128.6 (2C), 125.5 (2C), 123.4, 119.3, 113.9 (2C), 102.9, 55.4, 35.7, 31.3, 31.0, 22.5, 14.0; HRMS: m/z[M + 1] calcd for C₂₇H₂₈NO₂: 398.2120; found: 398.2116.

3-Hexyl-2-(4-methoxyphenyl)isoquinolin-1(2H)-one (3k)
Pale yellow Colored liquid; Yield: 75%; IR (neat): 3019, 1692, 1652, 1505 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.31 (d, $J=7.8$ Hz, 1H), 7.42-7.49 (m, 1H), 7.32-7.36 (m, 1H), 7.22-7.25 (m, 2H), 7.24 (dd, $J=6.8$, 2 Hz, 1H), 6.89 (dd, $J=6.9$, 2.0 Hz, 2H), 5.97 (s, 1H), 3.83 (s, 3H), 2.36 (t, $J=7.8$ Hz, 2H), 1.41-1.48 (m, 2H), 1.04-1.24 (m, 6H), 0.89 (t, $J=7.6$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 156.2, 149.8, 139.4, 134.6, 133.9, 131.9, 129.4, 127.3, 127.1, 124.5, 124.4, 123.6, 113.7 (2C), 101.7, 55.3, 33.0, 31.4, 28.5, 26.6, 22.4, 14.0; HRMS: m/z[M + 1] calcld for C$_{22}$H$_{26}$NO$_2$ 336.1964; found: 333.1967.

3-(4-Bromophenyl)-2-(4-methoxyphenyl)isoquinolin-1(2H)-one (3l)

Yellow color solid; Yield: 82%; mp: 122-125 °C; IR (CHCl$_3$): 3019, 1690, 1652, 1506 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, $J=7.8$ Hz, 1H), 7.55-7.70 (m, 4H), 7.46-7.54 (m, 5H), 6.95-6.99 (m, 2H), 6.19 (s, 1H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 157.2, 148.6, 138.6, 137.7, 137.0, 134.2, 132.9, 132.0, 131.7 (2C), 130.4 (2C), 129.8, 125.3 (2C), 123.6, 121.2, 119.5, 114.0 (2C), 101.6, 55.4; HRMS: m/z(M+1) calcld for C$_{22}$H$_{17}$NO$_2$Br : 406.0443; found: 406.0461.

2-(4-Methoxyphenyl)-3-(4-(pentyloxy)phenyl)isoquinolin-1(2H)-one (3m)
Pale yellow color solid; Yield: 79%; mp: 114-116°C; IR (CHCl$_3$): 3018, 1688, 1656, 1604, 1510 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 7.99 (d, J=7.3 Hz, 1H), 7.71 (d, J=8.8 Hz, 3H), 7.49-7.58 (m, 4H), 6.97 (d, J=8.8 Hz, 2H), 6.89 (d, J=8.8 Hz, 2H), 6.22 (s, 1H), 3.99 (t, J=6.3 Hz, 2H), 3.88 (s, 3H), 1.78-1.83 (m, 2H), 1.41-1.46 (m, 4H), 0.95 (t, J=7.2 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): δ 158.6, 156.9, 153.3, 146.5, 138.7, 137.5, 131.7, 130.4 (2C), 129.2, 129.0, 126.5, 125.4 (2C), 123.4, 119.1, 114.6 (2C), 113.9 (2C), 102.8, 67.9, 55.4, 28.9, 28.1, 22.4, 14.0; HRMS: m/z[M + 1]calcd for C$_{27}$H$_{28}$NO$_3$: 414.2069; found: 414.2089.

2-(4-Methoxyphenyl)-3-(p-tolyl)isoquinolin-1(2H)-one (3n)

Yellow color solid; Yield: 73%; mp: 140-143 °C; IR (CHCl$_3$): 3019, 1689, 1656, 1505 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.99 (d, J=7.8 Hz, 1H), 7.66-7.40 (m, 3H), 7.48-7.61 (m, 4H), 7.18 (d, J=7.8 Hz, 2H), 6.98 (d, J=8.8 Hz, 2H), 6.24 (s, 1H), 3.88 (s, 3H), 2.37 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 157.0, 147.5, 138.5, 137.5, 137.4, 131.8, 131.1, 129.4 (3C), 129.3 (2C), 129.0 (2C), 123.5 (2C), 123.5, 119.3, 113.9 (2C), 103.0, 55.4, 21.2; HRMS: m/z[M + 1]calcd for C$_{23}$H$_{20}$NO$_2$: 342.1494; found: 342.1487.

3-(4-Pentylphenyl)-2-phenylisoquinolin-1(2H)-one (3o)
Off-white color solid; Yield: 56%; mp: 102-104 °C; IR (CHCl$_3$): 3004, 1708, 1630, 1598, 1510 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.02 (d, J=7.3 Hz, 1H), 7.71 (d, J=7.8 Hz, 1H), 7.63 (t, J=8.4 Hz, 3H), 7.41-7.50 (m, 5H), 7.21-7.23 (m, 1H), 7.14 (d, J=8.3 Hz, 2H), 6.25 (s, 1H), 2.59 (t, J=8.3 Hz, 2H), 1.59-1.63 (m, 2H), 1.31-1.35 (m, 4H), 0.90 (t, J=7.6 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 154.2, 147.4, 145.9, 142.6, 137.7, 132.1, 131.2, 129.4, 129.1 (2C), 128.7 (5C), 124.7, 123.7, 123.6 (2C), 119.4, 103.4, 35.7, 31.5, 31.0, 22.5, 14.0; HRMS: m/z[M + 1] calcd for C$_{26}$H$_{25}$NO : 368.2014; found: 368.2003.

5-Chloro-2-(4-methoxyphenyl)-3-(4-pentylphenyl)isoquinolin-1(2H)-one (3p)

![Chemical structure of 3p](image)

Pale Yellow color solid; Yield: 63%; mp: 118-120 °C; IR (CHCl$_3$): 2929, 1682, 1654, 1607 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.91 (d, J=8.3 Hz, 1H), 7.68 (d, J=8.3 Hz, 3H), 7.55 (d, J=8.8 Hz, 2H), 7.46 (d, J=8.3 Hz, 1H), 7.19 (d, J=7.3 Hz, 2H), 6.98 (d, J=8.3 Hz, 2H), 6.23 (s, 1H), 3.88 (s, 3H), 2.62 (t, J=7.8 Hz, 2H), 1.61-1.65 (m, 2H), 1.33-1.35 (m, 4H), 0.90 (t, J=6.8 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 177.1, 157.2, 146.3, 143.1, 138.9, 138.2, 137.0, 131.0, 129.8, 129.2 (2C), 128.8 (2C), 128.0, 125.6 (2C), 124.7, 119.4, 114.0 (2C), 104.1, 55.5, 35.7, 31.5, 31.0, 22.5, 14.0; HRMS: m/z[M + 1] calcd for C$_{27}$H$_{27}$NO$_2$Cl: 432.1730; found: 432.1718.

5-Methoxy-2-(4-methoxyphenyl)-3-(4-pentylphenyl)isoquinolin-1(2H)-one (3q)

![Chemical structure of 3q](image)

Pale Yellow color solid; Yield: 73%; mp: 129-130 °C; IR (CHCl$_3$): 3016, 1686, 1650, 1594, 1506 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 7.70 (d, J=8.3 Hz, 2H), 7.59 (d, J=7.3 Hz, 1H), 7.53-7.56 (m, 2H), 7.43 (t, J=7.8 Hz, 1H), 7.16 (d, J=7.8 Hz, 2H), 7.05 (d, J=7.8 Hz, 1H), 6.95-6.98
(m, 2H), 6.68 (s, 1H), 4.04 (s, 3H), 3.87 (s, 3H), 2.61 (t, J=7.3 Hz, 2H), 1.56-1.63 (m, 2H), 1.32-1.35 (m, 4H), 0.90 (t, J=6.8 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 158.0, 155.2, 148.2, 141.1, 138.7, 137.1, 133.7, 131.8, 130.1, 129.7, 129.0 (2C), 128.3 (2C), 127.0 (2C), 123.3, 119.3, 113.3 (2C), 102.0, 55.6, 55.2, 35.5, 31.3, 31.2, 22.4, 13.9; HRMS: m/z[M + 1] calcd for C$_{28}$H$_{30}$NO$_3$: 428.2226; found: 428.2213.

3-(Pyridin-2-yl)isoquinolin-1(2H)-one (3r)

![Chemical Structure]

Red color solid; Yield: 93%; mp: 134-136 °C; IR (CHCl$_3$): 1709, 1614, 1590 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$): δ 11.22 (s, 1H), 8.60 (d, J=4.4 Hz, 1H), 7.89 (d, J=7.4 Hz, 1H), 7.77 (d, J=7.3 Hz, 1H), 7.68 (t, J=7.8 Hz, 1H), 7.62 (t, J=7.8 Hz, 1H), 7.54 (t, J=7.3 Hz, 1H), 7.29 (d, J=7.9 Hz, 1H), 7.11-7.14 (m, 1H), 6.35 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 168.6, 155.5, 148.9, 137.9, 137.7, 136.5, 131.0, 129.5, 129.3, 124.2, 123.4, 120.9, 119.9, 101.8; HRMS: m/z[M + 1] calcd for C$_{14}$H$_{11}$N$_2$O: 223.0871; found: 223.0873.

3-(p-Toly)isoquinolin-1(2H)-one (3s)

![Chemical Structure]

White color solid; Yield: 84%; mp: 220-222 °C; IR (CHCl$_3$): 3036, 1689, 1556, 1611 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (s, 1H), 7.88 (d, J=7.4 Hz, 1H), 7.78 (d, J=7.8 Hz, 1H), 7.64 (t, J=7.9 Hz, 1H), 7.52 (t, J=6.9 Hz, 1H), 7.34 (d, J=8.3 Hz, 2H), 7.25 (d, J=8.3 Hz, 2H), 6.54 (s, 1H), 2.39 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 169.0, 138.2, 137.7, 132.3, 132.1, 132.0, 129.9, 128.9 (2C), 128.5, 128.3 (2C), 123.5, 119.6, 106.1, 21.2; HRMS: m/z[M + 1] calcd for C$_{16}$H$_{14}$NO: 236.1075; found: 236.1083.
3-(4-Pentylphenyl)isoquinolin-1(2H)-one (3t)

White color solid; Yield: 87%; mp: 136-138°C; IR (CHCl$_3$): 2925, 1713, 1649, 1612 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.10 (s, 1H), 7.88 (d, J=7.3 Hz, 1H), 7.79 (d, J=7.3 Hz, 1H), 7.63 (t, J=7.8 Hz, 1H), 7.51 (t, J=7.8 Hz, 1H), 7.36 (d, J=7.8 Hz, 2H), 7.25 (d, J=7.8 Hz, 2H), 6.54 (s, 1H), 2.64 (t, J= 7.8 Hz, 2H), 1.60-1.68 (m, 2H), 1.33-1.39 (m, 4H), 0.91 (t, J=6.4 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 169.0, 142.7, 138.3, 132.3, 132.2, 129.2 (2C), 128.9, 128.5, 128.4 (2C), 123.4, 119.6, 106.1, 35.6, 31.4, 30.9, 22.4, 14.0; HRMS: m/z[M + 1] calcd for C$_{20}$H$_{22}$NO: 292.1701; found: 292.1689.

3-(4-Bromophenyl)isoquinolin-1(2H)-one (3u)

Pale yellow color solid; Yield: 83%; mp: 255-257 °C; IR (CHCl$_3$): 3036, 1685, 1651, 1591 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.03 (s, 1H), 7.88 (d, J=7.3 Hz, 1H), 7.78 (d, J=7.8 Hz, 1H), 7.65 (t, J=7.3 Hz, 1H), 7.52-7.58 (m, 3H), 7.32 (d, J=8.3 Hz, 2H), 6.47 (s, 1H); 13C NMR (100 MHz, DMSO-d$_6$) δ 169.1, 138.6, 133.9, 133.1, 132.3, 131.5 (2C), 131.0 (2C), 129.3, 128.2, 122.7, 120.4, 120.2, 104.5; HRMS: m/z[M + 1] calcd for C$_{15}$H$_{11}$BrNO: 300.0024; found: 300.0019.

General procedure for the preparation of compound 4:

To a mixture of 2-iodobenzamide $1f$ (1.0 mmol), Cu(OAc)$_2$ (2.0 mmol) and Cs$_2$CO$_3$ (2.0 mmol) in polyethylene glycol (5.0 mL) was added terminal alkyne 2 (1.0 mmol) at room temperature and the mixture was stirred for 10-15 min under nitrogen at the same temperature. The mixture
was then heated to 80-90 °C and stirred under nitrogen for 3.5-5 h. The reaction was monitored by TLC. After completion of the reaction, the mixture was diluted with EtOAc (10 mL) and filtered through celite. The filtrate was collected and washed with water (2 x 20 mL). The EtOAc layer was collected, and concentrated under low vacuum. The residue obtained was purified by column chromatography (petroleum ether-EtOAc) to give the desired product (4).

3-Phenylisoquinolin-1(4H)-one (4a)

White color solid; Yield: 81%; mp: 110-113 °C; IR (CHCl$_3$): 3019, 1691, 1599 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.06 (d, J=7.8 Hz, 2H), 7.70 (d, J=7.3 Hz, 1H), 7.56 - 7.64 (m, 2H), 7.51 (t, J= 7.8 Hz, 2H), 7.39 (t, J=7.8 Hz, 2H), 4.56 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 195.3, 138.5, 136.2, 133.6, 132.7 (2C), 131.0, 128.8 (2C), 128.3 (2C), 127.5, 117.8, 113.6, 43.5; HRMS: m/z[M +1] calcd for C$_{15}$H$_{12}$NO: 222.0919; found: 222.0925.

3-(p-Tolyl)isoquinolin-1(4H)-one (4b)

White color solid; Yield: 78%; mp: 105-108 °C; IR (CHCl$_3$): 3036, 1689, 1556 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.95 (d, J=8.3 Hz, 2H), 7.69 (dd, J= 8.4, 1.5 Hz, 1H), 7.56 (td, J=7.8,1.0 Hz, 1H), 7.37-7.41 (m, 2H), 7.30 (d, J=8.4 Hz, 2H), 4.53 (s, 2H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 195.0, 144.5, 138.7, 133.7, 132.7 (2C), 130.9, 129.4 (2C), 128.5
3-(4-Pentylphenyl)isoquinolin-1(4H)-one (4c)

White color solid; Yield: 81%; mp: 99-101 °C; IR (CHCl$_3$): 2925, 1713, 1612 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.97 (d, $J=8.3$ Hz, 2H), 7.69 (d, $J=7.3$ Hz, 1H), 7.57 (t, $J=7.3$ Hz, 1H), 7.37-7.41 (m, 2H), 7.30 (d, $J=8.3$ Hz, 2H), 4.53 (s, 2H), 2.67 (t, $J=7.8$ Hz, 2H), 1.60-1.68 (m, 2H), 1.30-1.37 (m, 4H), 0.89 (t, $J=6.3$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 195.0, 149.5, 138.7, 133.9, 132.7 (2C), 131.0, 128.8 (2C), 128.5 (2C), 127.4, 117.9, 113.5, 43.4, 35.9, 31.3, 30.7, 22.4, 13.9; HRMS: m/z[M + 1] calcd for C$_{20}$H$_{22}$NO: 292.1703; found: 292.1703.

3-Hexylisoquinolin-1(4H)-one (4d)

Pale yellow liquid; Yield: 76%; IR (CHCl$_3$): 1684, 1593, 1579 cm$^{-1}$; 1H NMR (400 MHz, DMSO-d_6) δ 7.80 (d, $J=7.4$ Hz, 1H), 7.65 (td, $J= 7.7$, 1.0 Hz, 1H), 7.40-7.47 (m, 2H), 4.05 (s, 2H), 2.57 (t, $J= 7.4$ Hz, 2H), 1.48-1.53 (m, 2H). 1.23-1.29 (m, 6H), 0.86 (t, $J=6.4$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 206.0, 138.3, 132.8 (2C), 132.7, 130.9, 127.5, 113.3, 47.7, 43.0, 31.5, 28.7, 23.6, 22.4, 14.0; HRMS: m/z[M + NH$_4$] calcd for C$_{18}$H$_{23}$N$_2$O: 247.1810; found: 247.1822.

3-(Pyridin-2-yl)isoquinolin-1(4H)-one (4e)
Gummy solid; Yield: 57% ; IR (CHCl$_3$): 3021, 1690, 1598 cm$^{-1}$; 1HNMR (400 MHz, CDCl$_3$): δ 8.62 (d, J=4.4 Hz, 1H), 7.98 (d, J=7.4 Hz, 1H), 7.77 (d, J=7.3 Hz, 1H), 7.66 (t, J=7.8 Hz, 1H), 7.65 (t, J=7.8 Hz, 1H), 7.56 (t, J=7.3 Hz, 1H), 7.31 (d, J=7.9 Hz, 1H), 7.10-7.13 (m, 1H), 4.57 (s, 2H) ppm; 13CNMR (100 MHz, CDCl$_3$): δ 195.3, 155.5, 148.9, 137.9, 137.7, 136.5, 131.0, 129.5, 129.3, 124.2, 123.4, 120.8, 119.9, 43.5 ppm; HRMS: m/z[M +1] calcd for C$_{14}$H$_{11}$N$_2$O: 223.0871; found: 223.0861

3-(4-Bromophenyl)isoquinolin-1(4H)-one (4f)

Gummy solid; Yield: 62%; IR (CHCl$_3$): 1686, 1590, 1580cm$^{-1}$; 1HNMR (400 MHz, CDCl$_3$): δ 7.89 (d, J=7.3 Hz, 1H), 7.79 (d, J=7.8 Hz, 1H), 7.66 (t, J=7.3 Hz, 1H), 7.51-7.59 (m, 3H), 7.31 (d, J=8.3 Hz, 2H), 4.6 (s, 2H) ppm; 13CNMR (100 MHz, DMSO-$_d_6$): δ 196.0, 138.6, 133.9, 133.0, 132.3, 131.5 (2C), 131.0 (2C), 129.3, 128.2, 122.7, 120.4, 120.2, 44.2 ppm; HRMS: m/z[M + H] calcd for C$_{15}$H$_{11}$BrNO: 300.0024; found: 300.0011

2-Iodo-N,N-dimethylbenzamide (1g):

1HNMR (400 MHz, CDCl$_3$): δ 7.83 (d, J = 7.8 Hz, 1H), 7.39 (t, J = 7.8 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.05 (d, J = 7.8 Hz, 1H), 3.14 (s, 3H), 2.85 (s, 3H) ppm; ESMS- (M+H): 276.2

N,N-dimethyl-2-(oct-1-yn-1-yl)benzamide (6):
1HNMR (400 MHz, CDCl$_3$): δ 7.37-7.41 (m, 1H), 7.24-7.32 (m, 3H), 3.12 (s, 3H), 2.87 (s, 3H), 2.38 (t, $J = 7.4$Hz, 2H), 1.57-1.60 (m, 2H), 1.38-1.46 (m, 2H), 1.27-1.36 (m, 4H), 0.90 (t, $J = 6.9$Hz, 3H) ppm;

References