Supporting Information

Nanodiamond/CNT-SiC Monolith as a Novel Metal Free Catalyst for Ethylbenzene Direct Dehydrogenation to Styrene

Hongyang Liu\(^a\), Jiangyong Diao\(^a\), Qi Wang\(^a\), Songyuan Gu\(^b\), Tong Chen\(^b\), Changxi Miao\(^b\), Weimin Yang\(^b\)* and Dangsheng Su\(^a\)*

\(^a\) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, China.

\(^b\) Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai, China.

E-mail: dssu@imr.ac.cn, yangwm.sshy@sinopec.com.

Experimental information:

The SiC foam used as support was synthesized with a method of macromolecule pyrogenation combined with reaction bonding.[1] It has a honeycomb structure with high mechanical strength. The SiC foam was washcoated with a thin iron-containing coating by a simple method. In this method, a mixture solution was prepared by adding 2 g of Fe(NO\(_3\))\(_3\)•9H\(_2\)O, 4.7 g of Al(NO\(_3\))\(_3\)•9H\(_2\)O, and 6.4 g of Mg(NO\(_3\))\(_2\)•6H\(_2\)O, and 45 g of urea to 250 ml of deionized water in a flask. After mixed well, 10 g of SiC foam was added in this solution. The mixtures in the flask were continuously stirred at 90 °C for 10 h. After the mixture staying at 100 °C for 12 h without stirring, SiC foam was taken out following by a process of drying at 110 °C for 12 h, and finally the iron-containing wash coated SiC foam was obtained.

Synthesis of CNT/SiC monolith:

The iron-containing washcoated SiC foam was transferred to a quartz boat in a horizontal tubular furnace (supplied by Lindberg Blue M, HTF55342C) for CVD process. The furnace was heated under a flow of Ar (200 ml/min) at atmosphere pressure. When the reaction temperature reached 750 °C, H\(_2\) (40 ml/min) was introduced into the reactor for 5 min. A flow of C\(_2\)H\(_4\) (80 ml/min) was then fed to grow CNTs for 30 min without changing the flow of H\(_2\) and Ar. Then, the furnace...
was cooled to room temperature under Ar. The obtained CNT/SiC products were saved for the support.

Synthesis of UDD/CNT-SiC monolith:

The commercial ND powders bought from Beijing Grish Hitech Co. (China) were dispersed into ethanol by sonication. Then the CNT/SiC monolith was soaked into the ethanol solution for 3 hrs. After that, the obtained samples were dried at 120 °C overnight. The ND/CNT-SiC monolith with different weight loading can be synthesized by tuning the concentration of ND in the initial solution.

Characterization and Catalytic performance test:

The samples were characterized by SEM (Nova NanoSEM 450, FEI). The images of transmission electron microscopy (TEM) were observed on a Tecnai G2 F20 S-TWIN operated at 120 kV and a Philips CM200 FEG operated at 200 kV. Raman spectroscopy was tested by a LabRam HR 800 using a 632.8 nm laser. The catalytic tests were carried out for ND/CNT-SiC monolith (3.4% weight loading), CNT/SiC monolith and ND powders (diluted with quartz sands 3.4% weight loading) with the DH of ethylbenzene to styrene. The experiments were tested using 500 mg catalysts at 550 °C in a fixed-bed quartz reactor. The mixture reactants were introduced to the reactor with a total flow rate of 10 ml/min (2.6% ethylbenzene) at atmospheric pressure for 20 h. The helium was used as a balance gas. The reaction product was analyzed by gas chromatography (Agilent 7890A) with FID and TCD.
Figure S1. SEM images of the initial SiC foam. Inset is the photograph of initial SiC foam.

Figure S2. TEM images of the (a) commercial ND aggregates collected after sonicating in the ethanol and HRTEM image of (b) one ND nanoparticle.
Figure S3. TEM images of ND/CNT-SiC monolith. The weight loading of ND is 1.2%.

Figure S4. SEM images of ND/CNT-SiC monolith with different ND loadings: (a, b) 3.4% weight loading; (c, d) 6.2% weight loading.
Figure S5. Raman spectra of CNT/SiC and ND/CNT-SiC monolith.