Practical Access to Spiroacetal Enol Ethers via Nucleophilic
Dearomatization of 2-Furylmethylene palladium Halides Generated
by Pd-Catalyzed Coupling of Furfural Tosylhydrazones with Aryl
Halides

Biaolin Yin*, Xiaoyu Zhang, Jianchao Liu, Xuehui Li and Huanfeng Jiang

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou,
Guangdong, 510640, China.
blyin@scut.edu.cn

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General experimental details</td>
<td>2</td>
</tr>
<tr>
<td>Preparation of 4a</td>
<td>2</td>
</tr>
<tr>
<td>General procedure for 7</td>
<td>3</td>
</tr>
<tr>
<td>Characterization of 7</td>
<td>4-9</td>
</tr>
<tr>
<td>Assignment of the stereochemistry</td>
<td>10-12</td>
</tr>
<tr>
<td>Spectra of all the new compounds</td>
<td>13-29</td>
</tr>
</tbody>
</table>
General Experimental details

IR spectra were recorded with FT-IR as a thin film or using KBr pellets and are expressed in cm\(^{-1}\). \(^1\)H (400 MHz) and \(^{13}\)C (100 MHz) NMR spectra were recorded using CDCl\(_3\) as a solvent. Chemical shifts are reported in ppm downfield to tetramethylsilane. Coupling constants are reported and expressed in Hz; splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (double doublet), dt (double triplet), dq (double quartet). Infrared (IR) spectra were obtained on a Bruker Vector 22 spectrometer. Mass spectra were obtained from high resolution ESI mass spectrometer. All reactions were carried out using freshly distilled and dry solvents. Column chromatography was performed over silica gel (100-200 Mesh) using petroleum ether and ethyl acetate as the eluent.
Preparation of tosylhydrazone (4a)

To a stirred suspension of \(p \)-tosylhydrazide (1.86 g, 10 mmol) in methanol (20 mL) was added 5-(3-hydroxypropyl)furan-2-carbaldehyde (1.54 g, 10 mmol). The mixture was stirred for 2 h at room temperature, and then the solvent was removed under reduced pressure. The crude products could be obtained as precipitates. The precipitates were washed by petroleum ether then removed in vacuo to afford the pure product 4a. Yellow solid (3.09 g, 96%), m.p. 129–130 °C; IR (KBr) \(\nu \): 3438, 3047, 2386, 1438, 1162, 1105, 619, 550 cm\(^{-1}\); \(^1\)H NMR (400 MHz, DMSO) \(\delta \): 11.30 (s, 1H), 7.78–7.67 (m, 3H), 7.40 (d, \(J = 8.1 \) Hz, 2H), 6.70 (d, \(J = 3.3 \) Hz, 1H), 6.21 (d, \(J = 3.2 \) Hz, 1H), 3.42 (t, \(J = 6.3 \) Hz, 2H), 2.65 (t, \(J = 7.6 \) Hz, 2H), 2.37 (s, 3H), 1.76–1.62 (m, 2H); \(^{13}\)C NMR (101 MHz, DMSO) \(\delta \): 158.53, 147.02, 143.38, 137.11, 136.21, 129.65, 127.09, 115.22, 107.60, 59.76, 30.64, 24.07, 20.96; HRMS (ESI) m/z calcd for C\(_{15}\)H\(_{18}\)N\(_2\)NaO\(_4\)S: [M + Na]\(^+\) 345.0885, Found: 345.0882;

General procedure for the preparation of 7

Bromobenzene (0.36 mmol, 56 mg) was added to a mixture of \(\text{Pd}_2(\text{dba})_3 \) (5.0 mol%, 14 mg), tricyclohexyolphosphine (10 mol%, 9 mg), \(\text{LiO}t\text{Bu} \) (1.05 mmol, 84 mg), 4a (0.3 mmol, 97 mg), and toluene (3 mL) in a Schlenk tube under nitrogen. The mixture was stirred at 90 °C for 2 h, cooled to room temperature, and filtered through a short column of silica gel (ethyl acetate). The solvent was removed in vacuo, and the residue was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether= 1:15) to give 7.
Characterization of 7

(Z)-2-benzylidene-1,6-dioxaspiro[4.4]non-3-ene (7a)

Yellow oil (79 mg, 74%), IR (film) 2950, 1693, 1449, 1359, 1091, 944, 816, 754, 697 cm\(^{-1}\);
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.54 (d, \(J = 7.3\) Hz, 2H), 7.21 (t, \(J = 7.7\) Hz, 2H), 7.09-7.02 (m, 1H), 6.26 (d, \(J = 5.6\) Hz, 1H), 5.96 (d, \(J = 5.6\) Hz, 1H), 5.32 (s, 1H), 4.21-3.91 (m, 2H), 2.30-2.14 (m, 2H), 2.04-1.97 (m, 2H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 156.0, 136.2, 131.0, 129.9, 128.3, 128.2, 125.7, 121.1, 101.3, 69.1, 36.0, 24.6; HRMS (ESI) m/z calcd for C\(_{14}\)H\(_{14}\)NaO\(_2\): [M + Na]\(^+\) 237.0891, Found: 237.0886.

(Z)-2-(2-methylbenzylidene)-1,6-dioxaspiro[4.4]non-3-ene (7b)

Yellow oil (83 mg, 73%), IR (KBr) 2952, 2359, 1644, 1456, 1129, 944, 818, 750, 619 cm\(^{-1}\);
\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.20-7.02 (m, 4H), 6.37 (d, \(J = 5.5\) Hz, 1H), 6.02 (d, \(J = 5.6\) Hz, 1H), 5.50 (s, 1H), 4.32-3.90 (m, 3H), 2.31 (s, 3H), 2.27-2.19 (m, 2H), 2.10-2.01 (m, 2H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 156.0, 135.0, 134.5, 134.1, 130.9, 130.1, 129.9, 128.5, 125.9, 125.8, 121.0, 98.0, 69.1, 49.4, 36.0, 24.7, 20.3; HRMS (ESI) m/z calcd for C\(_{15}\)H\(_{16}\)NaO\(_2\): [M + Na]\(^+\) 251.1048, Found: 251.1043.

(Z)-2-(4-methylbenzylidene)-1,6-dioxaspiro[4.4]non-3-ene (7c)

Yellow oil (86 mg, 76%), IR (film) 2925, 1640, 1446, 1106, 816 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.55 (d, \(J = 7.5\) Hz, 2H), 7.14 (d, \(J = 7.1\) Hz, 2H), 6.37 (d, \(J = 6.4\) Hz, 1H), 6.05 (d, \(J = 6.0\) Hz, 1H), 5.40 (s, 1H), 4.31-4.00 (m, 2H), 2.35 (s, 1H), 2.30-2.20 (m, 2H), 2.14-2.06(m,
2H); 13C NMR (101 MHz, CDCl$_3$) δ 155.4, 135.4, 133.3, 130.4, 129.9, 129.0, 128.1, 120.9, 101.3, 69.0, 36.0, 24.6, 21.2; HRMS (ESI) m/z calcd for C$_{15}$H$_{16}$NaO$_2$: [M + Na]$^+$ 251.1048, Found: 251.1043.

(Z)-2-(3,5-dimethylbenzylidene)-1,6-dioxaspiro[4.4]non-3-ene (7d)

Yellow oil (91 mg, 75 %), IR (film) 2978, 2874, 1518, 1488, 1372, 1280, 1158, 1116, 1063, 978, 876 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.92 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 13.6 Hz, 2H), 6.37 (d, J = 5.5 Hz, 1H), 6.01 (d, J = 5.6 Hz, 1H), 5.48 (s, 1H), 4.23-3.99 (m, 2H), 2.30-2.22 (m, 12H), 2.12-2.04 (m, 3H); 13C NMR (101 MHz, CDCl$_3$) δ 155.46, 130.72, 130.30, 130.14, 128.45, 120.85, 100.68, 98.05, 69.04, 35.94, 24.63, 20.19; HRMS (ESI) m/z calcd for C$_{16}$H$_{18}$O: [M + H]$^+$ 243.1385, Found: 243.1390.

(Z)-2-(3-methoxybenzylidene)-1,6-dioxaspiro[4.4]non-3-ene (7e)

Yellow oil (85 mg, 70%), IR (film) 2942, 1648, 1487, 1266, 1093, 974, 874, 775, 688 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.36-7.18 (m, 3H), 6.75-6.69 (m, 1H), 6.38 (d, J = 5.6 Hz, 1H), 6.08 (d, J = 5.6 Hz, 1H), 5.42 (s, 1H), 4.31-4.01 (m, 2H), 3.85 (s, 3H), 2.44-0.59 (m, 2H); 13C NMR (101 MHz, CDCl$_3$) δ 159.5, 156.3, 137.5, 131.1, 129.9, 129.1, 121.0, 113.3, 111.8, 101.2, 69.1, 55.0, 36.0, 24.6; HRMS (ESI) m/z calcd for C$_{15}$H$_{16}$NaO$_3$: [M + Na]$^+$ 267.0997, Found: 267.0991.

(Z)-2-(4-methoxybenzylidene)-1,6-dioxaspiro[4.4]non-3-ene (7f)

Yellow oil (94 mg, 77 %), IR (film) 2950, 1510, 1451, 1358, 1249, 1176, 1029, 840 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.59 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 6.36 (d, J =
5.6 Hz, 1H), 6.01 (d, \(J = 5.5 \) Hz, 1H), 5.39 (s, 1H), 4.34-4.01 (m, 2H), 3.83 (s, 3H), 2.42-2.23 (m, 2H), 2.16-2.03 (m, 2H); \(^1\)H NMR (101 MHz, CDCl\(_3\)) \(\delta \) 157.7, 154.6, 133.8, 129.9, 129.8, 129.4, 129.1, 120.9, 114.0, 113.8, 109.9, 69.0, 55.2, 36.0, 24.7; HRMS (ESI) m/z calcd for C\(_{15}\)H\(_{16}\)NaO\(_3\): [M + Na]\(^+\) 267.0997, Found: 267.0992.

(Z)-2-(2,4-dimethoxybenzylidene)-1,6-dioxaspiro[4.4]non-3-ene (7g)

Yellow oil (113 mg, 83 %), IR (film) 2941, 1608, 1504, 1460, 1291, 1158, 1035, 832 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.03 (d, \(J = 8.6 \) Hz, 1H), 6.51 (dd, \(J = 8.6, 2.4 \) Hz, 1H), 6.42 (d, \(J = 2.4 \) Hz, 1H), 6.36 (d, \(J = 5.6 \) Hz, 1H), 5.95 (d, \(J = 5.5 \) Hz, 1H), 5.75 (s, 1H), 4.26-3.97 (m, 2H), 3.81 (s, 6H), 2.35-2.17 (m, 2H), 2.12-2.02 (m, 2H); \(^1\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 158.9, 157.1, 154.7, 130.2, 129.8, 129.3, 120.8, 118.1, 104.6, 98.1, 94.2, 69.0, 55.6, 55.3, 36.0, 24.7; HRMS (ESI) m/z calcd for C\(_{16}\)H\(_{18}\)NaO\(_4\): [M + Na]\(^+\) 297.1103, Found: 297.1097.

(Z)-2-(4-fluorobenzylidene)-1,6-dioxaspiro[4.4]non-3-ene (7h)

Yellow oil (74 mg, 64 %), IR (film) 2983, 1693, 1507, 1359, 1315, 1090, 944, 771, cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.63-7.52 (m, 2H), 6.96 (d, \(J = 8.8 \) Hz, 2H), 6.33 (d, \(J = 5.6 \) Hz, 1H), 6.03 (d, \(J = 5.6 \) Hz, 1H), 5.36 (s, 1H), 4.27-3.99 (m, 2H), 2.36-2.20 (m, 2H), 2.13-2.06 (m, 2H); \(^1\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 134.7, 132.4, 132.3, 130.9, 129.7, 129.7, 129.6, 129.5, 129.4, 125.3, 121.1, 115.2, 115.0, 100.2, 69.2, 36.0, 24.6; HRMS (ESI) m/z calcd for C\(_{14}\)H\(_{13}\)FNaO\(_2\): [M + Na]\(^+\) 255.0797, Found: 255.0792.

(Z)-2-(4-nitrobenzylidene)-1,6-dioxaspiro[4.4]non-3-ene (7i)
Yellow oil (63 mg, 49 %); IR (film), 2983, 1642, 1388, 1111, 993, 619 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.9 Hz, 2H), 6.38 (d, J = 5.6 Hz, 1H), 6.22 (d, J = 5.6 Hz, 1H), 5.48 (s, 1H), 4.34-3.99 (m, 3H), 2.33-2.22 (m, 2H), 2.20-2.11 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 159.3, 134.0, 129.4, 128.1, 127.9, 123.7, 121.9, 99.5, 69.6, 49.4, 30.6; HRMS (ESI) m/z calcd for C₁₄H₁₃NNaO₄: [M + Na]⁺ 282.0742, Found: 282.0737.

(Z)-2-(4-(trifluoromethyl)benzylidene)-1,6-dioxaspiro[4.4]non-3-ene (7j)

Yellow oil (78 mg, 56 %), IR (film) 2895, 1653, 1419, 1363, 1243, 1068, 945, 849, 759 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 6.35 (d, J = 5.6 Hz, 1H), 6.12 (d, J = 5.5 Hz, 1H), 5.42 (s, 1H), 4.32-3.97 (m, 2H), 2.40-2.20 (m, 2H), 2.16-2.01 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 139.8, 132.6, 129.6, 128.0, 127.2 (q, J_C·F = 32 Hz), 125.8, 125.1 (q, J_C·F = 23 Hz), 123.1, 121.5, 99.9, 77.4, 77.1, 76.7, 69.4, 35.9, 24.6; HRMS (ESI) m/z calcd for C₁₅H₁₃F₃NaO₂: [M + Na]⁺ 305.0765, Found: 305.0760.

(Z)-4-(1,6-dioxaspiro[4.4]non-3-en-2-ylidenemethyl)benzaldehyde (7k)

Yellow syrup (60 mg, 50 %), IR (film) 2936, 1644, 1598, 1387, 1110, 848, 619 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.72 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 6.30 (d, J = 5.6 Hz, 1H), 6.10 (d, J = 5.6 Hz, 1H), 5.39 (s, 1H), 4.24-3.95 (m, 2H), 2.34-2.26 (m, 2H), 2.11-2.03 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 158.6, 142.8, 133.3, 129.9, 129.6, 128.3, 128.1, 121.7, 100.4, 69.5, 35.9, 24.6; HRMS (ESI) m/z calcd for C₁₅H₁₄NaO₃: [M + Na]⁺ 265.0841, Found: 265.0835.
(Z)-2-(naphthalen-2-ylmethylene)-1,6-dioxaspiro[4.4]non-3-ene (7m)

Yellow oil (89 mg, 68 %), IR (film) 2952, 2892, 1650, 1591, 1440, 1089, 943, 705 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.99 (s, 1H), 7.82 (dd, \(J = 8.6, 1.6\) Hz, 1H), 7.78-7.71 (m, 3H), 7.43-7.34 (m, 2H), 6.36 (d, \(J = 5.6\) Hz, 1H), 6.05 (d, \(J = 5.6\) Hz, 1H), 5.54 (s, 1H), 4.34-3.97 (m, 2H), 2.42-2.21 (m, 2H), 2.16-2.02 (m, 2H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 156.5, 133.9, 133.8, 132.0, 131.2, 129.9, 127.9, 127.7, 127.6, 127.0, 126.6, 125.9, 125.2, 121.3, 101.5, 69.3, 36.0, 24.7; HRMS (ESI) m/z calcd for C\(_{18}\)H\(_{16}\)NaO\(_2\): [M + Na]\(^+\) 287.1048, Found: 287.1043.

(Z)-2-(thiophen-2-ylmethylene)-1,6-dioxaspiro[4.4]non-3-ene (7n)

Yellow oil (72 mg, 66 %), IR (film) 2945, 1642, 1440, 1356, 1056, 912, 669 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.17 (d, \(J = 5.1\) Hz, 1H), 7.05 (d, \(J = 3.4\) Hz, 1H), 6.96 (dd, \(J = 5.1, 3.6\) Hz, 1H), 6.35 (d, \(J = 5.6\) Hz, 1H), 6.06 (d, \(J = 5.6\) Hz, 1H), 5.75 (s, 1H), 4.37-3.94 (m, 2H), 2.47-2.18 (m, 2H), 2.16-1.98 (m, 2H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 154.4, 139.3, 131.4, 128.5, 126.7, 125.0, 124.2, 120.8, 95.3, 69.0, 36.0, 24.4; HRMS (ESI) m/z calcd for C\(_{12}\)H\(_{12}\)NaO\(_2\)S: [M + Na]\(^+\) 243.0456, Found: 243.0450.

(Z)-2-(1,6-dioxaspiro[4.4]non-3-en-2-ylidenemethyl)pyridine (7o)

Yellow syrup (47 mg, 44 %), IR (film) 2955, 1648, 1587, 1345, 1257, 1085, 936, 741 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.52-8.44 (m, 1H), 7.69 (d, \(J = 5.7\) Hz, 1H), 7.51 (td, \(J = 7.7, 1.9\) Hz, 1H), 7.07-6.92 (m, 2H), 6.26 (dd, \(J = 5.8, 1.7\) Hz, 1H), 5.93 (d, \(J = 1.2\) Hz, 1H), 4.42-3.83 (m, 2H), 2.32-2.17 (m, 2H), 2.12-2.03 (m, 2H); \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 160.6, 156.0, 149.2, 136.0, 135.7, 127.6, 122.8, 119.8, 118.1, 101.1, 69.3, 35.5, 24.7 cm\(^{-1}\); HRMS (ESI) m/z
calcd for C_{13}H_{14}NO_2: [M + H]^+ 216.1025, Found: 216.1019

(Z)-2-(1,6-dioxaspiro[4.4]non-3-en-2-ylidenemethyl)quinolone (7p)

![Chemical Structure](image)

Yellow oil (77 mg, 58 %), IR (film) 3048, 2924, 1648, 1593, 1498, 1429, 1345, 1170, 977, 754 cm^{-1}; \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.96 (dd, \(J = 6.8, 4.8\) Hz, 3H), 7.69 (d, \(J = 8.2\) Hz, 1H), 7.63 (t, \(J = 7.6\) Hz, 1H), 7.40 (t, \(J = 7.4\) Hz, 1H), 7.17 (d, \(J = 8.5\) Hz, 1H), 6.36 (d, \(J = 5.8\) Hz, 1H), 6.08 (s, 1H), 4.23–3.97 (m, 2H), 2.36–2.19 (m, 2H), 2.22–2.03 (m, 2H); \(^1^3\)C NMR (101 MHz, CDCl\(_3\)) δ 162.0, 156.1, 148.3, 136.7, 135.7, 129.3, 128.8, 128.0, 127.4, 126.2, 125.2, 122.3, 118.4, 101.2, 69.5, 35.5, 24.7; HRMS (ESI) m/z calcd for C_{17}H_{16}NO_2: [M + H]^+ 266.1181, Found: 266.1176.

(Z)-2-(1,6-dioxaspiro[4.4]non-3-en-2-ylidenemethyl)pyrimidine (7q)

![Chemical Structure](image)

Yellow syrup (64 mg, 58 %), IR (KBr) 3043, 2916, 1648, 1568, 1425, 1124, 985, 767 cm^{-1}; \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 8.57 (d, \(J = 4.8\) Hz, 2H), 7.81 (d, \(J = 5.8\) Hz, 1H), 6.91 (t, \(J = 4.9\) Hz, 1H), 6.36 (dd, \(J = 5.8, 1.6\) Hz, 1H), 6.07 (s, 1H), 4.28–3.96 (m, 2H), 2.36–2.19 (m, 2H), 2.15–2.07 (m, 2H); \(^1^3\)C NMR (101 MHz, CDCl\(_3\)) δ 165.8, 164.7, 156.7, 137.4, 127.6, 118.6, 116.4, 101.5, 69.7, 35.4, 24.7; HRMS (ESI) m/z calcd for C_{12}H_{13}N_2O_2: [M + H]^+ 217.0977, Found: 217.0972.
NOESY of 7a
COSY of 7o
NOESY of 7o
1H NMR of 4a

13C NMR of 4a
1H NMR of 7a (Z/E=4:1)

13C NMR of 7a (Z/E=4:1)
1H NMR of 7b (Z/E = 4.5:1)

13C NMR of 7b (Z/E = 4.5:1)
1H NMR of 7c (Z/E = 5:1)

13C NMR of 7c (Z/E = 5:1)
1H NMR of 7d

13C NMR of 7d
1H NMR of 7e (Z/E =3.3:1)

13C NMR of 7e (Z/E =3.3:1)
1H NMR of 7f (Z/E = 10:1)

13C NMR of 7f (Z/E = 10:1)
^{1}H NMR of $7g$

^{13}C NMR of $7g$
1H NMR of 7h (Z/E = 3:1)

13C NMR of 7h (Z/E = 3:1)
1H NMR of 7i (Z/E =4/1)

13C NMR of 7i (Z/E =4/1)
1H NMR of 7j

13C NMR of 7j
1H NMR of 7k (Z/E =5:1)

13C NMR of 7k (Z/E =5:1)
\(^1\)H NMR of 7m (Z/E =10:1)

\(^{13}\)C NMR of 7m (Z/E =10:1)
1H NMR of 7n

13C NMR of 7n
1H NMR of 7o

13C NMR of 7o
1H NMR of 7p

13C NMR of 7p
1H NMR of 7q

13C NMR of 7q