Stereochemical Aspects and Synthetic Scope of the S_{Hi} at the Sulfur Atom. Preparation of Enantiopure 3-Substituted 2,3-Dihydro-1,2-Benzisothiazole 1-Oxides and 1,1-Dioxides

José A. Fernández-Salas, M. Mercedes Rodríguez-Fernández,* M. Carmen Maestro* and José L. García-Ruano

Departamento de Química Orgánica. Universidad Autónoma de Madrid. Cantoblanco. 28049-Madrid. Spain

E-mail: mercedes.rodriguez@uam.es; carmen.maestro@uam.es:

SUPPORTING INFORMATION

Table of contents:

General Considerations S2
Radical addition. General procedure S2
Characterization of bromo sulfinamides 4 S2-S6
Radical cyclization. General procedure S6
Characterization of benzosulfinamides 5 S6-S9
Oxidation. General procedure S9
Characterization of benzosulfonamides 6 S9-S13
NMR Spectra S14-S39
General Considerations.

NMR spectra were acquired on a Bruker AC-300 instrument at 300 and 75.5 MHz for 1H and 13C NMR, respectively. Chemical shifts (δ) are reported in parts per million relative to residual solvent signals (CDCl$_3$, 7.26 ppm for 1H NMR and 77.0 ppm for 13C NMR spectra; MeOH-d$_4$, 3.31 ppm for 1H NMR and 49.0 ppm for 13C NMR). 13C NMR spectra were acquired on a broad-band decoupled mode. Optical rotations were measured on a PerkinElmer 241 polarimeter. Mass spectra (MS) were obtained by ESI or FAB+ (matrix: m-NBA) ionization mode. High resolution mass spectra (HRMS) were performed by ESI ionization mode using a time-of-flight (TOF) mass analyzer or FAB+ ionization mode. Analytical thin layer chromatography (TLC) was performed using precoated aluminum-packed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or phosphomolybdic acid dip. Flash column chromatography was performed using silica gel (230–400 mesh). All reactions were carried out in anhydrous solvents. THF and CH$_2$Cl$_2$ were dried with molecular sieves. Commercially available starting materials were used without purification.

Sulfinimine 3 was prepared from 2-bromobenzaldehyde and (R)-tert-butanesulfinamide, according to the known literature procedure. The characterization was effected by comparison of its physical and spectroscopic data with those reported.

Radical Addition. General procedure

To a solution of sulfinimine 3 (0.2 mmol) in DCM (3 mL, 0.04M), under argon atmosphere, was added BF$_3$·OEt$_2$ (0.42 mmol, 2.1 equiv). After 5 min under stirring, the mixture was cooled to -78 °C and then, the alkyl iodide (2.0 mmol, 10 equiv), tributyltin hydride (0.5 mmol, 2.5 equiv), triethylborane (0.5 mmol, 1M hexane, 2.5 equiv) and O$_2$ (5 mL, via syringe) were added in this order. Successive additions of triethylborane (0.25 mmol, 1M hexane) and O$_2$ (5 mL, via syringe) were added every 1 or 1.5 hour until the imine disappearance (TLC). Then, the reaction was treated with aq. NaHCO$_3$ solution. The aqueous phase was extracted with DCM (3x5mL). The organic extracts were washed with brine and dried over MgSO$_4$. The solvent was removed under reduced pressure and the residue purified by flash chromatography on silica gel:KF (9:1) with a 1:1 mixture of n-hexane:ethyl acetate as the eluent.

Sulfinamides 4a-d were prepared from the corresponding alkyl iodide according to the above general procedure with the following isolated yields: 4a (R=Et, 80 %), 4b (R=iPr, 91 %), 4c (R=Cy, 90 %), 4d (R=tBu, 75 %).

(S,R,S)-N-[(2-Bromophenyl)(phenyl)methyl]-2-methylpropane-2-sulfinamide (4e), known compound

According to the reported procedure, to a solution of sulfinimine 3 (0.16 mmol) in CH₂Cl₂ (1 mL) was added phenyl magnesium bromide (0.32 mmol, 1.0 M in THF) at -48°C and the mixture was stirred for 2 h at the same temperature. The reaction was quenched with sat. NH₄Cl and the aqueous layer extracted with ethyl acetate (3 x 10 mL). The combined organic phases were washed with saturated brine, dried (MgSO₄) and concentrated under reduced pressure. A 92:8 diastereomeric mixture was obtained. The major diastereomer was separated by flash chromatography on silica gel (n-hexane:AcOEt, 1:1). Yield: 90%; [α]²⁰° -36 (c 0.50, CHCl₃).

To a solution of sulfinimine 3 (0.16 mmol) in THF (1 mL) was added fresh 3-[(tert-butyldimethylsilyloxy)methyl]phenylmagnesium bromide (0.56 mmol in THF 1.5 mL) at -48°C. The mixture was stirred at -48°C for 3 h. The reaction was quenched with sat. NH₄Cl and the aqueous layer extracted with AcOEt (3 x 10 mL). The combined organic phases were washed with saturated brine, dried (MgSO₄) and concentrated under reduced pressure. A 95:5 diastereomeric mixture was obtained. The major diastereomer was separated by flash chromatography on silica gel (n-hexane:AcOEt, 3:1). Yield: 93%; colorless oil; [α]²⁰° -53 (c 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.56-7.53 (m, 1H), 7.59-7.23 (m, 6H), 7.17-7.11 (m, 1H), 6.10 (d, J = 3.2 Hz, 1H), 3.71(broad s, 1H), 1.25 (s, 9H). ¹³C NMR (75 MHz) δ 141.0, 140.5, 133.3, 129.6, 129.0, 128.7, 127.5, 126.6, 125.6, 125.2, 124.0, 64.7, 61.0, 56.0, 26.0, 18.4, -5.3. MS (FAB+) m/z 510-512 (M+1)⁺, 452-454, 389-

The preparation and characterization of the o-bromosulfinamides 4a-d will be reported in due course.

Compound 4e has been obtained by diastereoselective reduction of the corresponding N-sulfinyl ketimine: M. Martjuga, D. Shabashov, S. Belyakov, E. Liepinsh, E. Suna J. Org. Chem. 2010, 75, 2357.

The corresponding bromide was converted to the Grignard reagent in refluxing THF, following the standard procedure.

S3
(S,R,R)-N-{1-(2-Bromophenyl)-2-[dimethyl(phenyl)silyl]ethyl}-2-methylpropane-2-sulfinamide (4g).

To a solution of the sulfinimine 3 (0.16 mmol) in THF (1 mL) was added the [(dimethylphenylsilyl)methyl]magnesium chloride\(^7\) (0.80 mmol in THF 1 mL) at rt. The mixture was stirred at rt for 3 h. The reaction was quenched with sat. NH\(_4\)Cl and the aqueous layer extracted with ethyl acetate (3 x 10 mL). The combined organic phases were washed with saturated brine, dried (MgSO\(_4\)) and concentrated under reduced pressure. Compound 4g was obtained as the sole diastereoisomer. The residue was purified by flash chromatography on silica gel (n-hexane:AcOEt, 3:1). Yield: 94%; colorless oil; [\(\alpha\)]\(^{20}\)\(_{D}\) -91 (c 0.5, CHCl\(_3\)). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.54-7.45 (m, 3H), 7.39-7.28 (m, 4H), 7.22(dt, \(J = 7.5, 1.3\) Hz, 1H), 7.06 (dd, \(J = 7.9, 7.2, 1.8\) Hz, 1H), 5.06 (m, 1H), 3.38 (s, 1H), 1.56 (dd, \(J = 14.8, 7.1\) Hz, 1H), 1.45 (dd, \(J = 14.7, 7.7\) Hz, 1H), 1.01 (s, 9H), 0.36 (s, 3H), 0.13 (s, 3H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 143.1, 138.3, 133.9, 133.2, 129.4, 128.9, 128.2, 128.8, 127.6, 123.4, 77.4, 55.6, 26.6, 22.5, -2.2, -3.2. MS (FAB+) \(m/z\) 438-440 [(M+1\(^{+}\)], 16, 135 (100), 57 (55). HRMS (FAB+) calcd for C\(_{20}\)H\(_{29}\)NOSBrSi [M+1\(^{+}\)], 438.0923; found 438.0917.

(S,R,S)-tert-Butyl 3-(2-bromophenyl)-3-(1,1-dimethylethylsulfinamido)propanoate (4h).

To a solution of Zn\(^8\) dust (0.6 mmol) in anhydrous THF (1 mL) at rt under argon atmosphere, tert-butyl bromoacetate (0.6 mmol) was added. The resulting reaction mixture was heated to reflux temperature and stirred for 30 min. Then, the reaction was cooled to rt and a solution of imine 3 (0.24 mmol) in anhydrous THF (0.5 mL) was added. After 30 min, the mixture was quenched with aq. NH\(_4\)Cl and the aqueous phase was extracted with ethyl acetate (3 x 10 mL). The combined organic phases were washed with saturated brine, dried (MgSO\(_4\)) and the solvent was removed under reduced pressure. Compound 4h was obtained as the sole diastereoisomer. The residue was purified by flash column chromatography on silica gel (n-hexane:AcOEt, 2:1). Yield: 97%; colorless oil; [\(\alpha\)]\(^{20}\)\(_{D}\) -79 (c 0.55, CHCl\(_3\)). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.55 (dd, \(J = 1.2, 7.9\) Hz, 1H), 7.42 (dd, \(J = 1.5, 7.8\) Hz, 1H), 7.29 (dt, \(J = 1.2, 7.6\) Hz, 1H), 7.13 (dt, \(J = 1.8, 7.5\) Hz, 1H), 5.17 (m, 1H), 4.76 (d, \(J = 5.5\) Hz, 1H), 2.88 (dd, \(J = 15.5, 5.4\) Hz, 1H), 2.80 (dd, \(J = 15.5, 7.0\) Hz, 1H), 1.38 (s, 9H), 1.23 (s, 9H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 170.4, 140.1, 133.3, 129.2, 128.9, 127.6, 123.4, 81.8, 56.0, 55.4, 41.9, 28.1, 22.8. MS

\(^8\) Zn dust, <10\mu (2.5 g). Zn activation was carried out by successive washes with an aqueous solution of HCl (5%, 3 x 3mL), H\(_2\)O (3 x 3mL), acetone (3 x 3 mL) and dry Et\(_2\)O (3 x 3 mL).
(FAB+) m/z 807-809-811 [(2M+1)+, 2], 404-406 [(M+1)+, 80], 348-350 (52), 57 (100). HRMS (FAB+) calcd for C_{17}H_{27}NO_{3}SBr [M+1]+, 404.0895; found 404.0895. Configurational assignment of compound 4h was effected by chemical correlation with the known aminoester: tert-Butyl (S)-3-Amino-3-(2-bromophenyl)propanoate (7)^9 - A HCl solution in MeOH (0.2 mmol, 1.25 M) was added to sulfinamide 4h (0.1 mmol) and the mixture stirred 1 h at rt. Then, the solvent was removed under reduced pressure and the residue acidified with an aq. HCl solution (10%) and washed with AcOEt (2x5mL). The aqueous phase was basified with an aq. NaOH solution (10%), and extracted with AcOEt (3x5mL). The organic extracts were dried (MgSO_{4}) and the solvent removed at vacuo. Yield: 94%. [α]_{20}^{20}D - 45 (c 0.70, CHCl_{3}). Lit. (S) [α]_{25}^{25}D - 45.0 (c 1.02, CHCl_{3}).

1H RMN: δ 7.54 (d, J = 7.9 Hz, 2H), 7.31 (t, J = 7.1 Hz, 1H), 7.11 (td, J = 7.9, 1.6 Hz, 1H), 4.78 (dd, J = 9.0, 4.0 Hz, 1H), 2.71 (dd, J = 15.9, 4.1 Hz, 1H), 2.52 (dd, J = 15.9, 9.2 Hz, 1H), 2.01 (broad s, 2H), 1.43 (s, 9H).

According to the known procedure^10, a solution of sulfinimine 3 (0.16 mmol) and Y(OTf)_{3} (0.17 mmol) in CH_{2}Cl_{2}:THF (1:0.15, 1.2 mL) was stirred 15 min at rt Then, TMSCN (0.32 mmol) was added, and the reaction mixture was maintained 7 h with stirring under argon atmosphere. The reaction was quenched with sat. NH_{4}Cl and the aqueous layer extracted with CH_{2}Cl_{2} (3 x 10 mL). The combined organic phases were washed with saturated brine, dried (MgSO_{4}) and concentrated under reduced pressure. A 94:6 diastereomeric mixture was obtained. The major diastereomer was isolated by flash column chromatography on silica gel (n-hexane:AcOEt, 1:1). Yield: 90%; colorless oil; 1H NMR (300 MHz, CDCl_{3}) δ 7.70 (d, J = 7.7 Hz, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.44-7.39 (m, 1H), 7.31-7.26 (m, 1H), 5.66 (d, J = 7.9 Hz, 1H), 4.06-4.03 (m, 1H), 1.24 (s, 9H). 13C NMR (75 MHz, CDCl_{3}) δ 133.8, 133.4, 131.4, 129.6, 128.5, 123.4, 117.4, 57.5, 50.4, 22.4. MS (FAB+) m/z 315-317 [(M+1)+, 19], 69 (45), 57 (100). HRMS (FAB+) calcd for C_{12}H_{16}N_{2}OSBr [M+1]+, 315.0167; found 315.0170. Configurational assignment of compound 4i was effected by chemical correlation with the known α-amino ester: (R)-(R)-2-(bromophenyl)glycine hydrochloride (8)^11.- Sulfinamide 4i was treated with an aq. HCl solution (6M) during 6h at 40°c and then, the solvent was removed at reduced pressure. Yield: 92%. [α]_{20}^{20}D - 53 (c 0.50, 1M HCl). Lit. (S) [α]_{25}^{25}D + 60 (c 1.02, CHCl_{3}). 1H RMN (D_{2}O): δ 7.78 (d, J = 8.0 Hz, 1H), 7.56-7.30 (m, 3H), 5.39-5.26 (broad s, 1H).

According to the known procedure,12 to a solution of \((R_S,R)-N-((2\text{-bromophenyl})(cyano)methyl)-2\text{-methylpropane-2-sulfinamide} \text{ 4i} (0.2 \text{ mmol})\) in THF (1 mL) was added BH\(_3\).THF (0.6 mmol, 1 M in THF). The solution was heated to reflux 24 h and then, the solution was cooled to room temperature and water was slowly added until the evolution of hydrogen subsided. Then, MeOH (200 \text{ µl}) and conc. H\(_2\)SO\(_4\) (100 \text{ µl}) were added to fully decomplex the aminoborane. The solution was stirred for 10 min, basified (10% NaOH) and extracted with Et\(_2\)O (3 x 10 mL). The combined organic phases were washed with brine, dried (MgSO\(_4\)) and concentrated under reduced pressure. Yield: 78%; yellow oil; [\(\alpha\)]\(_{20}^{D}\) - 116 (c 0.35, CHCl\(_3\)). \(1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.48-7.45 (m, 1H), 7.35-7.32 (m, 1H), 7.26-7.21 (m, 1H), 7.08-7.03 (m, 1H), 4.77-4.74 (m, 1H), 4.63 (broad s, 1H), 3.11 (dd, \(J\) = 12.8, 4.1 Hz, 1H), 2.74 (dd, \(J\) = 12.8, 8.2 Hz, 1H), 1.52 (broad s, 2H), 1.17 (s, 9H). \(13^C\) NMR (75 MHz) \(\delta\) 139.9, 133.1, 128.9, 128.7, 127.5, 123.5, 59.5, 55.8, 47.0, 22.7. HRMS (FAB+) calcd for C\(_{12}\)H\(_{20}\)N\(_2\)OSBr, [M+1]\(^+\), 319.0480; found 319.0484.

To a solution of the above amino derivative \(4k\) (0.18 mmol) and Et\(_3\)N (0.46 mmol) in CH\(_2\)Cl\(_2\) (0.8 mL), at 0 \(^\circ\)C, (BOC)\(_2\)O (0.2 mmol) was added. The mixture was stirred overnight at rt and then, was treated with aq. NaHCO\(_3\). The aqueous phase was extracted with ethyl acetate (3 x 10 mL). The organic layer was washed with brine, dried (MgSO\(_4\)) and the solvent was removed under reduced pressure. The residue was passed through a silica gel column (\(n\)-hexane:AcOEt, 1:1) to obtain tert-butyl carbamate \(4j\) as a colorless oil. Crude yield: 74%. \(1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.53 (d, \(J\) = 8.3 Hz 1H), 7.46 (d, \(J\) = 7.8 Hz 1H), 7.31 (t, \(J\) = 7.2 Hz, 1H), 7.14 (dt, \(J\) = 7.7, 1.7 Hz, 1H), 5.12 (broad s, 1H), 4.96 (m, 1H), 4.87 (s, 1H), 3.43 (t, \(J\) = 6.6 Hz, 2H), 1.44 (s, 9H), 1.23 (s, 9H).

Radical Cyclization. General procedure.13 A solution of AIBN (0.495 mmol) and tributyl tin hydride (0.54 mmol) in dry toluene (3.5 mL) was added for 2h to the corresponding sulfinamide (0.45 mmol) and AIBN (0.18 mmol) in previously deoxygenated dry toluene (20 mL) at 110ºC. The reaction was maintained 4 h before the solvent removal under reduced pressure. The residue was purified by flash chromatography on silica gel: KF (9:1).

\((R_S,S)-3\text{-Ethyl-2,3-dihydrobenzo[d]isothiazole-1-oxide} (5a).\)

Following the above general procedure, compound \(5a\) was obtained as the sole diastereomer from sulfinamide \(4a\) (0.45 mmol). Chromatography: \(n\)-hexane:AcOEt, 1:1. Yield: 78%; white solid; mp 107-109ºC; [\(\alpha\)]\(_{20}^{D}\) +19 (c 0.55, CHCl\(_3\)); IR (KBr): 2966, 2927, 1448, 1111, 1067, 1035 cm\(^{-1}\). \(1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.81-7.78 (m, 1H), 7.57-7.45 (m, 2H), 7.42-7.39 (m, 1H), 4.97 (broad s, 1H), 5.10 (broad s, 1H).

\(1^H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.71-7.68 (m, 1H), 7.58-7.55 (m, 1H), 7.49-7.46 (m, 1H), 4.93 (broad s, 1H). 1H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.52-7.49 (m, 2H), 7.41-7.38 (m, 1H), 4.95 (broad s, 1H), 5.11 (broad s, 1H). 1H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.81-7.78 (m, 1H), 7.57-7.45 (m, 2H), 7.42-7.39 (m, 1H), 4.97 (broad s, 1H).

\(13^C\) NMR (75 MHz) \(\delta\) 139.9, 133.1, 128.9, 128.7, 127.5, 123.5, 59.5, 55.8, 47.0, 22.7. HRMS (FAB+) calcd for C\(_{12}\)H\(_{20}\)N\(_2\)OSBr, [M+1]\(^+\), 319.0480; found 319.0484.

4.78-4.73 (m, 1H), 2.06-1.82 (m, 2H), 1.06 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz) δ 145.7, 142.3, 131.3, 128.8, 124.8, 123.6, 68.5, 31.6, 10.4. MS (EI+) m/z 181 (M+, 0.6), 163 (91), 162 (100), 136 (31). HRMS (EI) m/z caled for C$_9$H$_{11}$NOS: 181.0561; found: 181.0567.

(R,S$_3$)-3-iso-Propyl-2,3-dihydrobenzo[d]isothiazole-1-oxide (5b).

Following the above general procedure, compound 5b was obtained as the sole diastereomer from sulfinamide 4b (0.45 mmol). Chromatography: n-hexane:AcOEt, 2:1. Yield: 96%; white solid; mp 95-96 °C; 99% ee (HPLC, Chiralcel OD, 1.0 mL/min, i-PrOH/hexane 5/95, λ = 254 nm, t$_R$= (S) 20.4 min, (R) 35.7 min). $[\alpha]_{20}^D$ +19 (c 0.7, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$) δ 7.79-7.76 (m, 1H), 7.54-7.47 (m, 2H), 7.39-7.37 (m, 1H), 4.92 (broad s, 1H), 4.77-4.74 (m, 1H), 2.23-2.13 (m, 1H), 1.12 (d, J = 6.8 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H).13C NMR (75 MHz, CDCl$_3$) δ 145.7, 141.6, 131.2, 128.9, 125.0, 123.6, 73.0, 33.2, 20.4, 16.4. IR (KBr): 1463, 1452, 1384, 1367, 1069, 1044, 1004, 758 cm$^{-1}$. MS (ESI+) m/z 218 [(M+Na)$^+$, 100], 196 [(M+1)$^+$, 81]. HRMS (ESI+) m/z calcd for C$_{10}$H$_{14}$NOS: 196.0790; found: 196.0797.

(R,S$_3$)-3-Cyclohexyl-2,3-dihydrobenzo[d]isothiazole-1-oxide (5c).

Following the above general procedure, compound was obtained as unique diastereomer from sulfinamide 4c (0.45 mmol). Chromatography: n-hexane:AcOEt, 2:1. Yield: 76%; colorless oil; $[\alpha]_{20}^D$ +16 (c 0.52, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$) δ 7.77 (d, J = 7.2 Hz, 1H), 7.56-7.53 (m, 2H), 7.40 (d, J = 7.3 Hz, 1H), 4.86 (broad s, 1H), 4.72 (broad s, 1H), 1.85-1.62 (m, 5H), 1.30-1.18 (m, 6H). 13C NMR (75 MHz) δ 145.7, 141.4, 131.2, 128.8, 124.9, 123.7, 72.6, 43.3, 30.9, 26.8, 26.5, 26.0, 25.9. IR (NaCl): 1086, 1043, 1018 cm$^{-1}$. MS (EI) m/z 235 (M$^+$, 0.5), 217 (30), 162 (100), 149 (97), 136 (68), 135 (47). HRMS (EI) m/z calcd for C$_{13}$H$_{17}$NOS: 235.1031; found: 235.1039.

(R,S$_3$)-3-(tert-Butyl)-2,3-dihydrobenzo[d]isothiazole-1-oxide (5d).

Following the above general procedure, compound 5d was obtained as the sole diastereomer from sulfinamide 4d (0.45 mmol). Chromatography: n-hexane:AcOEt, 1:1. Yield: 74%; white solid; mp 108-110°C; $[\alpha]_{20}^D$ +18 (c 1.4, CHCl$_3$); IR (KBr): 2951, 2867, 1466, 1393, 1130, 1070 cm$^{-1}$.H NMR (300 MHz, CDCl$_3$) δ 7.80-7.75 (m, 1H), 7.55-7.45 (m, 3H), 5.06 (broad s, 1H), 4.51 (d, J = 3.9 Hz, 1H), 1.08 (s, 9H).13C NMR (75 MHz) δ 145.8, 140.6, 130.6, 128.7, 125.2, 124.9, 76.9, 35.3, 26.8. MS (ESI+) m/z 232 [(M+Na)$^+$, 100], 210 [(M+1)$^+$, 57]. HRMS (ESI+) m/z calced for C$_{11}$H$_{16}$NOS: 210.0947; found: 210.0947.

(S,S$_3$)-3-Phenyl-2,3-dihydrobenzo[d]isothiazole-1-oxide (5e).
Following the above general procedure, compound 5e was obtained as the sole diastereomer from sulfinamide 4e (0.45 mmol). Chromatography: *n*-hexane:AcOEt, 1:1. Yield: 76%; colorless oil; \([\alpha]^{20}_D\) -25 (c 0.4, CHCl₃); IR (NaCl): 2925, 2865, 1452, 1068, 1045 cm⁻¹. H NMR (300 MHz, CDCl₃) \(\delta\) 7.87-7.84 (m, 1H), 7.49-7.46 (m, 2H), 7.38-7.36 (m, 3H), 7.26-7.23 (m, 2H), 7.12-7.09 (m, 1H), 6.29 (s, 1H), 4.90 (broad s, 1H).

\(\text{13}^C\) NMR (75 MHz) \(\delta\) 146.1, 142.7, 139.1, 131.7, 129.1, 129.0, 128.9, 127.9, 124.5, 124.3, 68.7. MS (EI) m/z 229 (M⁺, 0.4), 213 (11), 212 (40), 211 (99), 210 (100). HRMS (EI) m/z calc'd for C₁₃H₁₁NOS: 229.0561; found: 229.0569.

\((S,S,S)-3-[[\text{tert-Butyldimethylsilyloxy}]\text{methyl}]\text{phenyl}-2,3\text{-dihydrobenzo[d]isothiazole-1-oxide (5f).}\)

Following the above general procedure, compound 5f was obtained as the sole diastereomer from sulfinamide 4f (0.45 mmol). Chromatography: *n*-hexane:AcOEt, 1:1. Yield: 86%; colorless oil; \([\alpha]^{20}_D\) -36 (c 0.58, CHCl₃); IR (NaCl): 2932, 2905, 2838, 1440, 1460, 1240, 1060 cm⁻¹. H NMR (300 MHz, CDCl₃) \(\delta\) 7.86-7.83 (m, 1H), 7.51-7.42 (m, 2H), 7.36-7.30 (m, 2H), 7.19 (broad s, 1H), 7.14-7.09 (m, 2H), 6.29 (s, 1H), 4.88 (broad s, 1H), 4.72 (s, 2H), 0.9 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H). \(\text{13}^C\) NMR (75 MHz) \(\delta\) 146.1, 142.8, 142.6, 139.2, 131.7, 128.9, 126.4, 125.4, 124.6, 124.3, 68.8, 64.6, 25.9, 18.4, -5.3. MS (ESI+) m/z 769 [(2M+Na)⁺, 9], 747 [(2M+1)⁺, 21], 396 [(M+Na)⁺, 44], 374 [(M+1)⁺, 100]. HRMS (ESI+) m/z calc'd for C₂₀H₂₈NO₂SiS: 374.1604; found: 374.1622.

\((R,S,S)-3-[[\text{Dimethyl(phenyl)silylmethyl}]\text{2,3-dihydrobenzo[d]isothiazole-1-oxide (5g).}\)

Following the above general procedure, compound 5g was obtained as the sole diastereomer from sulfinamide 4g (0.45 mmol). Chromatography: *n*-hexane:AcOEt, 1:1. Yield: 66%; colorless oil; \([\alpha]^{20}_D\) -100 (c 1.5, CHCl₃); IR (NaCl): 2950, 2895, 1430, 1246, 1060 cm⁻¹. H NMR (300 MHz, CDCl₃) \(\delta\) 7.75-7.72 (m, 1H), 7.55-7.49 (m, 3H), 7.46-7.44 (m, 1H), 7.40-7.36 (m, 4H), 5.42-5.37 (m, 1H), 4.28 (broad s, 1H), 1.64 (dd, J = 14.9, 4.3 Hz, 1H), 1.17 (dd, J = 14.9, 9.2 Hz, 1H), 0.38 (s, 3H), 0.32 (s, 3H). \(\text{13}^C\) NMR (75 MHz) \(\delta\) 146.1, 144.6, 137.9, 133.7, 131.6, 129.8, 128.8, 128.5, 124.5, 123.3, 61.9, 23.3, -1.9, -2.6. MS (ESI+) m/z 625 [(2M+Na)⁺, 28], 603 [(2M+1)⁺, 11], 324 [(M+Na)⁺, 99], 302 [(M+1)⁺, 100]. HRMS (ESI+) m/z calc'd for C₁₆H₂₀NOSiS: 302.1029; found: 302.1036.

\((S,S)-\text{tert-Butyl 2-(1-oxide-2,3-dihydrobenzo[d]isothiazol-3-yl})\text{acetate (5h).}\)
Following the above general procedure, compound 5h was obtained as the sole diastereomer from sulfinamide 4h (0.45 mmol).
Chromatography: n-hexane:AcOEt, 1:1. Yield: 73%; colorless oil; [α]\textsubscript{D}20 -169 (c 0.5, CHCl\textsubscript{3}); IR (NaCl): 2977, 2953, 1724, 1369, 1150 cm-1. 1H NMR (300 MHz, CDCl\textsubscript{3}) \ δ 7.83-7.81 (m, 1H), 7.58-7.48 (m, 2H), 7.40-7.37 (m, 1H), 5.57-5.53 (m, 1H), 5.37 (broad s, 1H), 3.00 (dd, \textit{J} = 16.4, 3.1 Hz, 1H), 2.40 (dd, \textit{J} = 16.4, 10.3 Hz, 1H), 1.48 (s, 9H). 13C NMR (75 MHz) \ δ 170.2, 146.5, 140.5, 131.6, 129.2, 124.7, 122.9, 82.0, 60.8, 41.0, 28.1. MS (ESI+) \textit{m/z} 557 [(2M+Na)+, 36], 535 [(2M+1)+, 14], 290 [(M+Na)+, 100], 268 [(M+1)+, 81], 212 (89). HRMS (ESI+) \textit{m/z} calcd for C\textsubscript{13}H\textsubscript{18}NO\textsubscript{3}S: 268.1001; found: 268.1016.

\textbf{(R,S\textsubscript{3})-tert-Butyl-[(1-oxide-2,3-dihydrobenzo[d]isothiazol-3-yl)methyl]carbamate (5j).}

Following the above general procedure, compound 5j was obtained as the sole diastereomer from sulfinamide 4j (0.45 mmol).
Chromatography: n-hexane:AcOEt, 1:3. Yield: 78%; white solid; mp 151-154 °C; [α]\textsubscript{D}20 -145 (c 1.8, CHCl\textsubscript{3}); IR (KBr): 2975, 2930, 1712, 1543, 1271, 1175, 1025 cm-1. 1H NMR (300 MHz, CDCl\textsubscript{3}) \ δ 7.82-7.79 (m, 1H), 7.55-7.50 (m, 2H), 7.48-7.44 (m, 1H), 5.64 (broad s, 1H), 5.36 (broad s, 1H), 4.79 (broad s, 1H), 3.77-3.71 (m, 1H), 3.40-3.34 (m, 1H), 1.38 (s, 9H). 13C NMR (75 MHz) \ δ 156.8, 146.9, 139.3, 131.7, 129.4, 124.9, 123.3, 80.2, 66.3, 44.2, 28.3. MS (ESI+) \textit{m/z} 587 [(2M+Na)+, 16], 305 [(M+Na)+, 100], 283 [(M+1)+, 62], 227 (53). HRMS (ESI+) \textit{m/z} calcd for C\textsubscript{13}H\textsubscript{19}N\textsubscript{2}O\textsubscript{3}S: 283.1110; found: 283.1118.

\textbf{Oxidation. General procedure.}

To a solution of the corresponding cyclic sulfinamide 5 (0.45 mmol) in CH\textsubscript{2}Cl\textsubscript{2} at 0 °C, a solution of \textit{m}-CPBA (0.45 mmol) in the same solvent was added. The reaction mixture was stirred for 30 min before the addition of an aq. NaHCO\textsubscript{3} solution and the aqueous phase was extracted with CH\textsubscript{2}Cl\textsubscript{2} (3x10 mL). The combined organic phases were washed with saturated brine, dried (MgSO\textsubscript{4}) and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel. The eluent was indicated in each case.

\textbf{(R)-3-Ethyl-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6a), known compound15}

Following the above general procedure, compound 6a was obtained from sulfinamide 5a (0.45 mmol). Chromatography: n-hexane:AcOEt, 4:1. Yield: 98%; white solid; mp 45-47ºC; the ee was determined by HPLC (Chiralcel OD, 1.0 mL/min, i-PrOH/n-heptane 30/70, \textit{λ} = 254 nm, \textit{t}\textsubscript{R} = (R) 10.2 min), 99% ee (Lit.15 \textit{t}\textsubscript{R} = (S) 6.4 min, (R) 9.6 min); [α]\textsubscript{D}20 54 (c 1.7, CHCl\textsubscript{3}) (lit.15 [α]\textsubscript{D}25 -50.1 c 1.06, CHCl\textsubscript{3},

14 The treatment of the non protected amino derivative 4k, following the general procedure for radical cyclization, resulted in a complex mixture of compounds.

15 M. Seppelt, D. Enders \textit{Synlett}, 2011, 3, 402.
81% ee (S); IR (KBr): 3025, 2973, 2937, 1456, 1168, 1131 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, 7.6, 1H), 7.61 (dt, J = 7.5, 1.2 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.37 (d, J = 7.7 Hz 1H), 4.99 (br, 1H), 4.69-4.63 (m, 1H), 2.10-1.96 (m, 1H), 1.87-1.75 (m, 1H), 1.02 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz) δ 140.3, 135.8, 133.1, 129.2, 124.1, 121.3, 59.1, 28.7, 9.9. MS (FAB) m/z 395 [(2M+1)⁺, 10], 198 [(M+1)⁺, 100]. HRMS (FAB) m/z calcd for C₉H₁₂NO₂S: 198.0589; found: 198.0590.

(R)-3-iso-Propyl-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6b).
Following the above general procedure, compound 6b was obtained from sulfinamide 5b (0.45 mmol). Chromatography: n-hexane:AcOEt, 2:1.Yield: >99%; colorless oil; the ee was determined by HPLC (Chiralcel OD, 1.0 mL/min, i-PrOH/hexane 5/95, λ = 254 nm, tᵣ = (S) 21.8 min, (R) 32.4 min), 99% ee; [α]²⁰D +67 (c 0.6, CHCl₃); IR (KBr): 1467, 1283, 1168, 1131 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.78-7.76 (m, 1H), 7.65-7.59 (m, 1H), 7.55-7.49 (m, 1H), 7.39-7.36 (m, 1H), 4.86 (br, 1H), 4.69-4.67 (m, 1H), 2.32-2.22 (m, 1H), 1.12 (d, J = 6.9 Hz, 3H), 0.76 (d, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz) δ 139.2, 135.8, 133.1, 129.3, 124.3, 121.4, 63.3, 32.8, 20.1, 15.4. MS (ESI⁺) m/z 445 [(2M+Na)⁺, 23], 234 [(M+Na)⁺, 100], 212 [(M+H)⁺, 18]. HRMS (ESI⁺) m/z calcd for C₁₀H₁₄NO₂S: 212.0739; found: 212.0741.

(R)-3-Cyclohexyl-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6c).
Following the above general procedure, compound 6c was obtained from sulfinamide 5c (0.45 mmol). Chromatography: n-hexane:AcOEt, 4:1. Yield: 98%; colorless oil; [α]²⁰D +54 (c 0.65, CHCl₃); IR (KBr): 3023, 2927, 1277, 1167, 1155, 1132 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, J = 7.9 Hz, 1H), 7.61 (dt, J = 7.5, 1.2 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.38 (d, J = 7.7 Hz, 1H), 4.92 (broad, 1H), 4.62 (t, J = 4.1 Hz 1H), 1.90-1.80 (m, 3H), 1.71-1.65 (m, 2H), 1.34-1.09 (m, 6H). ¹³C NMR (75 MHz) δ 139.2, 135.8, 133.1, 129.3, 124.3, 121.4, 62.9, 42.7, 30.7, 26.4, 25.9, 25.8, 25.8. MS (FAB) m/z 503 [(2M+1)⁺, 9], 252 [(M+1)⁺, 100], 212 [(M+H)⁺, 18]. HRMS (ESI⁺) m/z calcd for C₁₃H₁₈NO₂S: 252.0739; found: 252.0741.

(R)-3-(tert-Butyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6d), known compound. Following the above general procedure, compound 6d was obtained from sulfinamide 5d (0.45 mmol). Chromatography: n-hexane:AcOEt, 3:1. Yield: 98%; white solid; mp 124-126°C; [α]¹⁸D -54 (c 1.0, CHCl₃,(S)]. IR (KBr): 2960, 2918, 1281, 1169, 1130. ¹H NMR (300 MHz, CDCl₃) δ 7.80-7.77 (m, 1H), 7.61-7.49 (m, 3H), 4.98 (broad s, 1H), 4.42 (d, J = 5.1 Hz, 1H), 1.05 (s, 9H). ¹³C NMR (75 MHz) δ 138.1, 136.1, 132.3, 129.3, 126.0, 121.6, 67.4, 36.7, 26.6.

MS (FAB) m/z 451 [(2M+1)+, 10], 226 [(M+1)+, 100]. HRMS (FAB) m/z calcd for C_{11}H_{16}NO_{2}S: 226.0902; found: 226.0905.

(S)-3-Phenyl-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6e), known compound.\(^{15,17}\)

Following the above general procedure, compound 6e was obtained from sulfinamide 5e (0.45 mmol). Chromatography: *n*-hexane:AcOEt, 4:1. Yield: 90%, colorless oil, [α]^{20}_{D} +89 (c 1.8, CHCl\(_3\)). The ee was determined by HPLC (Chiralcel OJ-H, 0.8 mL/min, i-PrOH/*n*-hexane 30/70, λ = 254 nm, t\(_R\) = 18.9 min (S)), 99% ee. [lit.\(^{17}\): [α]^{25}_{D} +93.6 (c 1.0, CHCl\(_3\)); HPLC: t\(_R\) = 18.7 min (S), 21.1 min (R); 98% ee (S)]; IR (KBr): 3023, 2927, 1277, 1175, 1142 cm\(^{-1}\).\(^{1}H\) NMR (300 MHz, CDCl\(_3\)) δ 7.86-7.78 (m, 1H), 7.58-7.49 (m, 2H), 7.39-7.33 (m, 5H), 7.16-7.09 (m, 1H), 5.71 (s, 1H), 5.05 (broad s, 1H).\(^{13}C\) NMR (75 MHz) δ 139.8, 138.7, 134.8, 133.4, 129.5, 129.3, 129.1, 127.6, 125.4, 121.2, 61.4. MS (FAB) m/z 230 (14), 246 [(M+1)+, 100]. HRMS (FAB) m/z calcd for C\(_{13}\)H\(_{12}\)NO\(_{2}\)S: 246.0589; found: 246.0582.

(S)-3-[3-(tert-Butyldimethylsilyloxy)methyl]phenyl-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6f), known compound\(^{17}\)

Following the above general procedure, compound 6f was obtained from sulfinamide 5f (0.45 mmol). Chromatography: *n*-hexane:AcOEt, 3:1. Yield: 91%, colorless oil, [α]^{20}_{D} + 62 (c 0.55, CHCl\(_3\)). [lit.\(^{17}\): [α]^{25}_{D} +61.4 (c 1.40, CHCl\(_3\)), 98% ee (S)]; IR (KBr): 2929, 2885, 2857, 1471, 1299, 1167 cm\(^{-1}\).\(^{1}H\) NMR (300 MHz, CDCl\(_3\)) δ 7.77-7.71 (m, 1H), 7.49-7.42 (m, 2H), 7.29-7.23 (m, 3H), 7.19-7.14 (m, 1H), 7.08-7.03 (m, 1H), 5.63 (d, J = 4.1 Hz, 1H), 4.93 (broad d, J = 3.8 Hz, 1H), 4.65 (s, 2H), 0.83 (s, 9H), 0.00 (s, 6H).\(^{13}C\) NMR (75 MHz) δ 142.8, 139.9, 138.6, 134.9, 133.3, 129.5, 129.2, 126.7, 126.2, 125.4, 125.1, 121.1, 64.5, 61.4, 25.9, 18.4, -5.27. MS (FAB) m/z 390 [(M+1)+, 58], 332 (96), 258 (100). HRMS (FAB) m/z calcd for C\(_{20}\)H\(_{28}\)NO\(_{3}\)Si: 390.1559; found: 390.1562.

(R)-3-[Dimethyl(phenyl)silylmethyl]-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide (6g).

Following the above general procedure, compound 6g was obtained from sulfinamide 5g (0.45 mmol). Chromatography: *n*-hexane:AcOEt, 4:1. Yield: 92%; colorless oil; [α]^{20}_{D} - 67 (c 1.4, CHCl\(_3\)); IR (KBr): 3069, 2956, 1331, 1170 cm\(^{-1}\).\(^{1}H\) NMR (300 MHz, CDCl\(_3\)) δ 7.56 (d, J = 7.5 Hz, 1H), 7.44-7.39 (m, 3H), 7.32 (t, J = 7.5 Hz, 1H), 7.27-7.25 (m, 3H), 7.18 (d, J = 7.5 Hz, 1H), 4.57-4.52 (m, 1H), 4.26 (d, J = 4.6 Hz, 1H), 1.45-1.40 (m, 1H), 1.24-1.15 (m, 1H), 0.30 (s, 3H), 0.27 (s, 3H).\(^{13}C\) NMR (75 MHz) δ 146.0, 139.8, 137.8, 136.1, 135.5, 132.1, 131.3, 130.7,

126.3, 123.5, 57.7, 26.3, 0.0. MS (FAB) m/z 318 [(M+1)^+, 35], 240 (100). HRMS (FAB) m/z calcd for C_{14}H_{20}NO_{2}S: 318.0984; found: 318.0978.

125(S)-**tert-Butyl 2-(1,1-dioxide-2,3-dihydrobenzo[d]isothiazol-3-yl)acetate (6h), known compound**

Following the above general procedure, compound 6h was obtained from sulfinamide 5h (0.45 mmol). Chromatography: n-hexane:AcOEt, 4:1. Yield: 90%. The ee was determined by HPLC (Chiralcel OD, 0.7 mL/min, i-PrOH/n-hexane 25/75, λ = 254 nm, t_{R}= 12.5 min (S), t_{R}= 13.8 (R), 99% ee). [α]^{20}_{D} -80 (c 0.50, CHCl_{3}) [Lit.18: HPLC: 96% ee (R)]; IR (KBr): 2979, 2932, 1723, 1369, 1299, 1166 cm\(^{-1}\).1H NMR (300 MHz, CDCl_{3}) δ 7.78 (d, J = 7.2 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.38 (d, J = 7.7 Hz, 1H), 5.56 (broad s, 1H), 5.06-5.00 (m, 1H), 2.90 (dd, J = 16.8, 3.8, Hz, 1H), 2.71 (dd, J = 16.8, 9.6 Hz, 1H), 1.44 (s, 9H).13C NMR (75 MHz) δ 169.9, 138.5, 135.8, 133.2, 129.6, 124.0, 121.5, 82.4, 53.8, 41.1, 28.1. MS (FAB) m/z 284 [(M+1)^+, 15], 228 (100), 168 (40), 57 (57). HRMS (FAB) m/z calcd for C_{13}H_{18}NO_{2}S: 284.0957; found: 284.0946.

126(R)-**tert-Butyl (1,1-dioxide-2,3-dihydrobenzo[d]isothiazol-3-yl)methylcarbamate (6j).

Following the above general procedure, compound 6j was obtained from sulfinamide 5j (0.45 mmol). Chromatography: n-hexane:AcOEt, 1:1. Yield: 99%; white solid; mp 106-108ºC; [α]^{20}_{D} -63 (c 0.75, CHCl_{3}); IR (KBr): 2978, 2926, 1692, 1518, 1286, 1168 cm\(^{-1}\).1H NMR (300 MHz, CDCl_{3}) δ 7.77 (d, J = 7.9 Hz, 1H), 7.65-7.51 (m, 2H), 7.45 (d, J = 7.7 Hz, 1H), 5.70 (broad s, 1H), 5.06 (broad s, 1H), 4.85 (broad s, 1H), 3.75-3.65 (m, 1H), 3.43-3.34 (m, 1H), 1.40 (s, 9H).13C NMR (75 MHz) δ 169.9, 138.5, 135.8, 133.2, 129.6, 124.0, 121.5, 82.4, 53.8, 41.1, 28.1. MS (FAB) m/z 299 [(M+1)^+, 92], 243 (100), 57 (55). HRMS (FAB) m/z calcd for C_{13}H_{19}N_{2}O_{4}S: 299.1066; found: 299.1060.

127(R)-**3-(Aminomethyl)-2,3-dihydrobenzo[d]isothiazole-1,1-dioxide hydrochloride (6k).

A solution of HCl (0.2 mmol, 2 equiv, 1.25 M in MeOH) was added to benzosultam 6j (0.1 mmol). The mixture was stirred at rt for 1.5 h and then, was concentrated. The residue was purified by trituration with Et_{2}O. Yield: 94%, white solid; mp 123-125ºC; [α]^{20}_{D} -53 (c 0.54, CHCl_{3}); IR (KBr): 2990, 2924, 1271, 1158, 1132 cm\(^{-1}\).1H NMR (300 MHz, methanol-d_{4}) δ 7.90-7.71 (m, 4H), 5.11 (dd, J = 9.2, 3.5 Hz, 1H), 3.57 (dd, J = 13.2, 3.5 Hz, 1H),

3.21 (m, 1H). 13C NMR (75 MHz, methanol -d$_4$) δ 138.2, 134.8, 131.6, 126.5, 122.2, 55.9, 44.8. MS (FAB+) m/z 199 [(M+1)$^+$, 90], 57 (100). HRMS (FAB) m/z caled for C$_9$H$_{11}$N$_2$O$_2$S$^+$: 199.0541; found: 199.0540.