Template-free synthesis of mesoporous polymers

Xinxin Sang, Li Peng, Jianling Zhang*, Buxing Han, Zhimin Xue, Chengcheng Liu, and Guanying Yang

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences.

1. Experimental Section

Materials: \([C_n\text{mim}][BF_4]\) (>98% purity) were provided by Lanzhou Greenchem ILS, LICP, CAS. Acrylamide (A. R. grade) was produced by Beijing Chemical Reagent Company. N,N'-methylenebisacrylamide (laboratory grade) was obtained from Alfa Aesar. Potassium persulfate (K_2S_2O_8) (A. R. grade) and p-chloronitrobenzene (p-CNB) were supplied by Sinopharm Chemical Reagent Co., Ltd. The Pd/C catalyst was provided by Baoji Rock Pharmachem Co., Ltd. (5 wt% Pd, Product No. D5L3). Palladium chloride (PdCl_2) (>97% purity) was produced by Sinopharm Chemical Reagent Co., Ltd. H_2 (99.99% purity) was provided by Beijing Analytical Instrument Factory.

PAM synthesis and characterization: The polymerization was performed in 25 mL flask with a magnetic stirrer inside. For the polymerization of acrylamide, 0.750 g of the monomer acrylamide, 0.012 g of the crosslinker N,N'-methylenebisacrylamide and 0.012 g of the initiator potassium peroxydisulfate were dissolved in 18 mL \([C_n\text{mim}][BF_4]\) and the mixture was stirred to form a homogeneous solution. The solution was stirred under N_2 atmosphere at 60 °C for 4 h to polymerization, and then cooled down to room temperature with methanol to terminate the reaction. The product was washed by acetone for several times and dried at 50 °C for 24 h.

The morphology of the PAM was characterized by a HITACHI S-4800 SEM and TEM JeoL-1010 operated at 100 kV. The mesoporosities were determined by N_2 adsorption-desorption isotherms using a Quadrasorb SI-MP system. FT-IR spectra were obtained by a Bruker Tensor 27 spectrometer. The thermogravimetric analysis
(TGA) measurement was carried out with a heating rate of 20 ℃/min using PerkinElmer Pyris 1 under N₂ flow of 50 mL/min to estimate thermal stability. X-ray photoelectron spectroscopy (XPS) data were obtained with an ESCALab220i-XL electron spectrometer from VG Scientific using 300W AlKα radiation. The base pressure was about 3×10⁻⁹ mbar. The binding energies were referenced to the C1s line at 284.8 eV from adventitious carbon.

Pd/PAM synthesis, characterization and catalytic activity: PdCl₂ (0.010 g) and the PAM synthesized in [C₄mim][BF₄] (0.20 g) were added into a flask containing 100 mL ethanol. The colloidal sol of the polymer-anchored palladium is prepared by an alcohol reduction method. The mixture was stirred at 70 ℃ for 24 h. After centrifugation, the product was dried at 50 ℃ for 24 h. Pd/PAM was obtained after cooling. XRD analysis was performed on the X-ray diffractometer (ModelD/MAX2500, Rigaka) with Cu Ka radiation. XPS measurement was performed on the VG Scientific ESCALab220i-XL spectrometer using Al Ka radiation. The loading content of Pd in PAM was determined by ICP-AES (VISTA-MPX).

For the hydrogenation reaction, p-chloronitrobenzene (0.31 g), ethanol (10mL), and Pd/PAM (10 mg) were placed in a 20 mL stainless steel reactor. The reactor was evacuated and filled with H₂ (three times). The stirrer was started with a rate of 300 rpm. H₂ was added to the suitable pressure and kept to be constant during the reaction, which was monitored by a pressure transducer (Foxboro/ICT model 930). After reaction for a certain time, the products were separated from the catalyst by centrifugation (1200 rpm). The products were analyzed by a high performance liquid chromatography (HPLC) with Shimadzu LC-15C pump, Shimadzu UV-Vis SPD-15C detector at 295 nm and a Supelcosil LC-18 5μm column at 35 ℃. Methanol/water solution (60/40 V/V) was used as the mobile phase at flow rate of 1.0 mL/min.

2. Results and Discussion
Fig. S1 FT-IR spectra of acryamide (a), [C₄mim][BF₄] (b), and the PAM synthesized in [C₄mim][BF₄] (c). The absorption peak of =CH₂ of AM (960 cm⁻¹) vanishes in the spectrum of PAM, confirming that monomers have polymerized completely. The C–H ring stretching vibrations of the imidazolium in [C₄mim][BF₄] at 3165 and 3110 cm⁻¹ are invisible in the spectrum of PAM, indicating there is no residual IL in the polymer.

Fig. S2 TGA curves of acryamide (a), [C₄mim][BF₄] (b), and the PAM synthesized in [C₄mim][BF₄] (c). It indicates that the monomers are polymerized completely and the PAM could keep stable up to 270 °C.
Fig. S3 FT-IR spectra of the PAMs synthesized in [C₆mim][BF₄] (a), [C₈mim][BF₄] (b), and [C₁₀mim][BF₄] (c).

Fig. S4 Thermogravimetric curves of the PAMs synthesized in [C₆mim][BF₄] (a), [C₈mim][BF₄] (b), and [C₁₀mim][BF₄] (c).
Fig. S5 N_2 adsorption-desorption isotherms and mesopore size distribution curves (the insets) of the PAMs synthesized in $[\text{C}_6\text{mim}][\text{BF}_4]$ (A), $[\text{C}_8\text{mim}][\text{BF}_4]$ (B), and $[\text{C}_{10}\text{mim}][\text{BF}_4]$ (C).

Fig. S6 X-ray diffraction pattern of the Pd/PAM catalyst.
Fig. S7 X-ray photoelectron spectroscopy of the Pd/PAM catalyst.