Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting information

Trinuclear Zn₃(OAc)₄-3,3'-bis(aminoimino)binaphthoxide Complex for Highly Efficient Catalytic Asymmetric Iodo- and Bromolactonization

Takayoshi Arai,^a* Noriyuki Sugiyama,^a Hyuma Masu,^b Sayaka Kado,^b Shinnosuke Yabe,^c and Masahiro Yamanaka^c

^aDepartment of Chemistry, Graduate School of Science, Chiba University
1-33 Yayoi, Inage, Chiba 263-8522, Japan
^bCenter for Analytical Instrumentation, Chiba University
1-33 Yayoi, Inage, Chiba 263-8522, Japan
^cDepartment of Chemistry, Rikkyo University
3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8588, Japan

*e-mail: <u>tarai@faculty.chiba-u.jp</u>

Contents

1. General	S3
2. Synthesis L3	$\mathbf{S3}$
3. Reaction optimization of enantioselective iodolactonization	$\mathbf{S4}$
4. General procedure of enantioselective iodolactonization	S5
5. ¹ H-NMR study for ligand-Zn(OAc) ₂ species	$\mathbf{S6}$
6. Analytical data for product of iodolactonization and bromolactonization	S10
7. ¹ H-NMR and ¹³ C-NMR spectra	S13
8. HPLC spectra	S26
9. X-ray crystallography of L3-Zn ₃ (OAc) ₄ (CCDC 956608)	S38
10. DFT-GIAO calculation of L3- $Zn_3(OAc)_4$	S40

1. General

[1,1'-binaphthalene]-2,2'-diol (L3)

Dry solvents were purchased from commercial suppliers and used without further purification. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230-400 mesh silica gel containing a fluorescent indicator (Merck, #1.05715.0009). Silica gel column chromatography was performed on Kanto silica gel 60 (spherical, 100-210 μ m). IR spectra were recorded on JASCO FT/IR-4100 using ATR. ¹H-NMR spectra were recorded on JEOL ECS-400 (400MHz), ECA-500 (500MHz), ECX-400 (400MHz) spectrometers. Chemical shifts of ¹H-NMR spectra were reported relative to tetramethyl silane (δ 0). ¹³C-NMR spectra were recorded on JEOL ECS-400 (100MHz), ECA-500 (125MHz), ECX-400 (100MHz) spectrometers. Chemical shifts of ¹³C-NMR spectra were reported relative to CDCl₃ (δ 77.0). Splitting patterns were reported as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad.

2. Synthesis of (R) - 3,3' - bis((E) - (((1R,2R) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 1,2 - diphenylethyl) imino) methyl) - 2 - (isoindolin - 2 - yl) - 2 - (isoindolin

A mixture of (R)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarbaldehyde¹⁾ (61.0 mg, 0.195 mmol) and (1R,2R)-2-(isoindolin-2-yl)-1,2-diphenylethanamine (0.41 mmol)²⁾ in ethanol (30 mL) was heated to reflux. After being stirred for 24 hours, the solvent was removed under reduced pressure and the resulting residue was washed with cold ethanol to give L3 as a yellow brown solid. ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 2H), 7.96 (s, 2H), 7.88 (d, J=7.73 Hz, 2H), 7.37-7.30 (m, 6H), 7.14-7.00 (m, 30 H), 4.95 (d, J=7.45 Hz, 2H), 4.25 (d, J=7.45 Hz, 2H), 4.05 ¹³C J=11.46 Hz, 4H), 3.98 (d, J=11.46 Hz. 4H): NMR (125MHz, (d, CDCl₃) 8164.97, 154.57, 139.89, 139.48, 138.02, 135.27, 133.92, 129.54, 128.89, 128.26, 128.11, 127.93, 127.74, 127.62, 127.22, 127.06, 126.58, 124.94, 123.35, 122.12, 121.09, 116.59, 78.70, 77.54, 58.32; HRMS calced for $C_{66}H_{55}O_2N_4$ (M+H)⁺: 935.4320, found: m/z 935.4314; $[\alpha]_D^{20.0}$ = +30.6 (c=0.115, CHCl₃); IR (neat) 3696, 3028, 2870, 2783, 1628, 1494, 1464, 1451, 1384, 1341, 1316, 1299, 1263, 1176, 1149, 1119, 1073, 1053, 1028, 934 cm⁻¹.

1) Belkon, Y. N.; Chusov, D.; Borkin, D. A.; Yashkina, L. V.; Dmitriev, A. V.; Katayev, D.; North, M. *Tetrahedron:* Asymmetry **2006**, *17*, 2328-2333.

2) Arai, T.; Watanabe, M.; Yanagisawa, A. Org. Lett. 2007, 9, 3595-3597.

3. Reaction optimization of enantioselective iodolactonization

First, the effects of metal salts were investigated using *in situ* prepared-L2 ligand (Table S1, entry 1~6). By using $Zn(OAc)_{2,}$ we obtained iodolactone in good yield and excellent enantioselectivity. The L2' (diastereomer of L2) prepared from (*R*)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarbaldehyde and (*1S*,2*S*)-*N1*-benzyl-1,2-diphenylethane-1,2-diamine was less effective in the $Zn(OAc)_{2}$ -catalyzed asymmetric iodolactonization than that of L2-Zn(OAc)₂ catalyst (entry 7).

Table S1. Optimization of metal salts

a) L2' was used as a ligand.

In the further optimization, effects of solvents and additives were studied in Table S2. The condition examined in Entry 3 gave the best result, and we selected this as an optimized condition.

L2 (10 mol %) ZnOAc)2 (20 mol %) NIS (1.1 eq), I₂ (0.2 eq) solvent, -78 °C 1a time (h) yield (%) ee (%) entry solvent x (eq) y (eq) toluene 1 1.1 0.2 24 54 88 only CH₂Cl₂ 2 1.1 0.2 3.5 91 69 only toluene/CH₂Cl₂ 3 1.1 0.2 24 75 98 =3/1 toluene/CH₃Cl 4 1.1 0.2 24 61 95 =3/1toluene/CH₂Cl₂ 1.1 0 5 24 9 86

Table S2. Optimization of solvents and additives

0.2

24

15

39

0

=3/1 toluene/CH₂Cl₂

=3/1

6

4. General procedure of enantioselective iodolactonization (Table 2, entries 1-14).

A mixture of L3 (0.001 mmol) and $Zn(OAc)_2$ (0.003 mmol) was stirred for 0.5 hour in anhydrous dichloromethane (1.0 ml) at rt. After cooling the mixture to -78 °C, carboxylic acid (0.1 mmol) in toluene (3.0 ml) was slowly added to the resulting yellow solution and stirred for 0.5 hour at the same temperature. Then, *N*-iodosuccinimide (NIS) (24.6 mg, 0.11 mmol) and I₂ (5.0 mg, 0.02 mmol) were added to the reaction mixture. After being stirred for appropriate time, the reaction mixture was quenched with saturated Na₂SO₃ aq and 1*N* NaOH aq, and then the products were extracted with dichloromethane in 3 times. The collected organic layer was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by silica-gel column chromathography (hexane/acetone=8/1) to afford the iodolactone. The enantiomeric excesses of the products were determined by chiral stationary phase HPLC using a Daicel Chiralcel OD-H and Chiralpak AD-H column.

5. ¹H-NMR study for ligand-Zn(OAc)₂ species

The *in situ* prepared L2 and *in situ* prepared L2-Zn(OAc)₂ gave complex ¹H-NMR spectra in CDCl₃ at room temperature (Figure S1a and S1b). Although L2 was successfully purified (Figure S1c), the isolated L2 gave iodolactone 2a with lower 62% ee in the Zn(OAc)₂-catalyzed reaction.

S1b) in situ prepared L2-Zn(OAc)₂ complex

Figure S1. ¹H-NMR spectrum of a) *in situ* prepared L2, b) *in situ* prepared L2-Zn (OAc)₂ complex, c) L2.

7.668 7.651 7.651 7.384 7.384 7.381 7.381 7.384 7.084 7.084

X : parts per Million : Proton

5.292 -

4374 4.358 3.744 3.677 3.673 3.673 3.673 3.627 3.627 3.627 3.627 3.627 3.529 3.529

0.062 0.006 0.006 0.000 0.000

0.070

The VT-NMR spectra were shown in Figure S2. Although the ¹H-NMR spectra of L3-Zn₃(OAc)₄ in toluene-d₈ is broad at 0 °C (Figure S2a), the resolution is improved at -40 °C (Figure S2b). The ¹³C-NMR spectrum of L3-Zn₃(OAc)₄ in toluene-d₈ at -40 °C is also provided in Figure 2c.

¹H-NMR and ¹³C-NMR spectra data for **L3**-Zn₃(OAc)₄ are shown here. ¹H NMR (500 MHz, toluene-d₈ at -40 °C) δ 8.40 (s, 2H), 7.70 (br, 4H), 7.48 (d, *J*= 8.31 Hz, 2H), 7.35-7.32 (m, 6H), 7.23-7.14 (m, 6H), 7.08-6.70 (m, 18H), 6.06 (s, 2H), 5.17 (d, *J*= 11.46 Hz, 2H), 4.83-4.76 (m, 4H), 4.39 (d, *J*= 11.74 Hz, 2H), 4.08 (d, *J*= 11.17 Hz, 2H), 3.92 (d, *J*= 12.31 Hz, 2H), 2.23 (s, 6H), 1.02 (s, 6H); ¹³C-NMR (125 MHz, toluene-d₈ at -40 °C) 184.95, 176.08, 159.92, 143.85, 138.54, 133.05, 130.94,127.61, 125.54, 123.83, 123.56, 123.21, 71.59, 68.39, 56.66, 54.39, 51.940, 24.95 (Several peaks are not detected because of overlapping with toluene's peaks.) **S2a**)

Figure S2. ¹H-NMR spectrum of L3-Zn₃(OAc)₄ in toluene-d₈ a) at 0 °C, b) at -40 °C, c) ¹³C-NMR spectrum of L3-Zn₃(OAc)₄ in toluene-d₈ at -40 °C.

6. Analytical data for product of iodolactonization and bromolactonization (*R*)-6-(iodomethyl)-6-phenyltetrahydro-2*H*-pyran-2-one (2a)

TLC R*f* = 0.40 (hexane : ethyl acetate = 2:1), ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.33 (m, 5H), 3.57 (dd, *J*=11.3, 11.1 Hz, 2H), 2.55-2.30 (m, 4H), 1.87-1.79 (m, 1H), 1.63-1.56 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 140.1, 129.0, 128.4, 125.1, 84.4, 32.0, 28.9, 17.7, 16.5; HRMS calced for C₁₂H₁₄O₂I (M+H)⁺: 317.0033, found: *m*/*z* 317.0031; Enantiomeric excess

was determined by HPLC with a Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); minor enantiomer $t_r = 14.5$ min, major enantiomer $t_r = 16.3$ min; 99.5% ee; $[\alpha]_D^{22.0} = -31.6$ (c=1.0, CHCl₃, 99.5% ee); IR (neat) 2956, 2933, 2863, 1734, 1682, 1575, 1388, 1276, 1130, 879 cm⁻¹

(*R*)-6-(4-bromophenyl)-6-(iodomethyl)tetrahydro-2*H*-pyran-2-one (2b)

TLC R*f* = 0.33 (hexane : ethyl acetate = 2:1), ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J*= 8.59 Hz, 2H), 7.25 (d, *J*=8.59 Hz, 2H), 3.54 (s, 2H), 2.54-2.30 (m, 4H), 1.88-1.83 (m, 1H), 1.62-1.55 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 170.0, 139.3, 132.1, 127.0, 122.6, 84.1, 31.9, 28.9, 16.9, 16.5; Enantiomeric excess was determined by HPLC with a Chiralpack

AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); minor enantiomer $t_r = 17.8$ min, major enantiomer $t_r = 23.4$ min; 99.8% ee; $[\alpha]_D^{22.0} = -30.4$ (c=1.0, CHCl₃, 99.8% ee) ; IR (neat) 2957, 2929, 1740, 1489, 1238, 1180, 1132, 1039 cm⁻¹

(*R*)-6-(4-chlorophenyl)-6-(iodomethyl)tetrahydro-2*H*-pyran-2-one (2c)

TLC R*f* = 0.33 (hexane : ethyl acetate = 2:1), ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.31 (m, 4H), 3.54 (s, 2H), 2.48-2.36 (m, 4H), 1.84-1.83 (m, 1H), 1.59-1.57 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 170.0, 138.8, 134.4, 129.1, 126.7, 84.0, 31.9, 29.0, 17.0, 16.5; HRMS calced for C₁₂H₁₃O₂ClI (M+H)⁺: 350.9643, found: *m/z* 350.9642; Enantiomeric excess was

determined by HPLC with a Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); minor enantiomer $t_r = 18.0$ min, major enantiomer $t_r = 20.9$ min; 99.8% ee; $[\alpha]_D^{23.0} = -31.3$ (c=1.0, CHCl₃, 99.8% ee); IR (neat) 2957, 1738, 1492, 1278, 1179, 1094, 1039, 822, 752 cm⁻¹

(R)-6-(4-fluorophenyl)-6-(iodomethyl)tetrahydro-2H-pyran-2-one (2d)

TLC R*f* = 0.32 (hexane : ethyl acetate = 2:1), ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.34 (m, 2H), 7.12-7.05 (m, 2H), 3.54 (dd, *J*=12.6, 10.9 Hz, 2H), 2.55-2.29 (m, 4H), 1.89-1.81 (m, 1H), 1.62-1.57 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 170.2, 162.4 (d, ¹*J*_{CF}=248.32 Hz), 136.0, 127.2 (d, ³*J*_{CF}=8.4 Hz, 2C), 115.9 (d, ²*J*_{CF}=21.6 Hz), 84.1, 31.9, 28.9, 17.4, 16.5;

HRMS calced for $C_{12}H_{13}O_2FI (M+H)^+$: 334.9941, found: *m/z* 334.9939; Enantiomeric excess was determined by HPLC with a Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); minor enantiomer $t_r = 16.9$ min, major enantiomer $t_r = 19.0$ min; 94% ee; $[\alpha]_D^{22.0} = -14.4$ (c=1.0, CHCl₃, 94% ee); IR (neat) 2962, 2872, 1733, 1603, 1509, 1443, 1411, 1231, 1186, 1038, 936, 841 cm⁻¹

(R)-6-(iodomethyl)-6-(4-(trifluoromethyl)phenyl)tetrahydro-2H-pyran-2-one (2e)

TLC R*f* = 0.33 (hexane : ethyl acetate = 2:1), ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J*= 8.31 Hz, 2H), 7.52 (d, *J*=8.31 Hz, 2H), 3.57 (s, 2H), 2.57-2.35 (m, 4H), 1.91-1.85(m, 1H), 1.59-1.55 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 169.7, 144.4, 130.7 (q, ²*J*_{CF}=32.4 Hz), 126.0 (q, ³*J*_{CF}=3.6 Hz), 125.8, 124.8, 84.1, 32.2, 29.0, 16.6, 16.5; HRMS calced for

 $C_{13}H_{12}O_2F_3INa (M+Na)^+$: 406.9726, found: *m/z* 406.9716; Enantiomeric excess was determined by HPLC with a Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); minor enantiomer t_r = 14.4 min, major enantiomer t_r = 19.0 min; >99.9% ee; $[\alpha]_D^{23.0}$ = -17.6 (c=1.0, CHCl₃, >99.9% ee); IR (neat) 2926, 1741 cm⁻¹

(*R*)-6-(iodomethyl)-6-(p-tolyl)tetrahydro-2*H*-pyran-2-one (2f)

TLC R*f* = 0.47 (hexane : ethyl acetate = 2:1), ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.18 (m, 4H), 3.55 (m, 2H), 2.53-2.29 (m, 7H), 1.86-1.77 (m, 1H), 1.66-1.53 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 170.6, 138.3, 137.1, 129.6, 125.1, 84.4, 31.9, 28.9, 21.0, 17.9, 16.5; HRMS calced for C₁₃H₁₆O₂I (M+H)⁺: 331.0189, found: *m/z* 331.0190;

Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); minor enantiomer $t_r = 14.1$ min, major enantiomer $t_r = 16.8$ min; 93% ee; $[\alpha]_D^{22.0} = -34.7$ (c=1.0, CHCl₃, 93% ee); IR (neat) 1724, 1510, 1443, 1259, 1231, 1038, 937, 812, 634 cm⁻¹

(R)-6-(iodomethyl)-6-(m-tolyl)tetrahydro-2H-pyran-2-one (2g)

TLC R*f* = 0.41 (hexane : ethyl acetate = 2:1), ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.14 (m, 4H), 3.56 (s, 2H), 2.52-2.31 (m, 7H), 1.85-1.79 (m, 1H), 1.64-1.52 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 170.5, 140.0, 138.8, 129.1, 128.8, 125.8, 122.2, 84.4, 32.0, 29.0, 21.6, 17.8, 16.5; HRMS calced for C₁₃H₁₅O₂INa (M+Na)⁺: 353.0009, found: *m/z*

353.0002; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); minor enantiomer $t_r = 13.2$ min, major enantiomer $t_r = 15.1$ min; 99.7% ee; $[\alpha]_D^{23.0} = -33.5$ (c=1.0, CHCl₃, 99.7% ee); IR (neat) 2954, 2921, 1738 cm⁻¹

(R)-6-(iodomethyl)-6-(o-tolyl)tetrahydro-2H-pyran-2-one (2h)

TLC R*f* = 0.41 (hexane : ethyl acetate = 2:1), ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.20 (m, 4H), 3.68 (dd, *J*=24.06 Hz, *J*=11.17 Hz, 2H), 2.65-2.61 (m, 1H), 2.52-2.45 (m, 4H), 2.33-2.25 (m, 2H), 1.90-1.86 (m, 1H), 1.73-1.67 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 170.8, 137.0, 135.0, 133.6, 128.6, 126.9, 126.4, 85.3, 31.5, 28.4, 22.5, 16.2, 15.6; HRMS calced for

 $C_{13}H_{15}O_2INa (M+Na)^+$: 353.0009, found: *m/z* 353.0003; Enantiomeric excess was determined by HPLC with a Chiralcel OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); minor enantiomer t_r = 14.9 min, major enantiomer t_r = 17.0 min; 99.4% ee; $[\alpha]_D^{23.0}$ = -2.00 (c=1.0, CHCl₃, 99.4% ee); IR (neat) 2956, 1736 cm⁻¹

(R)-6-(iodomethyl)-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-one (2i)

TLC R*f* = 0.34 (hexane : ethyl acetate = 2:1), ¹H NMR (500 MHz, CDCl₃) δ 7.28 (m, 2H), 6.92 (m, 2H) 3.82 (s, 3H), 3.54 (m, 2H), 2.50-2.30 (m, 4H), 1.85-1.80 (m, 1H), 1.64-1.58 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 170.5, 159.5, 132.0, 126.5, 114.2, 84.2, 55.3, 31.8, 28.9, 18.1, 16.5; HRMS calced for C₁₂H₁₄O₂I (M+H)⁺: 347.0139,

found: m/z 347.0139; Enantiomeric excess was determined by HPLC with a Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); minor enantiomer $t_r = 20.4$ min, major enantiomer $t_r = 24.9$ min; 82% ee; $[\alpha]_D^{27.0} = -23.0$ (c=1.0, CHCl₃, 82% ee); IR (neat) 3031, 1722, 1508, 1443, 1231, 1038, 812 cm⁻¹

(R)-5-(iodomethyl)-5-phenyldihydrofuran-2(3H)-one (2j)

TLC R*f* = 0.40 (hexane : ethyl acetate = 2:1), ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.33 (m, 5H), 3.63 (dd, *J*=14.9 Hz, 11.2 Hz, 2H) 2.81-2.61 (m, 3H), 2.56-2.47 (m, 1H); ¹³C NMR (125MHz, CDCl₃) δ 175.3, 140.5, 128.8, 128.5, 124.8, 86.0, 33.9, 29.2, 16.3; HRMS calced for C₁₁H₁₂O₂I (M+H)⁺: 302.9876, found: *m*/*z* 302.9879; Enantiomeric excess was determined by

HPLC with a Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); major enantiomer $t_r = 13.9$ min, minor enantiomer $t_r = 15.2$ min; 87% ee; $[\alpha]_D^{23.0} = +11.51$ (c=1.0, CHCl₃, 87% ee); IR (neat)3030, 2958, 1779, 1541, 1449, 1154, 1025, 929, 766 cm⁻¹

(*R*)-6-cyclohexyl-6-(iodomethyl)tetrahydro-2*H*-pyran-2-one (2k)

TLC R*f* = 0.40 (hexane : ethyl acetate = 2:1), ¹H NMR (500 MHz, CDCl₃) δ 3.45 (dd, *J*=12.6, 10.9 Hz, 2H), 2.58-2.40 (m, 2H), 1.99-1.68 (m, 10 H), 127-1.09 (m, 5H); ¹³C NMR (125MHz, CDCl₃) δ 170.6, 84.7, 45.5, 29.6, 27.1, 26.7, 26.4, 26.3, 26.2, 26.1, 16.8, 13.7; HRMS calced for C₁₂H₂₀O₂I (M+H)⁺: 323.0504, found: *m/z* 323.0502; Enantiomeric excess was determined

by HPLC with a Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); major enantiomer $t_r = 10.4$ min, minor enantiomer $t_r = 11.2$ min; 99.3% ee; $[\alpha]_D^{30.0} = -12.0$ (c=1.0, CHCl₃, 99.3% ee); IR (neat) 2928, 1730 cm⁻¹

(S)-6-(iodomethyl)-6-methyltetrahydro-2H-pyran-2-one (2l)

TLC R*f* = 0.30 (hexane : ethyl acetate = 2:1), ¹H NMR (400 MHz, CDCl₃) δ 3.42-3.35 (m, 2H), 2.59-2.42 (m, 2H), 2.13-2.02 (m, 1H) 1.92-1.82 (m, 3H) 1.57 (m, 3H); ¹³C NMR (100MHz, CDCl₃) δ 170.1, 81.6, 31.6, 29.1, 26.2, 16.6, 15.1; HRMS calced for C₇H₁₂O₂I (M+H)⁺: 254.9876,

found: m/z 254.9875; Enantiomeric excess was determined by HPLC with a Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm); major enantiomer $t_r = 11.4$ min, minor enantiomer $t_r = 13.6$ min; 94% ee; $[\alpha]_D^{27.0} = -45.6$ (c=1.0, CHCl₃, 94% ee); IR (neat) 2955, 1725 cm⁻¹

7. ¹H-NMR and ¹³C-NMR spectra

S15

S17

S20

S23

S25

8. HPLC spectra

Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralcel OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralcel OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralcel OD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

Chiralpack AD-H column (95:5 hexane: 2-propanol, 1.0 mL/min, 254 nm)

9. X-ray crystallography of L3-Zn₃(OAc)₄ (CCDC 956608).

Crystallographic data were collected on a CCD diffractometer with Mo K α ($\lambda = 0.71073$ Å) radiation. Data collections were carried out at low temperature (173 K) using liquid nitrogen. All of the crystal structures were solved by direct methods with SHELXS-97 and refined with full-matrix least-squares SHELXL-97.^{*} All non-hydrogen atoms were refined anisotropically and hydrogen atoms were included at their calculated positions. The positions of hydrogen atoms included in the water molecules were not calculated. One water molecule is located in disordered two positions (O18A and O18B).

L3-Zn₃(OAc)₄: C₇₄H₆₄N₄O₁₀Zn₃, 2(CH₄O), 6(O), $M_r = 1525.49$, Monoclinic, $P2_1$, a = 11.1670(16), b = 22.145(3), c = 16.594(2) Å, $\beta = 108.310(2)^\circ$, V = 3896.0(9) Å³, Z = 2, $D_c = 1.300$ Mg m⁻³, $2\theta_{max} = 54.94^\circ$, T = 173 K, 20839 reflections measured, 15718 unique ($R_{int} = 0.1230$), $\mu = 0.984$ mm⁻¹. The final R_1 and wR_2 were 0.0464 and 0.1093 ($I > 2\sigma(I)$), 0.0552 and 0.1139 (all data). Flack parameter is 0.019(12).

* A short history of SHELX. Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

Figure S3. Thermal ellipsoid model of L3-Zn₃(OAc)₄. All atoms in an expanded structure are indicated in the model. The ellipsoids of non-hydrogen atoms are drawn at the 50 % probability level while isotropic hydrogen atoms are represented by spheres of arbitrary size. The labels of non-water hydrogen atoms are omitted for clarity.

Figure S4. Packing diagram of L3- $Zn_3(OAc)_4$ along the *a* axis. Hydrogen atoms are omitted for clarity.

10. DFT-GIAO calculation of L3-Zn₃(OAc)₄

Computational method

All calculations were performed with the Gaussian 09 package.ⁱ Geometry of L3-Zn₃(OAc)₄ was fully optimized at the B3LYP/ 6-31G*level. The ¹H NMR chemical shifts were calculated by the GIAO (gauge independent atomic orbitals) methodⁱⁱ at the same computational level for the geometry optimization and referenced to TMS.

Cartesian coordination

L3- $Zn_3(OAc)_4$

SCF Done: E(RB3LYP) = -4026.84494442A.U. _____ Atomic Atomic Coordinates (Angstroms) Center Х Number Number Туре Υ Ζ -----1.697058 1 6 0 3.594574 -1.096969 2 б 0 1.174442 5.003048 0.739821 2.502378 4.783604 3 б 0 1.458437 2.775492 3.562712 2.094940 4 б 0 5 3.985841 3.373542 2.761533 6 0 6 б 0 4.942115 4.391689 2.798151 7 б 0 4.683463 5.602420 2.155783 8 6 0 3.471036 5.793550 1.489234 0.000019 5.151597 9 б 0 1.750360 6.297925 10 6 0 0.205310 2.739002 7.595110 11 б 0 0.579991 2.352345 12 6 0 0.726807 8.613252 3.295928 8.356062 13 б 0 0.507183 4.650045 0.146222 7.070105 5.053399 14 б 0 15 б 0 0.00000 6.056090 4.105698 16 б 0 -1.542008 6.291423 0.069931 17 б 0 -3.044494 6.396853 0.027348 18 б 0 -3.857352 7.073158 -0.878374-5.242182 7.050764 -0.683338 19 б 0 0 -5.796294 6.361291 20 б 0.400478 б 0 -4.974903 5.682181 1.305660 21 2.2 6 0 -3.597284 5.705958 1.106271 S40

23	6	0	-2.497537	5.095432	1.933374
24	6	0	-2.105718	0.991969	1.785065
25	6	0	-3.469191	1.123219	2.428103
26	6	0	-3.032816	3.433274	-1.850982
27	6	0	-4.118763	3.469973	-2.904529
28	1	0	2.622003	4.180542	-1.174800
29	1	0	1.249729	5.929024	0.152994
30	1	0	2.061902	2.744956	2.044742
31	1	0	4.183631	2.422223	3.248278
32	1	0	5.885024	4.238231	3.316309
33	1	0	5.423315	6.398441	2.168470
34	1	0	3.275810	6.740764	0.992431
35	1	0	-0.025833	4.222615	2.331697
36	1	0	0.778650	7.821279	1.309152
37	1	0	1.018916	9.608210	2.970521
38	1	0	0.623444	9.149031	5.383761
39	1	0	-0.017136	6.852433	6.105499
40	1	0	-0.270406	5.054083	4.430758
41	1	0	-1.103550	6.054333	-0.903510
42	1	0	-1.109427	7.232279	0.437682
43	1	0	-3.429084	7.602988	-1.725498
44	1	0	-5.893043	7.568043	-1.383211
45	1	0	-6.874428	6.346917	0.536115
46	1	0	-5.409267	5.141108	2.142603
47	1	0	-2.667393	4.054188	2.218529
48	1	0	-2.334799	5.681894	2.850044
49	1	0	-4.125277	1.632775	1.712956
50	1	0	-3.405337	1.743025	3.327915
51	1	0	-3.889374	0.146174	2.672393
52	1	0	-4.164211	4.461490	-3.363312
53	1	0	-5.087826	3.205393	-2.477253
54	1	0	-3.867753	2.748217	-3.690943
55	7	0	0.844044	3.896210	-0.178726
56	7	0	-1.308162	5.165027	1.026529
57	8	0	-3.236688	2.824670	-0.751317
58	8	0	-0.280625	1.457469	-1.008875
59	8	0	-1.716999	-0.166808	1.431123
60	8	0	-1.406638	2.037231	1.607999

61	8	0	-1.911578	3.984687	-2.089032
62	30	0	-1.200071	3.163735	-0.199716
63	6	0	0.581842	1.489933	-2.025883
64	6	0	0.546539	0.511064	-3.025169
65	б	0	1.587723	2.526207	-2.076038
66	6	0	1.558936	0.483167	-4.036266
67	6	0	2.544747	2.507181	-3.082706
68	6	0	1.632513	-0.544967	-5.021458
69	6	0	2.568289	1.505651	-4.070740
70	1	0	3.307716	3.283419	-3.105830
71	6	0	2.622348	-0.545766	-5.979522
72	1	0	0.899341	-1.342929	-5.000453
73	6	0	3.571831	1.479887	-5.079725
74	6	0	3.601729	0.479045	-6.020464
75	1	0	2.653995	-1.345759	-6.714826
76	1	0	4.320625	2.269006	-5.085134
77	1	0	4.372436	0.463650	-6.785962
78	6	0	-0.546539	-0.511064	-3.025169
79	6	0	-0.581842	-1.489933	-2.025883
80	6	0	-1.558936	-0.483167	-4.036266
81	8	0	0.280625	-1.457469	-1.008875
82	6	0	-1.587723	-2.526207	-2.076038
83	6	0	-1.632513	0.544967	-5.021458
84	6	0	-2.568289	-1.505651	-4.070740
85	30	0	1.200071	-3.163735	-0.199716
86	6	0	-1.697058	-3.594574	-1.096969
87	6	0	-2.544747	-2.507181	-3.082706
88	6	0	-2.622348	0.545766	-5.979522
89	1	0	-0.899341	1.342929	-5.000453
90	6	0	-3.571831	-1.479887	-5.079725
91	7	0	-0.844044	-3.896210	-0.178726
92	7	0	1.308162	-5.165027	1.026529
93	8	0	3.236688	-2.824670	-0.751317
94	8	0	1.406638	-2.037231	1.607999
95	8	0	1.911578	-3.984687	-2.089032
96	1	0	-2.622003	-4.180542	-1.174800
97	1	0	-3.307716	-3.283419	-3.105830
98	6	0	-3.601729	-0.479045	-6.020464

99	1	0	-2.653995	1.345759	-6.714826
100	1	0	-4.320625	-2.269006	-5.085134
101	6	0	-1.174442	-5.003048	0.739821
102	6	0	-0.000019	-5.151597	1.750360
103	6	0	1.542008	-6.291423	0.069931
104	6	0	2.497537	-5.095432	1.933374
105	6	0	3.032816	-3.433274	-1.850982
106	6	0	2.105718	-0.991969	1.785065
107	1	0	-4.372436	-0.463650	-6.785962
108	1	0	-1.249729	-5.929024	0.152994
109	6	0	-2.502378	-4.783604	1.458437
110	1	0	0.025833	-4.222615	2.331697
111	6	0	-0.205310	-6.297925	2.739002
112	1	0	1.103550	-6.054333	-0.903510
113	1	0	1.109427	-7.232279	0.437682
114	6	0	3.044494	-6.396853	0.027348
115	6	0	3.597284	-5.705958	1.106271
116	1	0	2.667393	-4.054188	2.218529
117	1	0	2.334799	-5.681894	2.850044
118	6	0	4.118763	-3.469973	-2.904529
119	6	0	3.469191	-1.123219	2.428103
120	8	0	1.716999	0.166808	1.431123
121	6	0	-2.775492	-3.562712	2.094940
122	6	0	-3.471036	-5.793550	1.489234
123	6	0	-0.579991	-7.595110	2.352345
124	6	0	0.00000	-6.056090	4.105698
125	6	0	3.857352	-7.073158	-0.878374
126	6	0	4.974903	-5.682181	1.305660
127	1	0	4.164211	-4.461490	-3.363312
128	1	0	5.087826	-3.205393	-2.477253
129	1	0	3.867753	-2.748217	-3.690943
130	1	0	4.125277	-1.632775	1.712956
131	1	0	3.405337	-1.743025	3.327915
132	1	0	3.889374	-0.146174	2.672393
133	1	0	-2.061902	-2.744956	2.044742
134	6	0	-3.985841	-3.373542	2.761533
135	6	0	-4.683463	-5.602420	2.155783
136	1	0	-3.275810	-6.740764	0.992431

137	1	0	-0.778650	-7.821279	1.309152	
138	б	0	-0.726807	-8.613252	3.295928	
139	б	0	-0.146222	-7.070105	5.053399	
140	1	0	0.270406	-5.054083	4.430758	
141	1	0	3.429084	-7.602988	-1.725498	
142	б	0	5.242182	-7.050764	-0.683338	
143	б	0	5.796294	-6.361291	0.400478	
144	1	0	5.409267	-5.141108	2.142603	
145	1	0	-4.183631	-2.422223	3.248278	
146	6	0	-4.942115	-4.391689	2.798151	
147	1	0	-5.423315	-6.398441	2.168470	
148	1	0	-1.018916	-9.608210	2.970521	
149	6	0	-0.507183	-8.356062	4.650045	
150	1	0	0.017136	-6.852433	6.105499	
151	1	0	5.893043	-7.568043	-1.383211	
152	1	0	6.874428	-6.346917	0.536115	
153	1	0	-5.885024	-4.238231	3.316309	
154	1	0	-0.623444	-9.149031	5.383761	
155	30	0	0.000000	0.00000	0.372207	

_ _

- [i] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
- [ii] (a) R. McWeeny, *Phys. Rev.* 1962, *126*, 1028. (b) R. Dichfield, *Mol. Phys.* 1974, *27*, 789. (c) J. L. Dodds, R. McWeeny, A. J. Sadlej, *Mol. Phys.* 1980, *41*, 1419. (d) K. Wolinski, J. F. Hinton, P. Pulay, *J. Am. Chem. Soc.* 1990, *112*, 8251.