Synthesis and characterization of new Keggin anion: [BeW_{12}O_{40}]^{6-}: the first example of s-element acting as central atom in POM

Alexander V. Anyushina,b Anton I. Smolentseva,b Dmitry A. Mainicheva Cristian Vicentc Artem L. Gushchina,b Maxim N. Sokolova,b and Vladimir P. Fedina,b

Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X
First published on the web Xth XXXXXXXXX 200X
DOI: 10.1039/b000000x

Table of contents
Figure 1S. 9Be NMR spectra of \textit{1a} (0.1 M) in CD\textsubscript{3}CN at room temperature (26.5 ± 2°C), D1 = 30.0 sec, AQ = 11.65 sec. page 2

Figure 2S. 183W NMR spectra of \textit{1a} (0.1 M) in CD\textsubscript{3}CN at room temperature (24.5 ± 2°C), D1 = 5.0 sec, AQ = 1.57 sec. page 2

Electrochemistry page 3
ESI mass spectrometry page 4

Figure 3S. Comparison of simulated and experimental isotopic patterns of species detected in the negative ESI mass spectrum of \textit{1a} in CH\textsubscript{3}CN. page 5

Figure 4S. Negative ESI mass spectrum of compound \textit{1b} in H\textsubscript{2}O. page 5

Figure 5S. Comparison of simulated and experimental isotopic patterns of species detected in the negative ESI mass spectrum of \textit{1b} in H\textsubscript{2}O. page 6

Table 1S. Peak assignments for samples \textit{1a} recorded in CH\textsubscript{3}CN and \textit{1b} recorded in H\textsubscript{2}O page 7

Figure 6S. Cyclic voltammogram of 2 mM solution of (Me\textsubscript{2}NH\textsubscript{2})\textsubscript{6}[BeW\textsubscript{12}O\textsubscript{40}] in 1 M Na\textsubscript{2}SO\textsubscript{4} at pH = 8.9 between 0.3 ↔ -1.2 V at 0.01 V·s-1 scan rate. page 8

Figure 7S. The cyclic voltammetry responses for 2 mM solution of (Me\textsubscript{2}NH\textsubscript{2})\textsubscript{6}[BeW\textsubscript{12}O\textsubscript{40}] in 1 M Na\textsubscript{2}SO\textsubscript{4} at pH = 8.9 with a scan rate of 0.01, 0.05 and 0.1 V·s-1. Scan route: 0.3 ↔ -1.2 V. page 9

Figure 8S. Cyclic voltammogram of 3 mM solution of (Me\textsubscript{2}NH\textsubscript{2})\textsubscript{6}[BeW\textsubscript{12}O\textsubscript{40}] in 1 M sodium acetate buffer (pH = 5.5) between 0 ↔ -1 V at 0.01 V·s-1 scan rate. page 10
Figure 1S. 9Be NMR spectra of $1a$ (0.1 M) in CD$_3$CN at room temperature ($26.5 \pm 2^\circ$ C), D1 = 30.0 sec, AQ = 11.65 sec, experiment total time = 11 min.

Figure 2S. 183W NMR spectra of $1a$ (0.1 M) in CD$_3$CN at room temperature ($24.5 \pm 2^\circ$ C), D1 = 5.0 sec, AQ = 1.57 sec, experiment total time = 15 h.
Electrochemistry

The cyclic voltammetry measurements were carried out using an electrochemical analyzer 797 VA Computrace (Metrohm, Switzerland). A conventional three electrode glass cell of 10 ml capacity was used. A 2 mm diameter glassy carbon disk electrode was used as working electrode (GCE). A platinum wire served as the counter electrode. An Ag/AgCl reference electrode, filled with 3 M KCl, was used. All solutions were deoxygenated using argon gas for 10-15 min prior to electrochemical experiments. Measurements were carried out at ambient temperature (20 ± 2°C). All reagents were of analytical grade or higher and purchased from Sigma-Aldrich. 1 M Na₂SO₄ electrolyte was prepared using distilled water. Na₂CO₃ was used to increase pH of the investigated solution to 8.9.

Cyclic voltammogram of a 2 mM solution of (Me₂NH₂)₆[BeW₁₂O₄₀] in 0.1 M Na₂SO₄ shows two irreversible reduction processes at E_p = -0.69 V and E_p = -0.93 V (vs. Ag/AgCl). Going to 1M Na₂SO₄ and increasing pH of the solution to 8.9 causes an appearance of two quasi-reversible reduction processes (Fig. 4S). E_{1/2} values for both couples were determined to be ½(-0.515 + (-0.605)) = -0.560 (V, vs. Ag/AgCl) and ½(-0.735 + (-0.849)) = -0.792 (V, vs. Ag/AgCl) at 0.01 V·s⁻¹. ΔE_p values calculated as -0.515 V – (-0.605 V) = 0.090 V and -0.735 V – (-0.849 V) = 0.114 are bigger than 0.059 which is characteristic for fully reversible one-electron process. The reversibility of the electrochemical processes decreases with an increase in the scan rate from 0.01 to 0.1 V·s⁻¹ (Fig. 5S).

Cyclic voltammogram of (Me₂NH₂)₆[BeW₁₂O₄₀] was also recorded in 1M sodium acetate buffer (pH = 5.5) (Fig. 6S). Similarly two consecutive quasi-reversible reduction processes were detected in the range 0 to -1 V. E_{1/2} values were determined to be -0.587 (V, vs. Ag/AgCl) and -0.774 (V, vs. Ag/AgCl) at 0.01 V·s⁻¹. ΔE_p values are equal to 0.060 V and 0.070 V at 0.01 V·s⁻¹, respectively, and increase with an increase in the scan rate from 0.01 to 0.1 V·s⁻¹. Lowering the pH of the acetate buffer to 3.5 leads to the almost complete disappearance of the redox processes.
ESI mass spectrometry

Electrospray Ionization (ESI) mass spectra were obtained on c.a. 1×10^{-5} M sample solutions in water or acetonitrile; solutions were introduced at a flow rate of 10 μL min$^{-1}$ in a Waters QTOF Premier instrument with orthogonal Z-spray electrospray interface operating with capillary voltage of 3.3 kV in the negative scan mode (V-mode at a resolution of *ca.* 10000 FWHM). The cone voltage (U_c) was set to low value $U_c = 10$V to control the extent of fragmentation of the gas-phase detected species. The desolvation and source block temperature was typically set at 200 °C and 120 °C, respectively. The desolvation and cone gas was nitrogen at 300 L h$^{-1}$ and 30 L h$^{-1}$, respectively.
Figure 3S. Comparison of the simulated and experimental isotopic pattern for a) 4- charged species of general formula [BeW_{12}O_{40} + 2cat]^4+; b) 3- charged species of general formula [BeW_{12}O_{40} + 3cat]^3- in each display and c) doubly- charged species of general formula [BeW_{12}O_{40} + 4cat]^2- where cat denotes H+ or tetrabutylammonium (TBA+) cations.

Figure 4S. Negative ESI mass spectrum of compound 1b in H2O recorded at Uc = 5 V. Circled regions include the species featuring the 4-, 3- and 2- charge states derive from the [BeW_{12}O_{40}]^{6-} (1^{6-}) polyanion.
Figure 5S. Expanded regions of the negative ESI mass spectrum of compound 1b in H₂O recorded at Uc = 5 V that include 4- charged species (top), 3- charged species (middle) and doubly-charged anions (bottom). Insets show a comparison of the simulated and experimental isotopic pattern for the largest peak in each display.
Table 1S. Peak assignments for samples 1a recorded in CH$_3$CN and 1b recorded in H$_2$O. Note that for sample 1b overlapping of peaks due to Me$_2$H$_2$N$^+$ and 2Na$^+$ adducts is observed.

<table>
<thead>
<tr>
<th>Charge state</th>
<th>Sample (Bu4N)4Na${1.2}$[BeW${12}$O$_{40}$] 1a m/z value; adduct composition</th>
<th>Sample (Me2NH)6[BeW${12}$O${40}$] 1b m/z value; adduct composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4- charged peaks</td>
<td>835.2; [BeW${12}$O${40}$ + 2TBA]$^4^+$ 774.9; [BeW${12}$O${40}$ + H + TBA]$^4^+$ 714.1; [BeW${12}$O${40}$ + 2H]$^4^+$</td>
<td>730.8; [BeW${12}$O${40}$ + Na + Me2H2N]$^4^+$ 725.3; [BeW${12}$O${40}$ + H + Me2H2N]$^4^+$ 719.6; [BeW${12}$O${40}$ + H + Na]$^4^+$ 714.1; [BeW${12}$O${40}$ + 2H]$^4^+$</td>
</tr>
<tr>
<td>Triply-charged peaks</td>
<td>1194.1; [BeW${12}$O${40}$ + 3TBA]$^3^-$ 1113.7; [BeW${12}$O${40}$ + H + 2TBA]$^3^-$ 1033.2; [BeW${12}$O${40}$ + 2H + TBA]$^3^-$</td>
<td>982.4; [BeW${12}$O${40}$ + H + 2Me2H2N]$^3^-$ 974.8; [BeW${12}$O${40}$ + H + Na + Me2H2N]$^3^-$ 967.1; [BeW${12}$O${40}$ + 2H + Me2H2N]$^3^-$ 960.1; [BeW${12}$O${40}$ + 2H + Na]$^3^-$ 952.8; [BeW${12}$O${40}$ + 3H]$^3^-$</td>
</tr>
<tr>
<td>Doubly-charged peaks</td>
<td>1912.3; [BeW${12}$O${40}$ + 4TBA]$^2^-$ 1792.0; [BeW${12}$O${40}$ + H + 3TBA]$^2^-$ 1671.3; [BeW${12}$O${40}$ + 2H + 2TBA]$^2^-$</td>
<td>1474.6; [BeW${12}$O${40}$ + 2H + 2Me2H2N]$^2^-$ 1462.6; [BeW${12}$O${40}$ + 2H + Na + Me2H2N]$^2^-$ 1451.6; [BeW${12}$O${40}$ + 3H + Me2H2N]$^2^-$ 1440.1; [BeW${12}$O${40}$ + 3H + Na]$^2^-$ 1429.1; [BeW${12}$O${40}$ + 4H]$^2^-$</td>
</tr>
</tbody>
</table>

* this peak is overlapped with [BeW$_{12}$O$_{40}$ + 2Na]$^4^+$;
* this peak is overlapped with [BeW$_{12}$O$_{40}$ + 3Na]$^3^-$;
* this peak is overlapped with [BeW$_{12}$O$_{40}$ + H + 2Na]$^3^-$;
* this peak is overlapped with [BeW$_{12}$O$_{40}$ + H + 3Na]$^3^-$;
* this peak is overlapped with [BeW$_{12}$O$_{40}$ + H + 2Na + Me$_2$H$_2$N]$^3^-$;
* this peak is overlapped with [BeW$_{12}$O$_{40}$ + H + 3Na]$^3^-$;
* this peak is overlapped with [BeW$_{12}$O$_{40}$ + 2H + 2Na]$^2^-$;
* this peak is overlapped with [BeW$_{12}$O$_{40}$ + 3H + Me$_2$H$_2$N]$^2^-$;
* this peak is overlapped with [BeW$_{12}$O$_{40}$ + 3H + Na]$^2^-$;
* this peak is overlapped with [BeW$_{12}$O$_{40}$ + 4H]$^2^-$.
Fig. 6S. Cyclic voltammogram of 2 mM solution of (Me₂NH₂)₆[BeW₁₂O₄₀] in 1 M Na₂SO₄ at pH = 8.9 between 0.3 ↔ -1.2 V at 0.01 V·s⁻¹ scan rate.
Fig. 7S. The cyclic voltammetry responses for 2 mM solution of (Me₂NH₂)_6[BeW₁₂O₄₀] in 1 M Na₂SO₄ at pH = 8.9 with a scan rate of 0.01, 0.05 and 0.1 V·s⁻¹. Scan route: 0.3 ↔ -1.2 V.
Fig. 8S. Cyclic voltammogram of 3 mM solution of (Me₂NH₂)_6[BeW₁₂O₄₀] in 1 M sodium acetate buffer (pH = 5.5) between 0 ↔ -1 V at 0.01 V·s⁻¹ scan rate.