Electronic Supplementary Information

Catalytic Hydrogenation of Amino Acids to Amino Alcohols with Complete Retention of Configuration

Masazumi Tamura,^a Riku Tamura,^a Yasuyuki Takeda,^a Yoshinao Nakagawa^a and Keiichi Tomishige^a

^{*a*}Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.

1. Experimental

1.1. General

The HPLC (Shimadzu Prominence) with Crownpak CR(+) (Daicel, Co., Lt., 4.0ϕ , 150 mm) or Nova-Pak C-18 (Waters, Co. Ltd., 3.9ϕ , 150 mm) and GC (Shimadzu GC-2025) analyses were carried out with a CP-Sil-5 capillary column (Agilent Technologies, Inc., diameter 0.25 mm ϕ , 50 m) using nitrogen as the carrier gas. All the chemicals for organic reactions were commercially available from chemical products corporation and were used without further purification.

1.2 Details of the reagents used in experiments

The details of the reactants are described below: H₂ (99.99%; Nippon Peroxide Co., Ltd.), Lalanine (Wako Pure Chemical Industries, Ltd., >99.0%), glycine (Wako Pure Chemical Industries, Ltd., >99.0%), L-valine (Wako Pure Chemical Industries, Ltd., >99.0%), L-leucine (Wako Pure Chemical Industries, Ltd., >99.0%), L-isoleucine (Wako Pure Chemical Industries, Ltd., >99.0%), L-serine (Tokyo Chemical industry Ltd., >99%), β -alanine (Wako Pure Chemical Industries, Ltd., >97.0%), 4-aminobutanoic acid (Wako Pure Chemical Industries, Ltd., >98.0%), acetic acid (Wako Pure Chemical Industries, Ltd., >99.9%).

In order to determine the retention time and molar sensitivity, commercially available reagents were used; isopropylamine (Wako Pure Chemical Industries, Ltd., >99.0%), L-alaninol (Wako Pure Chemical Industries, Ltd., >98.0%), D-alaninol (Wako Pure Chemical Industries, Ltd., >98.0%), 2-aminoethanol (Wako Pure Chemical Industries, Ltd., >97.0%), serinol (Tokyo Chemical industry Ltd., >98%), 2-amino-1,3-propanediol (Tokyo Chemical industry Ltd., >99%), 4-amino-1-butanol (Tokyo Chemical industry Ltd., >98%), L-valinol (Wako Pure Chemical Industries, Ltd., >98%), L-valinol (Wako Pure Chemical Industries, Ltd., >93.0%), D-leucinol (Wako Pure Chemical Industries, Ltd., >93.0%), D-leucinol (Wako Pure Chemical Industries, Ltd., >93.0%), L-leucinol (Wako Pure Chemical Industries, Ltd., >93.0%), D-leucinol (Wako Pure Chemical Industries, Ltd., >97.0%), L-isoleucinol (Tokyo Chemical industry Ltd., >97%). The retention time was determined by HPLC. The yields were calculated

by using the molar sensitivity of corresponding diols and high performance liquid chromatogram area.

1.2. Catalyst preparation

Active carbon-supported noble metal catalysts, Rh/C, Ru/C, Pd/C and Pt/C, were purchased from Wako Pure Chemical Industries. Carbon supported M-M'O_x catalysts (M-M'O_x/C: M = Rh, Ru, Pd and Pt, $M'O_x = MoO_x$, WO_x and ReO_x) were prepared by impregnating the above carbon-supported noble metal catalysts with an aqueous solution of NH₄ReO₄ (Soekawa Chemical Co., Ltd.), (NH₄)₆Mo₇O₂₄·4H₂O (Wako Pure Chemical Industries, Ltd.) and (NH₄)₁₀W₁₂O₄₁·5H₂O (Wako Pure Chemical Industries, Ltd.). After evaporating the solvent and drying at 383 K for 12 h, they were calcined in N₂ at 773 K for 3 h. Rh/SiO₂ was prepared by impregnating SiO₂ (Fuji Silysia Chemical Ltd., G-6, BET surface area 535 m²/g) with an aqueous solution of RhCl₃·3H₂O (Wako Pure Chemical Industries, Ltd.). SiO₂ supported Rh- $M'O_x$ catalysts (Rh-M'O_x/SiO₂: M'O_x = MoO_x, WO_x and ReO_x) were prepared by impregnating M/SiO₂ after the drying procedure with aqueous solutions of NH₄ReO₄ (Soekawa Chemical Co., Ltd.), (NH₄)₆Mo₇O₂₄·4H₂O (Wako Pure Chemical Industries, Ltd.) and (NH₄)₁₀W₁₂O₄₁·5H₂O (Wako Pure Chemical Industries, Ltd.). After evaporating the solvent and drying at 383 K for 12 h, they were calcined in air at 773 K for 3 h. The loading amount of metals of commercial M/C and M-M'O_x/C was 5 wt% and that of Rh-M'O_x/SiO₂ was 4 wt%. The molar ratio of additive to noble metal was 1/8 unless otherwise noted. The catalyst was reduced at 773 K for 3 h in H_2 flow and then passivated in 10% O_2/N_2 flow before the reaction.

1.3. Typical procedure for hydrogenation of L-alanine to L-alaninol.

Activity tests were performed in a 190-ml stainless steel autoclave with an inserted glass vessel. Catalyst (50 mg), H_3PO_4 (40 mmol) or H_2SO_4 (22 mmol), water (19.3 g) and L-alanine (0.4 g) was put into an autoclave together with a spinner. After sealing the reactor, the air content was quickly purged by flushing thrice with 1 MPa hydrogen (99.99%; Nippon Peroxide Co., Ltd.). The autoclave was then heated to 353 K, and the temperature was monitored using a thermocouple inserted in the autoclave. After the temperature reached 353 K, the H_2 pressure was increased from 1.0 to 8.0 MPa. During the experiment, the stirring rate was fixed at 500 rpm (magnetic stirring). After 4 h, the gases were collected in a gas bag. The catalyst was separated by filtration. The filtrate was diluted with 180 g HClO₄aq (0.16 M, pH=1.1) and transferred to a vial. The reaction conditions are described in each result. The products in gas phase were analyzed using GC with CP-Sil-5 capillary column. The products in liquid phase were analyzed by HPLC with Crownpak CR(+) or Nova-Pak C-18 using the eluent of HClO₄aq (0.16 M, pH=1.1). Products were also identified using standard compounds.

2. Table and figure

Table S1 The previous reports for hydrogenation of amino acids

Catalyst	Substrate	Т /К	P _{H2} /MPa	Yield /%	ee /%	TOF ^a /h ⁻¹	Ref.
Ru/C	L-Alanine (1)	373	6.9	91	99.2	6.7	[1]
Ru/Re	L-Alanine (1)	343	20	80	99.9	2.6	[2]

^aTOF = L-alanine (mmol) / Total Ru (mmol) /time (h)

Table S2 The effect of the molar ratio of Mo to Rh in $Rh-MoO_x/SiO_2$ catalysts on hydrogenation of L-alanine (1) to L-alaninol (2)

		Conv	Yield (2)	Select. / %			
Entry	Mo/Rh	/%	/ %	2	3	Others	
1	0	3.7	3.1	84.4	15.6	0.0	
2	1/64	28.3	24.2	85.7	14.3	0.0	
3	1/32	35.7	30.7	86.2	13.8	0.0	
4	1/16	42.9	38.1	89.0	11.0	0.0	
5	1/8	46.8	42.2	90.2	11.0	0.0	
6	1/4	44.9	41.0	91.3	8.7	0.0	
7	1/2	40.3	37.0	91.9	8.1	0.0	
8	1	36.6	33.7	92.2	7.8	0.0	

Reaction conditions: Rh-MoOx/SiO2 50 mg, L-

alanine 0.4 g, H₃PO₄aq(0.29 M) 20 g, H₂ 8 MPa, 353 K, 4 h.

Table S3 Hydrogenation of 1 over Rh-MoOx/SiO2 with various acids

Entry	Additivo	Conv	Yield	Select. / %				
	Aduitive	/ %	/%	2	3	4	5	Others ^a
1	$\mathrm{H}_2\mathrm{SO}_4$	47.4	42.1	88.9	11.1	0.0	0.0	0.0
2	H_3PO_4	26.6	23.4	87.8	12.0	0.0	0.2	0.0
3	ZSM-5	4.1	3.8	93.2	5.2	0.0	0.8	0.9
4	SiO ₂ -Al ₂ O ₃	3.7	3.4	90.7	7.3	0.0	1.1	0.9
5	None	4.5	4.1	90.9	7.8	0.0	0.6	0.7

Reaction conditions: Rh-MoO_x/SiO₂ (Mo/Rh=1/8) 100 mg, L-alanine 2.0 g, additive (solid acids 100 mg, H₂SO₄ 20 mmol, H₃PO₄ 40 mmol), H₂O 19.3 g, H₂ 8 MPa, 353 K, 4 h. ^aOthers include glycine.

Figure S1 Reusability of Rh-MoO_x/SiO₂ catalyst.

Reaction conditions: Rh-MoO_x/SiO₂ (Mo/Rh=1/8) 0.25 g, L-Alanine 2 g (22.5 mmol), H₂SO₄ 22 mmol, H₂O 22 g, H₂ 8 MPa, 353 K, 4 h.

HPLC data

Hydrogenation of L-alanine

Hydrogenation of L-leucine to L-leucinol

3. References

- 1. K. P. Pimparkar, D. J. Miller and J. E. Jackson, Ind. Eng. Chem. Res., 2008, 47, 7648.
- 2. S Antos, A. S. Tilling and E. Wolters, US Patent 6310254, 2002.