Activation and Deprotection of F-BODIPYs using Boron Trihalides

Travis Lundrigan, T. Stanley Cameron and Alison Thompson

Department of Chemistry, Dalhousie University, PO BOX 15000, 6274 Coburg Road, Halifax, Nova Scotia, B3H 4R2, Canada

Supporting Information

1.1 GENERAL EXPERIMENTAL PROCEDURES AND INFORMATION 2

1.2 PROCEDURES AND CHARACTERIZATION DATA 3

(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole hydrochloride (2a) 3
(Z)-2-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2b) 3
(Z)-2-((3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2c) 4
(Z)-1-((4-heptanoyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)heptan-1-one hydrochloride (2d) 4
(Z)-1-((4-acetyl-3,5-dimethyl-1H-pyrrol-2-yl)(phenyl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)ethanone hydrochloride (2e) 4
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole hydrochloride (2f) 5
(Z)-ethyl 2-((3,4-dimethyl-1H-pyrrol-2-yl)methylene)-3-ethyl-5-methyl-2H-pyrrole-4-carboxylate hydrobromide (2g) 5
1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4,4'-dibromo-bora-3a,4a-diaza-s-indacene (3a) 6
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole tetrafluoroborate (4a) 6
(Z)-2-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4b) 7
(Z)-2-((3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4c) 7
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole tetrafluoroborate (4d) 8
(Z)-2-(phenyl(2H-pyrrol-2-ylidene)methyl)-1H-pyrrole tetrafluoroborate (4e) 8
1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4,4'-diethyl-bora-3a,4a-diaza-s-indacene (5a) 9

1.3 REFERENCES 11

1.4 1H AND 13C NMR SPECTRA 11

(Z)-2-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2b) 11
(Z)-1-((4-heptanoyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)heptan-1-one hydrochloride (2d) 12
(Z)-1-((4-acetyl-3,5-dimethyl-1H-pyrrol-2-yl)(phenyl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)ethanone hydrochloride (2e) 13
(Z)-ethyl 2-((3,4-dimethyl-1H-pyrrol-2-yl)methylene)-3-ethyl-5-methyl-2H-pyrrole-4-carboxylate hydrobromide (2g) 14
1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4,4'-dibromo-bora-3a,4a-diaza-s-indacene (3a) 15
(Z)-3-ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole tetrafluoroborate (4a) 16
1.1 General Experimental Procedures and Information

All 1H NMR (500 MHz), 13C NMR (125 MHz) and 11B NMR (160 MHz) spectra were recorded using a 500 MHz spectrometer. Chemical shifts are expressed in parts per million (ppm) using the solvent signal [CDCl$_3$ (1H 7.26 ppm; 13C 71.16 ppm)] as an internal reference for 1H and 13C and BF$_3$·OEt$_2$ as an external reference for 11B. Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. All coupling constants (J) are reported in Hertz (Hz). Mass spectra were obtained using ion trap (ESI) instruments operating in positive mode.

General Procedure for the Synthesis of HX Salts, X = Cl, Br (GP1)

The F-BODIPY (50 mg) was dissolved in anhydrous dichloromethane (10 mL) and 1 eq of BCl$_3$ (or BBr$_3$) was added drop-wise from a 1.0 M solution in anhydrous hexanes. The reaction mixture was stirred for an hour to allow in situ formation of the Cl-BODIPY. The reaction mixture was then concentrated in vacuo. The residue was dissolved in a mixture of acetone:water (10:1) and the solution was stirred for 10 min. The reaction mixture was extracted into dichloromethane and the organic layer was dried over Na$_2$SO$_4$. The solution was then concentrated in vacuo to obtain the HX salt of the dipyrrin.

General Procedure for the Synthesis of HBF$_4$ Salts (GP2)

The F-BODIPY (50 mg) was dissolved in anhydrous dichloromethane (10 mL) and 1 eq of BF$_3$·OEt$_2$ was added drop-wise. The reaction mixture was stirred for 10 minutes and then 3 eq of water was added and the mixture was further stirred for 3 hours. The reaction
mixture was washed with water and the organic layer dried over Na$_2$SO$_4$. The solution was concentrated in vacuo. The resulting solid was washed with diethyl ether to remove any unreacted F-BODIPY, leaving an orange powder corresponding to the HBF$_4$ salt of the dipyrrin.

1.2 Procedures and characterization Data

(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole hydrochloride (2a)

Using GP1, compound 2a was synthesized from the corresponding F-BODIPY. Bright orange solid (48 mg, 99%). δ_H (500 MHz, CDCl$_3$) 13.36 (2H, br s), 7.00 (1H, s), 2.59 (6H, s), 2.40 (4H, q, $J = 7.5$), 2.24 (6H, s), 1.05 (6H, t, $J = 7.5$). Data matches that previously reported for this compound.

(Z)-2-((4-Ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2b)

Using GP1, compound 2b was synthesized from the corresponding F-BODIPY. Bright orange solid (48 mg, 99%). δ_H (500 MHz, CDCl$_3$) 13.71 (2H, br s), 7.02 (1H, s), 6.11 (1H, s), 2.63 (3H, s), 2.62 (3H, s), 2.42 (2H, q, $J = 7.5$), 2.33 (3H, s), 2.26 (3H, s), 1.07 (3H, t, $J = 7.5$); δ_C (125 MHz, CDCl$_3$) 155.4, 148.8, 141.9, 139.1, 131.0, 126.84, 126.82, 119.4, 116.8, 17.4, 14.53, 14.51, 13.0, 12.2, 10.1. LRMS-ESI (m/z): 229.2 [M + H]$^+$
HRMS-ESI (m/z): [M + H]$^+$ calcd for C$_{13}$H$_{21}$N$_2$ 229.1699; found, 229.1691.

(Z)-2-((3,5-Dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2c)

\[
\text{HCl}
\]

Using GP1, compound 2c was synthesized from the corresponding F-BODIPY. Bright orange solid (48 mg, 99%). δ_H (500 MHz, CDCl$_3$) 13.72 (2H, br s), 7.03 (1H, s), 6.13 (2H, s), 2.62 (6H, s), 2.32 (6H, s). Data matches that previously reported for this compound.5

(Z)-1-(2-((4-Heptanoyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)heptan-1-one hydrochloride (2d)

\[
\text{HCl}
\]

Using GP1, compound 2d was synthesized from the corresponding F-BODIPY.3 Bright orange solid (49 mg, 99%). δ_H (500 MHz, CDCl$_3$) 7.44 (1H, s), 3.00 (6H, s), 2.76 (4H, t, $J = 7.2$), 2.51 (6H, s), 1.74-1.66 (4H, m), 1.39-1.28 (12H, m), 0.90 (6H, t, $J = 6.6$); δ_C (125 MHz, CDCl$_3$) 198.4, 165.7, 142.1, 136.8, 132.0, 123.1, 43.8, 31.9, 29.9, 24.2, 22.7, 17.5, 14.2, 12.4. LRMS-ESI (m/z): 425.3 [M + H]$^+$; HRMS-ESI (m/z): [M + H]$^+$ calcd for C$_{27}$H$_{41}$N$_2$O$_2$ 425.3163; found, 425.3147.
(Z)-1-(2-((4-Acetyl-3,5-dimethyl-1H-pyrrol-2-yl)(phenyl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)ethanone hydrochloride (2e)

Using GP1, compound 2e was synthesized from the corresponding F-BODIPY. Bright orange solid (49 mg, 99%). δ_H (500 MHz, CDCl₃) 13.93 (2H, brs), 7.50-7.46 (3H, m), 7.30-7.28 (2H, m), 2.58 (6H, s), 2.39 (6H, s), 1.53 (6H, s); δ_C (125 MHz, CDCl₃) 196.7, 154.5, 143.7, 143.6, 137.2, 137.1, 131.0, 129.4, 129.3, 129.2, 31.8, 18.1, 14.5. LRMS-ESI (m/z): 361.2 [M + H]^+; HRMS-ESI (m/z): [M + H]^+ calcd for C_{23}H_{25}N_{2}O_{3} 361.1916; found, 361.1913.

(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole hydrochloride (2f)

Using GP1, compound 2f was synthesized from the corresponding F-BODIPY. Bright orange solid (48 mg, 99%). δ_H (500 MHz, CDCl₃) 11.46 (2H, brs), 7.55-7.41 (3H, m), 7.26-7.25 (2H, m), 2.58 (6H, s), 2.33 (4H, q, J = 7.5), 1.31 (6H, s), 0.99 (6H, t, J = 7.5). Data matches that previously reported for this compound.
Using **GP1**, compound **2g** was synthesized from the corresponding *F*-BODIPY. Bright orange solid (55 mg, 99%). \(\delta _H (500 \text{ MHz, CDCl}_3) 13.73 \) (1H, br s), \(13.35 \) (1H, br s), \(7.76 \) (1H, d, \(J = 3.5 \)), \(7.34 \) (1H, s), \(4.36 \) (2H, q, \(J = 7.0 \)), \(3.07 \) (2H, q, \(J = 7.5 \)), \(2.96 \) (3H, s), \(2.33 \) (3H, s), \(2.10 \) (3H, s), \(1.40 \) (3H, t, \(J = 7.0 \)), \(1.27 \) (3H, t, \(J = 7.5 \)); \(\delta _C (125 \text{ MHz, CDCl}_3) 163.2, 158.6, 155.6, 144.7, 144.5, 128.9, 126.6, 125.3, 122.9, 118.2, 60.7, 19.6, 16.9, 15.6, 14.4, 10.5, 10.2. LRMS-ESI (m/z): 287.2 \([\text{M} + \text{H}]^+\); HRMS-ESI (m/z): \([\text{M} + \text{H}]^+\) calcd for C\(_{17}\)H\(_{23}\)N\(_2\)O\(_2\) 287.1754; found, 287.1752.

1,3,5,7-Tetramethyl-2,6-diethyl-8-\(H\)-4,4\(^{\prime}\)-dibromo-bora-3a,4a-diaza-s-indacene (3a)

![Diagram](image-url)

The analogous *F*-BODIPY (50 mg) was dissolved in anhydrous CCl\(_4\) (10 mL) and treated with 1 eq of BBr\(_3\). The bright orange solution became dark red/purple in colour. The solution was concentrated *in vacuo* and compound **3a** was isolated as a dark red solid (70 mg, 99%). \(\delta _H (500 \text{ MHz, CDCl}_3) 7.02 \) (1H, s), \(2.80 \) (6H, s), \(2.40 \) (4H, q, \(J = 7.5 \)), \(2.21 \) (6H, s), \(1.08 \) (6H, t, \(J = 7.5 \)); \(\delta _C (125 \text{ MHz, CDCl}_3) 154.2, 139.6, 134.1, 131.6, 119.4, 17.4, 14.7, 14.4, 10.2; \(\delta _B (160 \text{ MHz, CDCl}_3) -5.89 \) (s).

\((Z)-3\)-Ethyl-5-(4-ethyl-3,5-dimethyl-2\(H\)-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1\(H\)-pyrrole tetrafluoroborate (4a)

![Diagram](image-url)
Using GP2, compound 4a was synthesized from the corresponding F-BODIPY.1 Bright orange solid (56 mg, 99%). \(\delta_H\) (500 MHz, CDCl\(_3\)) 10.78 (2H, brs), 7.06 (1H, s), 2.55 (6H, s), 2.44 (4H, q, \(J = 7.5\)), 2.28 (6H, s), 1.09 (6H, t, \(J = 7.5\)); \(\delta_C\) (125 MHz, CDCl\(_3\)) 154.3, 142.6, 131.1, 126.9, 118.9, 17.4, 14.5, 12.8, 10.2; \(\delta_B\) (160 MHz, CDCl\(_3\)) -0.65 (s); \(\delta_F\) (282 MHz, CDCl\(_3\)) -155.0 (s). LRMS-ESI (m/z): 87.0 [M].

\((Z)-2-((4\text{-Ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl}-3,5\text{-dimethyl-1H-pyrrole tetrafluoroborate (4b)}}\)

\begin{center}
\includegraphics[width=0.2\textwidth]{image1.png}
\end{center}

Using GP2, compound 4b was synthesized from the corresponding F-BODIPY.1 Bright orange solid (52 mg, 91%). \(\delta_H\) (500 MHz, CDCl\(_3\)) 10.83 (1H, br s), 10.73 (1H, brs), 7.09 (1H, s), 6.19 (1H, s), 2.57 (6H, s, 2 x CH\(_3\)), 2.45 (2H, q, \(J = 7.5\)), 2.35 (3H, s), 2.29 (3H, s), 1.09 (3H, t, \(J = 7.5\)); \(\delta_C\) (125 MHz, CDCl\(_3\)) 156.1, 154.8, 146.2, 143.5, 131.7, 127.30, 127.28, 119.5, 117.4, 17.5, 14.4, 12.9, 12.3, 10.2 (1C signal missing); \(\delta_B\) (160 MHz, CDCl\(_3\)) -0.65 (s); \(\delta_F\) (282 MHz, CDCl\(_3\)) -155.0 (s). LRMS-ESI (m/z): 87.0 [M].

\((Z)-2-((3,5\text{-Dimethyl-2H-pyrrol-2-ylidene)methyl}-3,5\text{-dimethyl-1H-pyrrole tetrafluoroborate (4c)}}\)

\begin{center}
\includegraphics[width=0.2\textwidth]{image2.png}
\end{center}

Using GP2, compound 4c was synthesized from the corresponding F-BODIPY.2 Bright orange solid (46 mg, 80%). \(\delta_H\) (500 MHz, CDCl\(_3\)) 10.84 (2H, brs), 7.09 (1H, s), 6.21 (2H, s), 2.58 (6H, s), 2.34 (6H, s); \(\delta_C\) (125 MHz, CDCl\(_3\)) 156.2, 147.4, 133.5, 127.6, 120.3,
14.5, 12.2; δ_B (160 MHz, CDCl$_3$) -0.65 (s); δ_F (282 MHz, CDCl$_3$) -154.9 (s). LRMS-ESI (m/z): 87.0 [M$^-$].

(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole tetrafluoroborate (4e)

![Chemical structure of 4e]

Using GP2, compound 4d was synthesized from the corresponding F-BODIPY. Bright orange solid (25 mg, 45%). δ_H (500 MHz, CDCl$_3$) 9.89 (2H, br s), 7.53-7.45 (3H, m), 7.35-7.31 (2H, m), 2.52 (6H, s), 2.41 (4H, q, $J=7.5$), 1.45 (6H, s), 1.06 (6H, t, $J=7.5$); δ_C (125 MHz, CDCl$_3$) 153.7, 138.5, 136.6, 135.9, 133.8, 132.2, 129.3, 129.1, 128.3, 17.5, 14.3, 12.7, 12.1; δ_B (160 MHz, CDCl$_3$) -1.01 (s); δ_F (282 MHz, CDCl$_3$) -157.4 (s). LRMS-ESI (m/z): 87.0 [M$^-$].

(Z)-2-(Phenyl(2H-pyrrol-2-ylidene)methyl)-1H-pyrrole tetrafluoroborate (4h)

![Chemical structure of 4h]

Using GP2, compound 4e was synthesized from the corresponding F-BODIPY. Bright orange solid (3 mg, 5%). δ_H (500 MHz, CDCl$_3$) 8.46 (2H, brs), 7.68 (2H, t, $J=1.2$), 7.52-7.42 (5H, m), 6.62 (2H, dd, $J=4.2$, 1.2), 6.41 (2H, dd, $J=4.2$, 1.5); δ_C (125 MHz, CDCl$_3$) 143.8, 142.7, 140.3, 137.4, 131.0, 129.5, 129.2, 127.7, 117.7; δ_B (160 MHz, CDCl$_3$) -1.00 (s); δ_F (282 MHz, CDCl$_3$) -157.0 (s). LRMS-ESI (m/z): 87.0 [M$^-$].
(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole hydrobromide (4a-HBr)

Compound 4a-HBF4 (50 mg) was dissolved in anhydrous dichloromethane (10 mL) and treated with excess (0.1 mL) aqueous HBr (48%). The resulting solution was stirred for 15 min and then washed with water. The organic layer was dried over Na₂SO₄ and concentrated in vacuo to give 4a-HBr as a bright orange solid (49 mg, 99%). δ_H (500 MHz, CDCl₃) 12.87 (2H, br s), 7.02 (1H, s), 2.66 (6H, s), 2.41 (4H, q, J = 7.5), 2.26 (6H, s), 1.06 (6H, t, J = 7.5). Data matches that previously reported for this compound.⁷

1,3,5,7-Tetramethyl-2,6-diethyl-8-H-4,4′-diethyl-bora-3a,4a-diaza-s-indacene (5a)

F-BODIPY 1a (50 mg) was dissolved in anhydrous dichloromethane (10 mL) and treated with 1 eq of BF₃·OEt₂, followed by the addition of 2 eq of EtMgBr (3.0 M in THF) added drop-wise. The solution was then washed with water and the organic layer was dried over Na₂SO₄ and concentrated in vacuo to give 5a as a bright orange solid (53 mg, 99%). δ_H (500 MHz, CDCl₃) 6.99 (1H, s), 2.44-2.39 (10H, m, 2x(CH₃+CH₂)), 2.18 (6H, s), 1.06 (6H, t, J = 7.6), 0.82 (4H, q, J=7.6), 0.31 (6H, t, J=7.6). Compound has been previously characterized.⁶
1.3 References

1.4 ^1H and ^{13}C NMR Spectra

(Z)-2-((4-Ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole hydrochloride (2b)

^1H NMR Spectrum in CDCl$_3$

^{13}C NMR Spectrum in CDCl$_3$
(Z)-1-(2-((4-Heptanoyl-3,5-dimethyl-1H-pyrrol-2-yl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)heptan-1-one hydrochloride (2d)

\(^1\)H NMR Spectrum in CDCl₃

\(^13\)C NMR Spectrum in CDCl₃
(Z)-1-(2-((4-Acetyl-3,5-dimethyl-1H-pyrrol-2-yl)(phenyl)methylene)-3,5-dimethyl-2H-pyrrol-4-yl)ethanone hydrochloride (2e)

1H NMR Spectrum in CDCl$_3$

13CNMR Spectrum in CDCl$_3$
(Z)-Ethyl 2-((3,4-dimethyl-1H-pyrrol-2-yl)methylene)-3-ethyl-5-methyl-2H-pyrrole-4-carboxylate hydrobromide (2g)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
1,3,5,7-Tetramethyl-2,6-diethyl-8-H,4,4’-dibromo-bora-3a,4a-diaza-s-indacene (3a)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1H-pyrrole tetrafluoroborate (4a)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
(Z)-2-((4-Ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4b)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
(Z)-2-((3,5-Dimethyl-2H-pyrrol-2-ylidene)methyl)-3,5-dimethyl-1H-pyrrole tetrafluoroborate (4c)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
(Z)-3-Ethyl-5-((4-ethyl-3,5-dimethyl-2H-pyrrol-2-ylidene)(phenyl)methyl)-2,4-dimethyl-1H-pyrrole tetrafluoroborate (4e)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$
(Z)-2-(Phenyl(2H-pyrrol-2-ylidene)methyl)-1H-pyrrole tetrafluoroborate (4h)

1H NMR Spectrum in CDCl$_3$

13C NMR Spectrum in CDCl$_3$