Supporting Information

The benzoyl peroxide-promoted functionalization of simple alkane with 2-aryl phenyl isonitrile

Wanxing Sha,† Jin-Tao Yu,† Haitao Yang,† Yan Jiang,† and Jiang Cheng**†‡

†School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China

‡State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China

Email: jiangcheng@cczu.edu.cn

Table of Contents

1 General experimental details ... S2
2 Intermolecular KIE experiments .. S3
3 The KIE studies on cyclohexane ... S6
4 Free radical capture experiments ... S10
5 Characterization data for the products S12
6 Copies of 1H NMR and 13C NMR spectra S20
1 General experimental details

Chemicals were used as received without special purification unless stated otherwise. 1H and 13C NMR were recorded at ambient temperature on a 400 MHz NMR spectrometer (100 MHz for 13C NMR). NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl$_3$ (δ 7.26 or 77.0 ppm) as the internal standard. The coupling constants J are given in Hz.

General synthetic procedures

A sealed tube was charged with isocyanide (0.2 mmol), benzoyl peroxide (ca. 0.44 mmol) (The purity of BPO was 99%, containing 40% of water) and cyclohexane (2.0 mL). The mixture was kept stirring under air at 100 °C for 4 h. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give the desired product.
2 Intermolecular KIE experiments

2.1 KIE experiment of 1a and d₅-la

In a sealed tube, the mixture of 1a (0.1 mmol) and d₅-1a (0.1 mmol) was treated under standard procedures and heated for 3 min. After that, the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give 3aa and d₄-3aa. The mixture of 3aa and d₄-3aa was analyzed using ¹H NMR spectrometer. As shown in Figure S1-1, the ratio of 3aa and d₄-3aa is nearly 1: 1.

![Scheme S1-1 KIE experiment of 1a and d₅-la](image)

Figure S1-1 The ¹H NMR spectrum of the KIE results with 3aa and d₄-3aa

In a sealed tube, the mixture of 1a (0.1 mmol) and d₅-1a (0.1 mmol) was treated
under standard procedures and heated for 1 h. After that, the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give 3aa and d₄-3aa. The mixture of 3aa and d₄-3aa was analyzed using ¹H NMR spectrometer. As shown in Figure S1-2, the ratio of 3aa and d₄-3aa is nearly 1.2:1.

Scheme S1-2 KIE experiment of 1a and d₅-1a

Figure S1-2 The ¹H NMR spectrum of the KIE results with 3aa and d₄-3aa

In a sealed tube, the mixture of 1a (0.1 mmol) and d₅-1a (0.1 mmol) was treated under standard procedures and heated for 2 h. After that, the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give 3aa and d₄-3aa. The mixture of 3aa and d₄-3aa was analyzed using ¹H NMR spectrometer. As shown in
Figure S1-3, the ratio of 3aa and d₄-3aa is nearly 1.3: 1.

Scheme S1-3 KIE experiment of 1a and d₄-1a

Figure S1-3 The ¹H NMR spectrum of the KIE results with 3aa and d₄-3aa

2.2 KIE experiment of d₁-1a

In a sealed tube, d₁-1a (0.2 mmol) was treated by standard procedures. After completion of the reaction, the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give product 3aa and d₁-3aa. The mixture was analyzed using ¹H NMR spectrometer. As shown in Figure S2, the ratio of 3aa and d₁-3aa is nearly 1: 1.
Scheme S2 KIE experiment of d$_1$-1a

Figure S2 The 1H NMR spectrum of the KIE results

3 The KIE studies on cyclohexane

In a sealed tube, the mixture of 1a (0.2 mmol), cyclohexane/d$_{12}$-cyclohexane (1: 1, 2.0 mL) was treated under standard conditions for 3 min. After that, the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give product 3aa and d$_{11}$-3aa. The mixture was analyzed using 1H NMR spectrometer. As shown in Figure S3-1, the ratio of 3aa and d$_{11}$-3aa is nearly 8.1: 1.
In a sealed tube, the mixture of 1a (0.1 mmol), cyclohexane/d\textsubscript{12}-cyclohexane (1:1, 1.0 mL) was treated under standard conditions for 1 h. After that, the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give product 3aa and d\textsubscript{11}-3aa. The mixture was analyzed using 1H NMR spectrometer. As shown in Figure S3-2, the ratio of 3aa and d\textsubscript{11}-3aa is nearly 7.3: 1.
In a sealed tube, the mixture of 1a (0.1 mmol), cyclohexane/d$_{12}$-cyclohexane (1: 1, 1.0 mL) was treated under standard conditions for 2 h. After that, the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-ethyl acetate as eluent to give product 3aa and d$_{11}$-3aa. The mixture was analyzed using 1H NMR spectrometer. As shown in Figure S3-3, the ratio of 3aa and d$_{11}$-3aa is nearly 6.1: 1.

Scheme S3-3 KIE experiment of cyclohexane and d$_{12}$-cyclohexane
Figure S3-3 The 1H NMR spectrum of the KIE results
4 Free radical capture experiments

4.1 Standard procedure

4.2 Add 1.0 eq. of TEMPO to the reaction mixture

Residual time of 1-(cyclohexyloxy)-2,2,6,6-tetramethylpiperidine: 8.075 min
Figure S4 GC-MS spectra of free radical capture results
5 Characterization data for the products

6-cyclohexylphenanthridine (3aa)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3aa (39.2 mg, 75% yield) as yellowish oil.

1H NMR (CDCl$_3$, 400 MHz): δ 8.64 (d, $J = 8.2$ Hz, 1H), 8.54 (d, $J = 8.1$ Hz, 1H), 8.32 (d, $J = 8.2$ Hz, 1H), 8.16 (d, $J = 8.1$ Hz, 1H), 7.80 (t, $J = 7.5$ Hz, 1H), 7.73-7.67 (m, 2H), 7.61 (t, $J = 7.7$ Hz, 1H), 3.66-3.60 (m, 1H), 2.12-2.09 (m, 2H), 2.01-1.96 (m, 4H), 1.88-1.83 (m, 1H), 1.64-1.58 (m, 2H), 1.50-1.44 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): δ 165.2, 143.8, 132.9, 129.9, 129.8, 128.3, 127.0, 126.1, 125.5, 124.7, 123.3, 122.5, 121.8, 41.9, 32.2, 26.8, 26.3.

MS (EI): 261 (M$^+$); HRMS (APCI): Calcd. for C$_{19}$H$_{20}$N (M+H)$^+$ 262.1590, found 262.1593.

6-cyclohexyl-8-methylphenanthridine (3ba)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3ba (38.5 mg, 70% yield) as white solid. Mp: 128-131 °C.

1H NMR (CDCl$_3$, 400 MHz): δ 8.54-8.48 (m, 2H), 8.12 (d, $J = 8.0$ Hz, 1H), 8.07 (s, 1H), 7.69-7.62 (m, 2H), 7.58 (t, $J = 7.6$ Hz, 1H), 3.63-3.57 (m, 1H), 2.62 (s, 3H), 2.08-1.84 (m, 7H), 1.64-1.55 (m, 2H), 1.49-1.43 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): δ 165.0, 143.5, 136.8, 131.6, 130.8, 129.8, 127.9, 126.0, 125.0, 124.8, 123.4, 122.4, 121.6, 41.8, 32.2, 26.8, 26.3, 22.0.

MS (EI): 275 (M$^+$); HRMS (APCI): Calcd. for C$_{20}$H$_{22}$N (M+H)$^+$ 276.1747, found 276.1749.

6-cyclohexyl-3-methylphenanthridine (3ca)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3ca (37.4 mg, 68% yield) as yellowish solid. Mp: 91-94 °C.

1H NMR (CDCl$_3$, 400 MHz): δ 8.61 (d, $J = 8.2$, 1H), 8.41 (d, $J = 8.3$ Hz, 1H), 8.29 (d,
$J = 8.3 \text{ Hz, 1H}$, $7.95 \text{ (s, 1H), 7.79 (t, } J = 7.2 \text{ Hz, 1H), 7.65 (t, } J = 7.5 \text{ Hz, 1H), 7.43 (d, } J = 8.2 \text{ Hz, 1H), 3.63-3.58 \text{ (m, 1H), 2.58 (s, 3H), 2.09-1.83 \text{ (m, 7H), 1.66-1.53 \text{ (m, 2H), 1.48-1.42 \text{ (m, 1H); } ^{13}\text{C NMR (CDCl}_3, 100 \text{ MHz)}: } \delta 165.3, 143.9, 138.5, 133.0, 129.8, 129.5, 127.8, 126.6, 125.6, 124.4, 122.4, 121.6, 121.0, 41.9, 32.3, 26.8, 26.3, 21.4. \text{ MS (EI): 275 (M$^+$); HRMS (APCI): Calcd. for C}_{20}\text{H}_{22}\text{N (M+H)$^+$ 276.1747, found 276.1747.}}$

6-cyclohexyl-8-fluorophenanthridine (3da)

![structure](image)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give **3da** (42.4 mg, 76% yield) as yellowish solid. Mp: 96-99 °C.

$^1\text{H NMR (CDCl}_3, 400 \text{ MHz): } \delta 8.59 \text{ (t, } J = 7.6 \text{ Hz, 1H), 8.44 (d, } J = 8.1 \text{ Hz, 1H), 8.15 (d, } J = 8.1 \text{ Hz, 1H), 7.90 (d, } J = 10.3 \text{ Hz, 1H), 7.69 (t, } J = 7.7 \text{ Hz, 1H), 7.60 (t, } J = 7.9 \text{ Hz, 1H), 7.54 (t, } J = 7.6 \text{ Hz, 1H), 3.50-3.43 \text{ (m, 1H), 2.08-2.05 \text{ (m, 2H), 2.00-1.84 \text{ (m, 5H), 1.63-1.53 \text{ (m, 2H), 1.49-1.41 \text{ (m, 1H); } ^{13}\text{C NMR (CDCl}_3, 100 \text{ MHz): } \delta 164.3, 161.4 \text{ (d, } J_{C,F} = 245.6 \text{ Hz), 143.5, 130.0, 129.7 (d, } J_{C,F} = 1.4 \text{ Hz), 128.2, 126.4, 126.0 (d, } J_{C,F} = 7.4 \text{ Hz), 125.0 (d, } J_{C,F} = 8.3 \text{ Hz), 122.8, 121.5, 118.9 (d, } J_{C,F} = 23.7 \text{ Hz), 110.2 (d, } J_{C,F} = 21.3 \text{ Hz), 42.1, 32.1, 26.7, 26.2. \text{ MS (EI): 279 (M$^+$); HRMS (APCI): Calcd. for C}_{19}\text{H}_{19}\text{FN (M+H)$^+$ 280.1496, found 280.1500.}}$

8-chloro-6-cyclohexylphenanthridine (3ea)

![structure](image)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give **3ea** (44.3 mg, 75% yield) as white solid. Mp: 145-146 °C.

$^1\text{H NMR (CDCl}_3, 400 \text{ MHz): } \delta 8.57 \text{ (d, } J = 8.8 \text{ Hz, 1H), 8.47 (d, } J = 8.2 \text{ Hz, 1H), 8.24 (s, 1H), 8.13 \text{ (d, } J = 8.1 \text{ Hz, 1H), 7.76-7.69 \text{ (m, 2H), 7.61 (t, } J = 7.5 \text{ Hz, 1H), 3.53-3.48 \text{ (m, 1H), 2.06-1.84 \text{ (m, 7H), 1.60-1.53 \text{ (m, 2H), 1.47-1.41 \text{ (m, 1H); } ^{13}\text{C NMR (CDCl}_3, 100 \text{ MHz): } \delta 164.2, 143.8, 133.0, 131.4, 130.4, 130.0, 128.7, 126.5, 125.7, 125.0, 124.4, 122.7, 121.7, 41.9, 32.2, 26.7, 26.2. \text{ MS (EI): 295 (M$^+$); HRMS (APCI): Calcd. for C}_{19}\text{H}_{19}\text{ClN (M+H)$^+$ 296.1201, found 296.1204.}}$

6-cyclohexyl-8-(trifluoromethyl)phenanthridine (3fa)

![structure](image)
Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3fa (48.0 mg, 73% yield) as white solid. Mp: 122-125 °C.

1H NMR (CDCl$_3$, 400 MHz): δ 8.72 (d, $J = 8.6$ Hz, 1H), 8.55 (s, 1H), 8.51 (d, $J = 8.1$ Hz, 1H), 8.17 (d, $J = 8.2$ Hz, 1H), 7.98 (d, $J = 8.4$ Hz, 1H), 7.77 (t, $J = 7.5$ Hz, 1H), 7.64 (t, $J = 7.7$ Hz, 1H), 3.61-3.57 (m, 1H), 2.08-1.86 (m, 7H), 1.63-1.59 (m, 2H), 1.49-1.42 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): δ 165.0, 144.5, 135.2, 130.1, 129.5, 128.8 (q, $J_{C-F} = 32.4$ Hz), 126.7, 125.7 (q, $J_{C-F} = 3.1$ Hz), 124.2 (q, $J_{C-F} = 270.7$ Hz), 124.0, 123.6, 122.9 (q, $J_{C-F} = 4.2$ Hz), 122.3, 122.1, 41.9, 32.3, 26.7, 26.2.

MS (EI): 329 (M$^+$); HRMS (APCI): Calcd. for C$_{20}$H$_{19}$F$_3$N (M+H)$^+$ 330.1464, found 330.1465.

6-cyclohexylphenanthridine-8-carbonitrile (3ga)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 100) give 3ga (30.3 mg, 53% yield) as yellowish solid. Mp: 202-204 °C.

1H NMR (CDCl$_3$, 400 MHz): δ 8.67 (d, $J = 8.6$ Hz, 1H), 8.61 (s, 1H), 8.48 (d, $J = 8.2$ Hz, 1H), 8.15 (d, $J = 8.2$ Hz, 1H), 7.95 (d, $J = 8.5$ Hz, 1H), 7.78 (t, $J = 7.4$ Hz, 1H), 7.65 (t, $J = 7.7$ Hz, 1H), 3.54-3.48 (m, 1H), 2.04-1.85 (m, 7H), 1.63-1.54 (m, 2H), 1.46-1.40 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): δ 164.4, 144.7, 135.6, 131.1, 131.0, 130.2, 130.1, 126.9, 124.0, 123.8, 122.2, 121.9, 118.8, 110.4, 41.9, 32.3, 26.6, 26.1.

MS (EI): 286 (M$^+$); HRMS (APCI): Calcd. for C$_{20}$H$_{19}$N$_2$ (M+H)$^+$ 287.1543, found 287.1543.

1-(6-cyclohexylphenanthridin-8-yl)ethanone (3ha)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 40) give 3ha (30.9 mg, 51% yield) as white solid. Mp: 120-123 °C.

1H NMR (CDCl$_3$, 400 MHz): δ 8.90 (s, 1H), 8.66 (d, $J = 8.6$ Hz, 1H), 8.52 (d, $J = 8.2$ Hz, 1H), 8.31 (d, $J = 8.6$ Hz, 1H), 8.14 (d, $J = 8.2$ Hz, 1H), 7.75 (t, $J = 7.7$ Hz, 1H), 7.62 (t, $J = 7.9$ Hz, 1H), 3.67-3.65 (m, 1H), 2.78 (s, 3H), 2.08-2.05 (m, 2H), 1.99-1.85
(m, 5H), 1.66-1.56 (m, 2H), 1.48-1.42 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): δ 197.4, 165.8, 144.7, 136.1, 135.2, 130.0, 129.6, 128.5, 126.5, 126.5, 124.1, 123.1, 122.5, 122.4, 41.9, 32.4, 26.8, 26.7, 26.2.

MS (EI): 303 (M$^+$); HRMS (ESI): Calcd. for C$_{21}$H$_{22}$NO (M+H)$^+$ 304.1696, found 304.1687.

methyl 6-cyclohexylphenanthridine-8-carboxylate (3ia)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 100) give 3ia (28.7 mg, 45% yield) as white solid. Mp: 148-151 oC.

1H NMR (CDCl$_3$, 400 MHz): δ 9.01 (s, 1H), 8.65 (d, J = 8.6 Hz, 1H), 8.52 (d, J = 8.2 Hz, 1H), 8.38 (d, J = 8.6 Hz, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 4.04 (s, 3H), 3.71-3.66 (m, 1H), 2.08-2.05 (m, 2H), 1.99-1.93 (m, 4H), 1.89-1.85 (m, 1H), 1.67-1.57 (m, 2H), 1.48-1.39 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): δ 166.8, 165.7, 144.6, 136.1, 130.0, 129.6, 129.5, 128.4, 127.9, 126.4, 124.1, 122.8, 122.6, 122.4, 52.4, 41.7, 32.4, 26.7, 26.2.

MS (EI): 319 (M$^+$); HRMS (APCI): Calcd. for C$_{21}$H$_{22}$NO$_2$ (M+H)$^+$ 320.1645, found 320.1646.

6-cyclohexyl-3-fluorophenanthridine (3ja)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3ja (37.9 mg, 68% yield) as white solid. Mp: 103-105 oC.

1H NMR (CDCl$_3$, 400 MHz): δ 8.53 (d, J = 8.2 Hz, 1H), 8.46 (dd, J_1 = 9.0 Hz, J_2 = 5.9 Hz, 1H), 8.30 (d, J = 8.3 Hz, 1H), 7.81-7.77 (m, 2H), 7.66 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 8.6 Hz, 1H), 3.64-3.57 (m, 1H), 2.08-1.80 (m, 7H), 1.63-1.53 (m, 2H), 1.49-1.38 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): δ 166.7, 162.5 (d, $J_{C,F}$ = 245.7 Hz), 145.2 (d, $J_{C,F}$ = 11.7 Hz), 132.7, 130.2, 126.8, 125.7, 124.2, 123.6 (d, $J_{C,F}$ = 9.5 Hz), 122.3, 120.0 (d, $J_{C,F}$ = 2.1 Hz), 115.0 (d, $J_{C,F}$ = 23.5 Hz), 114.3 (d, $J_{C,F}$ = 20 Hz), 42.0, 32.2, 26.8, 26.2.

MS (EI): 279 (M$^+$); HRMS (APCI): Calcd. for C$_{19}$H$_{19}$FN (M+H)$^+$ 280.1496, found 280.1490.

6-cyclohexyl-2-fluorophenanthridine (3ka)
Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3ka (40.7 mg, 73% yield) as white solid. Mp: 123-125 °C.

1H NMR (CDCl$_3$, 400 MHz): δ 8.50 (d, $J = 8.2$ Hz, 1H), 8.31 (d, $J = 8.2$ Hz, 1H), 8.13-8.09 (m, 2H), 7.81 (t, $J = 7.6$ Hz, 1H), 7.71 (t, $J = 7.6$ Hz, 1H), 7.42 (t, $J = 8.3$ Hz, 1H), 3.63-3.56 (m, 1H), 2.08-2.05 (m, 2H), 2.00-1.83 (m, 5H), 1.63-1.52 (m, 2H), 1.48-1.40 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz): δ 164.5, 160.8 ($d J_{C,F} = 243.8$ Hz), 140.7, 132.4 ($d, J_{C,F} = 4.0$ Hz), 132.0 ($d, J_{C,F} = 9.0$ Hz), 129.9, 127.7, 125.7, 124.7, 124.5 ($d, J_{C,F} = 9.3$ Hz), 122.7, 117.1 ($d, J_{C,F} = 24.0$ Hz), 106.7 ($d, J_{C,F} = 22.9$ Hz), 41.9, 32.3, 26.8, 26.3.

MS (EI): 279 (M$^+$); HRMS (APCI): Calcd. for C$_{19}$H$_{19}$FN (M+H)$^+$ 280.1496, found 280.1490.

6-cyclohexyl-9-methylphenanthridine and 6-cyclohexyl-7-methylphenanthridine (3:2) (3la)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3la (40.2 mg, 73% yield) as yellowish oil.

1H NMR (CDCl$_3$, 400 MHz): δ 8.56-8.49 (m, 3.5H), 8.43 (s, 1.5H), 8.20 (d, $J = 8.4$ Hz, 1.5H), 8.14 (d, $J = 8.1$ Hz, 1.5H), 8.09 (d, $J = 8.1$ Hz, 1H), 7.71-7.66 (m, 2.5H), 7.64-7.55 (m, 3.5H), 7.51-7.47 (m, 2.5H), 3.83-3.76 (m, 1H), 3.62-3.56 (m, 1.5H), 3.02 (s, 3H), 2.64 (s, 4.5H), 2.04-1.85 (m, 17H), 1.60-1.45 (m, 8H); MS (EI): 275 (M$^+$); HRMS (APCI): Calcd. for C$_{20}$H$_{22}$N (M+H)$^+$ 276.1747, found 276.1753.

6-cyclohexyl-2,4-difluorophenanthridine (3ma)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3ma (42.2 mg, 71% yield) as yellowish solid. Mp: 146-148 °C.

1H NMR (CDCl$_3$, 400 MHz): δ 8.44 (d, $J = 8.2$ Hz, 1H), 8.32 (d, $J = 8.2$ Hz, 1H), 7.90 (d, $J = 9.8$ Hz, 1H), 7.81 (t, $J = 7.6$ Hz, 1H), 7.74 (t, $J = 7.6$ Hz, 1H), 7.21-7.16 (m, 1H), 3.62-3.55 (m, 1H), 2.09-1.82 (m, 7H), 1.62-1.51 (m, 2H), 1.48-1.41 (m, 1H); 13C
NMR (CDCl₃, 100 MHz): δ 164.8, 160.7 (dd J₁ = 12.0 Hz J₂ = 79.4 Hz), 158.2 (dd J₁ = 12.1 Hz J₂ = 90.4 Hz), 131.8 (dd J₁ = 3.2 Hz J₂ = 4.1 Hz), 130.6 (dd J₁ = 2.0 Hz J₂ = 9.8 Hz), 130.3, 128.2, 125.8, 125.7 (dd J₁ = 2.9 Hz J₂ = 10.2 Hz), 125.1, 122.9, 103.7 (dd J₁ = 23.5 Hz J₂ = 27.9 Hz), 102.4 (dd J₁ = 4.5 Hz J₂ = 22.6 Hz), 42.2, 32.3, 26.8, 26.2.
MS (EI): 297 (M⁺); HRMS (APCI): Calcd. for C₁₉H₁₈F₂N (M+H)⁺ 298.1402, found 298.1404.

6-cyclopentylphenanthridine (3ab)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3ab (33.1 mg, 67% yield) as yellowish oil.

1H NMR (CDCl₃, 400 MHz): δ 8.64 (d, J = 8.2 Hz, 1H), 8.53 (d, J = 8.1 Hz, 1H), 8.34 (d, J = 8.2 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.81 (t, J = 8.1 Hz, 1H), 7.73-7.67 (m, 2H), 7.61 (t, J = 8.1 Hz, 1H), 4.14-4.04 (m, 1H), 2.31-2.16 (m, 4H), 2.00-1.92 (m, 2H), 1.86-1.80 (m, 2H); 13C NMR (CDCl₃, 100 MHz): δ 164.1, 143.7, 132.9, 129.9, 129.8, 128.3, 127.0, 126.2, 126.0, 125.6, 123.4, 122.3, 121.8, 43.5, 32.1, 26.0.
MS (EI): 247 (M⁺); HRMS (ESI): Calcd. for C₁₈H₁₈N (M+H)⁺ 248.1434, found 248.1414.

6-cycloheptylphenanthridine (3ac)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3ac (44.0 mg, 80% yield) as yellowish oil.

1H NMR (CDCl₃, 400 MHz): δ 8.64 (d, J = 8.2 Hz, 1H), 8.53 (d, J = 8.1 Hz, 1H), 8.30 (d, J = 8.3 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.78-7.67 (m, 2H), 7.60 (t, J = 7.8 Hz, 1H), 3.83-3.76 (m, 1H), 2.18-2.12 (m, 4H), 1.99-1.95 (m, 2H), 1.84-1.07 (m, 6H); 13C NMR (CDCl₃, 100 MHz): δ 166.5, 143.7, 133.0, 129.8, 129.8, 128.3, 127.0, 126.0, 125.7, 124.5, 123.2, 122.5, 121.7, 34.1, 28.1, 27.5 (possibly overlapped);
MS (EI): 275 (M⁺); HRMS (APCI): Calcd. for C₂₀H₂₂N (M+H)⁺ 276.1747, found 276.1748.

6-cyclooctylphenanthridine (3ad)

S17
Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3ad (46.8 mg, 81% yield) as yellowish oil.

1H NMR (CDCl$_3$, 400 MHz): δ 8.65 (d, J = 8.2 Hz, 1H), 8.53 (d, J = 8.1 Hz, 1H), 8.31 (d, J = 8.2 Hz, 1H), 8.15 (d, J = 8.1 Hz, 1H), 7.81 (t, J = 7.9 Hz, 1H), 7.73-7.68 (m, 2H), 7.60 (t, J = 8.1 Hz, 1H), 3.94-3.87 (m, 1H), 2.25-2.07 (m, 4H), 1.95-1.88 (m, 2H), 1.83-1.66 (m, 8H); 13C NMR (CDCl$_3$, 100 MHz): δ 167.1, 143.7, 133.1, 129.8, 129.8, 128.3, 127.0, 126.0, 125.7, 124.5, 123.2, 122.6, 121.7, 32.5, 26.8, 26.2 (possibly overlapped);

MS (EI): 289 (M$^+$); HRMS (APCI): Calcd. for C$_{21}$H$_{24}$N (M+H)$^+$ 290.1903, found 290.1900.

6-(hexan-2-yl)phenanthridine and 6-(hexan-3-yl)phenanthridine (1:1) (3ae)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3ae (32.6 mg, 62% yield) as yellowish oil.

1H NMR (CDCl$_3$, 400 MHz): δ 8.67 (d, J = 8.2 Hz, 2H), 8.57-8.54 (m, 2H), 8.37 (d, J = 8.3 Hz, 1H), 8.34 (d, J = 8.3 Hz, 1H), 8.17 (d, J = 8.1 Hz, 2H), 7.82 (t, J = 7.2 Hz, 2H), 7.74-7.68 (m, 4H), 7.62 (t, J = 7.4 Hz, 2H), 3.90-3.81 (m, 1H), 3.74-3.67 (m, 1H), 2.20-2.07 (m, 3H), 1.92-1.75 (m, 3H), 1.51 (d, J = 6.8 Hz, 3H), 1.47-1.21 (m, 8H), 0.92-0.88 (m, 7H);

MS (EI): 263 (M$^+$); HRMS (APCI): Calcd. for C$_{19}$H$_{22}$N (M+H)$^+$ 264.1747, found 264.1748.

(R)-6-(3,3-dimethylbutan-2-yl)phenanthridine (3af)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 200) give 3af (16.0 mg, 30% yield) as yellowish oil.

1H NMR (CDCl$_3$, 400 MHz): δ 8.67 (d, J = 8.2 Hz, 1H), 8.56 (d, J = 8.3 Hz, 1H), 8.42 (d, J = 8.3 Hz, 1H), 8.15 (d, J = 9.0 Hz, 1H), 7.81 (t, J = 7.0 Hz, 1H), 7.73-7.66 (m, 2H), 7.61 (t, J = 7.5 Hz, 1H), 3.86-3.81 (m, 1H), 1.49 (d, J = 6.9 Hz, 3H), 1.06 (s, 9H);

13C NMR (CDCl$_3$, 100 MHz): δ 165.0, 143.5, 132.8, 130.1, 129.7, 128.2, 126.8, 126.3,
126.2, 126.0, 123.0, 122.4, 121.7, 43.4, 35.2, 28.3, 15.9.
MS (EI): 263 (M+); HRMS (APCI): Calcd. for C_{10}H_{22}N (M+H)^+ 264.1747, found 264.1748.
6 Copies of 1H NMR and 13C NMR spectra