Electronic supplementary Information (ESI)

Charge Transfer (CT) Mechanochromism: Dramatic CT Absorption Change of Crystalline π-Conjugated Oligomers Containing TCNQ Upon Mechanical Grinding

Atsushi Nagai, a* and Yuki Okabeb

a 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan, Department of Materials Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences. Fax: +81-564-59-5520; Tel: +81-564-59-5522; E-mail: nagai@ims.ac.jp

b 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan, Department of Structural Molecular, School of Physical Sciences, Graduate University for Advanced Studies. E-mail: okabe@ims.ac.jp

Corresponding Author to nagai@ims.ac.jp

Contents

Section 1. Materials and methods

Section 2. Synthetic procedures

Section 3. FT-IR spectra of oligomers and CT-oligomer

Section 4. DFT calculation of model compounds

Section 5. PXRD patterns of oligomer before and after grinding

Section 6. UV spectra of mechanochromism using TCNB
Section 1. Materials and methods

Squaric acid (> Tokyo Kasei Kogyo, Co., > 98%), 1,3-diaminopyrene (Wako Chemicals Co., 99.5%), and 1,6-diaminopyrene (Wako Chemicals Co., 99.5%) was used as received. Anhydrous toluene (99.0%) and n-butanol (> 99%) were purchased from Kanto Chemicals. Other reagents were used as received without further purification.

Fourier transform Infrared (FT-IR) spectra were recorded on a JASCO model FT-IR-6100 infrared spectrometer. UV-Vis-IR diffuse reflectance spectrum (Kubelka-Munk spectrum) was recorded on a JASCO model V-670 spectrometer equipped with integration sphere model IJN-727. Powder X-ray diffraction (PXRD) data were recorded on a Rigaku model RINT Ultima III diffractometer by depositing powder on glass substrate, from $2\theta = 1.5^\circ$ up to 60$^\circ$ with 0.02$^\circ$ increment. Molecular modeling and Pawley refinement were carried out using Reflex, a software package for crystal determination from XRPD pattern. The optimization of the oligomers was carried out at the B3LYP level of theory with a range of basis sets (6-31G(d)) utilizing Gaussian 03 suite of programs, and these of model compounds were calculated at the B3LYP/6-31G(d) level of theory.
Section 2. Synthetic procedures

Oligo(sq-alt-1,3py). To a 50 mL glass tube, squaric acid (11.4 mg, 0.10 mmol) and 1,3-diaminopyrene (23.4 mg, 0.10 mmol) were added. A mixture of n-butanol (3 mL) and toluene (7 mL) was added, and the reaction mixture was refluxed for 2 days. After the reaction mixture was cooled to room temperature, the resulting polymer was purified by precipitation into methanol (100 mL), and the product was dried under reduced pressure. The poly(sq-alt-1,3ampy) (yield = 65%) was obtained as a bright orange solid.

Elemental analysis (%) calcd. for \((\text{C}_{24}\text{O}_{4}\text{N}_{4}\text{H}_{14})_n\) (theoretical formula for an infinite oligo(sq-alt-1,3py)) C (68.24), H (3.34), N (13.26), found C (69.51), H (3.34), N (12.44).

Oligo(sq-alt-1,6py). To a 50 mL glass tube, squaric acid (11.4 mg, 0.10 mmol) and 1,6-diaminopyrene (23.4 mg, 0.10 mmol) were added. A mixture of n-butanol (3 mL) and toluene (7 mL) was added, and the reaction mixture was refluxed for 2 days. After the reaction mixture was cooled to room temperature, the resulting polymer was purified by precipitation into methanol (100 mL), and the product was dried under reduced pressure. The poly(sq-alt-1,6ampy) (yield = 72%) was obtained as a bright orange solid.

Elemental analysis (%) calcd. for \((\text{C}_{24}\text{O}_{4}\text{N}_{4}\text{H}_{14})_n\) (theoretical formula for an infinite oligo(sq-alt-1,6py)) C (68.24), H (3.34), N (13.26), found C (69.01), H (3.22), N (13.2).

Oligo(sq-alt-1,3py)-TCNQ. To a 50 mL glass tube, squaric acid (11.4 mg, 0.10 mmol), 1,3-diaminopyrene (23.4 mg, 0.10 mmol), TCNQ (20.1 mg, 0.10 mmol) were added. A mixture of n-butanol (3 mL) and toluene (7 mL) was added, and the reaction mixture was refluxed for 2 days. After the reaction mixture was cooled to room temperature, the resulting polymer was purified by precipitation into methanol (100 mL), and the product was dried under reduced pressure. The oligo(sq-alt-1,3ampy) (yield = 54%) was obtained as a bright orange solid.

Elemental analysis (%) calcd. for \((\text{C}_{39}\text{O}_{4}\text{N}_{8}\text{H}_{26})_n\) (theoretical formula for an infinite oligo(sq-alt-1,3py)-TCNQ) C (69.84), H (3.91), N (16.71), found C (72.22), H (4.28), N (11.03).

Oligo(sq-alt-1,6py)-TCNQ. To a 50 mL glass tube, squaric acid (11.4 mg, 0.10 mmol), 1,3-diaminopyrene (23.4 mg, 0.10 mmol), TCNQ (20.1 mg, 0.10 mmol) were added. A mixture of n-butanol (3 mL) and toluene (7 mL) was added, and the reaction mixture was refluxed for 2 days. After the reaction mixture was cooled to room temperature, the resulting polymer was purified by precipitation into methanol (100 mL), and the product was dried under reduced pressure. The oligo(sq-alt-1,6ampy) (yield = 78%) was obtained as a bright orange solid.

Elemental analysis (%) calcd. for \((\text{C}_{39}\text{O}_{4}\text{N}_{8}\text{H}_{26})_n\) (theoretical formula for an infinite oligo(sq-alt-1,6py)-TCNQ) C (69.84), H (3.91), N (16.71), found C (71.84), H (3.91), N (15.11).
Section 3. FT-IR spectra of oligomers and CT-oligomers

Fig. S1 IR spectra of (a) oligo(sq-alt-1,3ampy), (b) oligo(sq-alt-1,6ampy), (c) oligo(sq-alt-1,3ampy)-TCNQ, and (d) oligo(sq-alt-1,6ampy)-TCNQ.
Section 4. DFT calculation of model compounds

Fig. S2 Molecular orbital diagrams for HOMO and LUMO of model compounds (B3LYP/6-311G(d)// B3LYP/6-311G(d)).
Section 5. PXRD patterns of oligomer before and after grinding

Fig. S3. XRD patterns of (a) oligo(sq-alt-1,6py)-TCNQ and (b) grinding oligo(sq-alt-1,6py)-TCNQ.
Section 6. UV spectra of mechanochromism using TCNB

Fig. S4. XRD patterns of oligo(sq-alt-1,6py)-TCNB (red dotted curve) and grinding oligo(sq-alt-1,6py)-TCNB (red curve).