Reactions of zirconium amide amidinates with dioxygen.

Observation of an unusual peroxo intermediate in the formation of oxo compounds

Adam C. Lamb, Zheng Lu, and Zi-Ling Xue*

Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA. Fax: +1-865-974-3454; Tel: +1-865-974-3443; E-mail: xue@utk.edu

Supplementary information

Experimental Section

All manipulations were carried out under a dry nitrogen atmosphere with the use of either a glovebox or standard Schlenk techniques. All glassware was flamed dried under vacuum. Solvents were purified by distillation from potassium benzophenone. NMR solvents were dried and stored over 5 Å molecular sieves. O₂ (Airgas) was purified by passing it through a P₂O₅ column. Deionized H₂O was degassed and stored in a Schlenk flask. High purity H₂O₂ was prepared from 30% aqueous H₂O₂ solution (Fischer Scientific, reagent grade) and its purification is discussed below. Na₂SO₄, KMnO₄, K₂C₂O₄ and H₂SO₄ were bought from Fischer Scientific and used without further purification. N,N’-Diisopropylcarbodiimide, LiNMe₂ and MeLi (1.6 M in Et₂O) were purchased from Acros and used without further purification. ZrCl₄ (Strem) was sublimed...
at 170 °C before use. Li[MeC(NPr)₂] was prepared by the reaction of N,N’-diisopropylcarbodiimide with MeLi by an approach similar to that of Hessen et al. S₁

Zr(NMe₂)₄ and Zr(NEt₂)₄ were prepared according to literature. S₂ ¹H and ¹³C{¹H} NMR spectra were recorded on an AMX-400 FT or Varian VNMRS-500 spectrometer. Solid-state NMR spectrum was recorded on a Solid-State Varian INOVA 400 MHz spectrometer equipped with a Chemagnetics 5 mm CPMAS probe and referenced to adamantane. Elemental analyses were conducted by Complete Analysis Laboratories, Inc., Parsippany, NJ.

Mass spectra were recorded on a JEOL AccuTOF™ DART Mass Spectrometer (http://www.jeolusa.com/PRODUCTS/AnalyticalInstruments/MassSpectrometers/AccuTOF%20DART%20Technology/tabid/449/Default.aspx accessed on May 23, 2014) using He as the carrier gas. The analyte reacted with the protonated water, produced from reacting water with the excited-state helium metastable, to form a protonated molecule before being analyzed by the mass spectrometer. To record IR spectra, solid samples were grounded with KBr, which had been dried at 100 °C and under vacuum, and then pressed into pellets. IR spectra were recorded on a Varian 4100 Excalibur. Thermal gravimetric analysis was recorded on a Q-50 TGA.

Caution: Extreme care should be taken in using hydrogen peroxide in the reactions. A shield should be used for protection.

Synthesis of iPrN(H)C(Me)=NPr

iPrN(H)C(Me)=NPr has been prepared by two different groups; Oshima and
Miller. They have reported 1H NMR spectra of iPrN(H)C(Me)=NiPr in CDCl$_3$ and CD$_3$CN, respectively. We are reporting its 1H and 13C{$_^1$H} NMR spectra at 208 K in toluene-d_8 and in benzene-d_6 at 23 °C.

Li[MeC(NiPr)$_2$] (5.893 g, 39.77 mmol) was dissolved in THF (50 mL) and H$_2$O (0.80 mL, 0.80 g, 44.42 mmol) was added via syringe. The solution was allowed to stir for 20 min and Et$_2$O (100 mL) was added. Na$_2$SO$_4$, a drying agent, was added to the solution and stirred for 12 h, followed by filtration. Et$_2$O in the filtrate was removed at 23 °C. The liquid product iPrN(H)C(Me)=NiPr was distilled from the liquid residue at 115 °C and ~0.1 Torr. We have found that at room temperature the 1H NMR spectrum in benzene-d_6 and toluene-d_8 showed a dynamic exchange as the peaks were broad. A variable temperature NMR experiment was performed and 1H and 13C{$_^1$H} NMR spectra were collected from 203 K to 298 K in 5 K intervals. We had hoped to obtain its rate of exchange and calculate its activation parameters. However, due to peak overlap in the 1H NMR these efforts were not successful.

1H NMR (benzene-d_6, 400.17 MHz, 23 °C): δ 3.85 (br, 2H, CHMe$_2$), 3.01 (br, 1H, NH), 1.36 (s, 3H, NC(Me)N), 1.13 (d, 12H, CHMe$_2$); 13C{$_^1$H} NMR (benzene-d_6, 100.62 MHz, 23 °C): δ 151.58 (NC(Me)N), 45.29 (br, CHMe$_2$), 24.22 (CHMe$_2$), 15.71 (NC(Me)N). 1H NMR (toluene-d_8, 400.17 MHz, 23 °C): δ 3.74 (br, 1H, NH), 3.33 (br, 2H, CHMe$_2$), 1.43 (s, 3H, NC(Me)N), 1.04 (d, 12H, CHMe$_2$); 13C{$_^1$H} NMR (toluene-d_8, 100.62 MHz, 23 °C): δ 151.55 (NC(Me)N), 45.18 (br, CHMe$_2$), 24.18 (CHMe$_2$), 15.47 (NC(Me)N). 1H NMR (toluene-d_8, 400.17 MHz, -65 °C): δ 4.71 (br, 1H, NH), 4.28 (m, 1H, CHMe$_2$), 3.47 (m, 1H, CHMe$_2$), 1.60 (s, 3H, NC(Me)N), 1.22 (d, 6H, CHMe$_2$), 1.11
(d, 6H, CHMe₂); 13C{¹H} NMR (toluene-d_8, 100.62 MHz, -65 °C): δ 152.11

(NC(Me)N), 49.04 (CHMe₂), 41.10 (CHMe₂), 25.58 (CHMe₂), 22.54 (CHMe₂), 15.79

(NC(Me)N). DART-MS: Calculated $m/z = 143.15482$ [M+H⁺], Found $m/z = 143.15488$

[M+H⁺]; 0.419 ppm difference.

Synthesis of Zr(NMe₂)₂[MeC(N'Pr)₂]₂ (1)

Zr(NMe₂)₄ (1.601 g, 5.984 mmol) was dissolved in pentane (50 mL) and cooled to

-30 °C. ¹PrN(H)C(Me)=N'Pr (1.758 g, 12.36 mmol) was dissolved in pentane (50 mL)

and added dropwise to the solution of Zr(NMe₂)₄ (Scheme 2). The solution was stirred

for 12 h and volatiles were removed in vacuo affording a yellow solid (2.7640 g, 5.985

mmol, 95.6% yield). ¹H NMR (benzene-d_6, 399.17 MHz, 23 °C): δ 3.45 (m, 4H,

CHMe₂), 3.23 (s, 12H, NMe₂), 1.58 (s, 6H, NC(Me)N), 1.18 (d, 24H, CHMe₂); 13C{¹H}

NMR (benzene-d_6, 100.63 MHz, 23 °C): δ 175.07 (NC(Me)N), 48.34 (CHMe₂), 46.10

(NMe₂), 25.61 (CHMe₂), 11.31 (NC(Me)N). ¹H and 13C{¹H} NMR assignments were

confirmed by DEPT, HMBC and HSQC experiments. Anal. Calcd: C, 52.01; H, 10.04.

Found: C, 51.86; H, 9.98.

Synthesis of Zr(NEt₂)₂[MeC(N'Pr)₂]₂ (7)

Zr(NEt₂)₄ (2.344 g, 6.171 mmol) was dissolved in pentane (50 mL) and cooled to

-30 °C. ¹PrN(H)C(Me)=N'Pr (1.761 g, 12.38 mmol) was dissolved in pentane (50 mL)

and added dropwise to the pentane solution of Zr(NEt₂)₄ (Scheme 2). The solution was stirred for 12 h and volatiles removed in vacuo affording a yellow solid (2.954 g, 5.702

mmol, 92.4% yield). ¹H NMR (benzene-d_6, 400.17 MHz, 23 °C): δ 3.71 (br, 8H,
X-ray Crystallographic Studies of \{\(\mu-\eta^2-\eta^2\)-O\}_2\text{Zr}[\text{MeC(N}^\prime\text{Pr})_2]_2\}_3 (2)

The X-ray crystal structure of 2 was determined on a Bruker AXS Smart 1000 X-ray diffractometer equipped with a CCD area detector and a graphite-monochromated Mo source (K\(\alpha\) radiation, 0.71073 Å) and fitted with an upgraded Nicolet LT-2 low temperature device. A suitable crystal was coated with paratone oil (Exxon) and mounted on a fiber loop under a stream of nitrogen at 100(2) K. The structure was solved by direct
methods. All non-hydrogen atoms were anisotypically refined. Empirical absorption correction was performed with SADABS.S4a Global refinements for the unit cells and data reductions were performed under the Saint program (Version 6.02). All calculations were performed using SHELXTL (Version 5.1) proprietary software package.S4b

Reaction of Zr(NMe\textsubscript{2})\textsubscript{2}[MeC(N^\textit{i}Pr)\textsubscript{2}]\textsubscript{2} (1) with O\textsubscript{2}

NMR-scale Reactions. In a Young’s tube, 1 (28.9 mg, 0.0626 mmol) was dissolved in benzene-\textsubscript{d\textsubscript{6}}. The headspace volume in the Young’s tube was 2.6 mL. The solution was frozen in liquid nitrogen and nitrogen gas was removed in vacuo. O\textsubscript{2} (0.5 atm, 0.0626 mmol) was then added. Several 1H NMR spectra were taken and after 3 weeks, the disappearance of 1 and the appearance of soluble species 3, HNMe\textsubscript{2}, CH\textsubscript{2}(NMe\textsubscript{2})\textsubscript{2}, and an insoluble solid 4 had occurred.

In a separate test, O\textsubscript{2} (1 atm, 0.0396 mmol) was added to 1 (18.3 mg, 0.0396 mmol) in benzene-\textsubscript{d\textsubscript{6}}. Volume of the headspace in the Young’s tube was 2.1 mL. The Young’s tube was heated at 70 °C. After about ca. 12 days, the reaction was quenched in ice water and the 1H NMR spectrum showed the disappearance of 1 and appearance of new peaks which corresponds to an oxo-bridged dimer 3. 1H NMR also revealed two byproducts: HNMe\textsubscript{2} (0.125 mg, 6.99% yield based on NMR) and CH\textsubscript{2}(NMe\textsubscript{2})\textsubscript{2} (1.09 mg, 26.9% yield based on NMR). The byproducts, HNMe\textsubscript{2} and CH\textsubscript{2}(NMe\textsubscript{2})\textsubscript{2} were confirmed with GC-MS. A light yellow precipitate formed which was identified to be the polymeric product 4 (9 mg, 58.4% yield).

Reaction Conducted in a Schlenk Flask. In another experiment, O\textsubscript{2} (1 atm, 2.014 mmol) was added to 1 (0.465 g, 1.007 mmol) in toluene in a Schlenk flask. The
headspace of the flask was 20.0 mL. The solution was heated at 80 °C for ca. 5 days. A pale yellow solid had precipitated from the solution. Volatiles were removed in vacuo and pentane was added. The solution was filtered and concentrated in attempts to grow crystals. Over time, a light yellow/white solid would precipitate out. An attempt to grow crystals of 3 in Et₂O, hexanes and toluene was also made. The characterization of the precipitate 4 is discussed below. NMR characterization of 3: \(^1\)H NMR (benzene-\(d_6\), 400.17 MHz, 23 °C): \(\delta\) 4.26 (m, 4H, CHMe₂), 3.47 (m, 4H, CHMe₂), 1.34 (s, 12H, NC(Me)N), 1.25 (d, 24H, CHMe₂) 1.02 (d, 24H, CHMe₂); \(^{13}\)C\(^{1}\)H NMR (benzene-\(d_6\), 100.63 MHz, 23 °C): \(\delta\) 151.38 (NC(Me)N), 49.20 (CHMe₂), 41.40 (CHMe₂), 25.60 (CHMe₂), 22.90 (CHMe₂), 15.38 (NC(Me)N). \(^1\)H and \(^{13}\)C\(^{1}\)H NMR assignments were confirmed by HSQC experiment.

Reaction of Zr(NEt₂)₂[MeC(N'^iPr)₂]₂ (7) with O₂

NMR-scale Reaction. In a Young’s tube, 7 (16.5 mg, 0.0319 mmol) was dissolved in benzene-\(d_6\). Volume of headspace in the Young’s tube was 2.3 mL. Before adding O₂, the solution was frozen in liquid nitrogen and nitrogen gas was removed in vacuo. O₂ (1 atm, 0.0319 mmol) was then added. The solution was then heated at 70 °C for 7 days. \(^1\)H NMR revealed the oxo-bridged dimer 3 and HNEt₂ had formed. Based on NMR the yield of HNEt₂ was 14.1% (2 mg). HNEt₂ was confirmed by GC-MS. A light yellow precipitate was identified as \{((\mu-O)Zr[MeC(N'^iPr)₂]₂\}_n (4) (7.8 mg, 62.8% yield). The NMR chemical shifts were the same for the reaction of the methyl amide analog 1 with O₂ to produce the oxo-bridged dimer 3.

Reaction Conducted in a Schlenk Flask. In a large scale experiment, O₂ (1 atm,
1.06 mmol) was added to 7 (0.549 g, 1.06 mmol) in toluene in a Schlenk flask. The volume of the headspace of the Schlenk flask was 53.6 mL. The solution was heated at 80 °C for 4 days. A pale yellow solid 4 had precipitated. Volatiles were removed in vacuo and pentane was added. The solution was filtered and concentrated in an attempt to grow crystals. Over time a cloudy solution would form and it was believed the polymer 4 had formed.

Reaction of 1 or 7 with H₂O

NMR-scale Reaction. In a Young’s NMR tube, 1 (35.3 mg, 0.0682 mmol) was dissolved in benzene-\(d_6\). In a separate Young’s NMR tube, H₂O (1.2 mg, 0.0611 mmol) was dissolved in 0.5 mL of THF. The solution of 1 in benzene-\(d_6\) was cooled with an ice bath and the H₂O/THF solution was added dropwise. \(^1\)H and \(^{13}\)C\{\(^1\)H\} NMR spectroscopies showed the formation of 3 and HNEt₂. The polymer \{((\mu-O)Zr[MeC(N^nPr)_2]₂\}ₙ (4) precipitated out of the solution. This was the same procedure used for the reaction of 1 with H₂O to confirm 3 and 4. The reactions were monitored by \(^1\)H and \(^{13}\)C\{\(^1\)H\} NMR spectroscopies. The reaction was much faster than that of 1 or 7 with O₂, and was completed in a few minutes. The product mixture turned cloudy, as the result of the precipitation of the polymer \{((\mu-O)Zr[MeC(N^nPr)_2]₂\}ₙ (4). The \(^1\)H and \(^{13}\)C\{\(^1\)H\} NMR chemical shifts of 3 are identical to those from the reactions of O₂ with Zr(NR₂)₂[MeC(N^nPr)_2]₂ (R = Me, 1; Et, 7). The amount of the solid was too small to be isolated. These observations point to the reaction in Scheme 3. Since the reactions here with H₂O unlikely give peroxo products, the observations of 3 and 4 in the reactions in Scheme 3 support the assignments of 3 and 4 as the dimeric and polymeric oxo products,
ruling out that they are peroxo species.

Purification of H$_2$O$_2$

Caution: Extreme care should be taken when using hydrogen peroxide.

High purity H$_2$O$_2$ was prepared by evacuating at $<$0.1 torr a 20 mL of 30% aqueous H$_2$O$_2$ solution at 23 °C till the volume of the remaining solution is ca. 2 mL.55 Since boiling points of H$_2$O$_2$ and water are 150.2 and 100 °C, respectively, water was expected to be preferentially removed during the process. The residue, containing mostly H$_2$O$_2$, was then vacuum-transferred at $<$0.1 torr and condensed by liquid nitrogen in another Schlenk flask at -178 °C in order to remove the stabilizer in the H$_2$O$_2$ solution. The condensed H$_2$O$_2$ liquid was titrated three times with a 0.05 M aqueous KMnO$_4$ solution which had been standardized with potassium oxalate. The H$_2$O$_2$ liquid was found to be 96% pure.

To standardize KMnO$_4$, K$_2$C$_2$O$_4$ (0.2447 g, 1.47 mmol) was dissolved in deionized water (15 mL) and heated to ~70 °C. (Do not boil the solution!) Concentrated H$_2$SO$_4$ (1 mL) was then added. After two titrations the concentration of KMnO$_4$ was 0.506 M.

To find the concentration of the hydrogen peroxide liquid, H$_2$O$_2$ (0.0818 g, 2.40 mmol) was dissolved in deionized water (15 mL) and concentrated H$_2$SO$_4$ (1 mL). After three titrations with KMnO$_4$ (0.506 M, 18.2 mL, 9.21 mmol) the concentration of H$_2$O$_2$ was 95.5-96.6%.
Reaction of 1 with H$_2$O$_2$

Caution: Extreme care should be taken when using hydrogen peroxide.

NMR-scale Reaction. In a Young’s tube, 1 (13.6 mg, 0.0294 mmol) was dissolved in benzene-d_6. H$_2$O$_2$ (0.7 µL, 0.0297 mmol) was then added. The 1H and 13C{1H} NMR spectra revealed the oxo-bridged dimer 3, HNMe$_2$ and CH$_3$(NMe$_2$)$_2$. A precipitate formed and was presumed to be {((μ-O)Zr[MeC(N′Pr)$_2$]$_2$)$_n$ (4). The NMR chemical shifts were the same for the reaction of the methyl amide analog 1 with O$_2$ to produce the oxo-bridged dimer 3.

Reaction Conducted in a Schlenk Flask. In a large scale experiment, H$_2$O$_2$ (26.5 mg, 0.780 mmol) in THF (20 mL) at 0 °C was added to 1 (356.7 mg, 0.772 mmol) in THF (15 mL) and cooled to -50 °C. It was allowed to stir overnight and volatiles were removed in vacuo. The 1H NMR spectrum revealed the oxo-bridged dimer 3. A precipitate formed and was presumed to be {((μ-O)Zr[MeC(N′Pr)$_2$]$_2$)$_n$ (4).

Reactions of Solid 1 with H$_2$O$_2$. High purity H$_2$O$_2$ (0.4 µL, 0.0170 mmol) was added directly on powders of Zr(NMe$_2$)$_2$[MeC(N′Pr)$_2$]$_2$ (1, 17.1 mg, 0.0370 mmol) in a glovebox. This was an attempt to minimize the contact of the product, peroxo 2, with unreacted 1 by not using a solvent. As soon as the liquid H$_2$O$_2$ was added via syringe to the powders of 1, a spark with smoke occurred. This observation suggests that {((μ-η2:η2-O$_2$)Zr[MeC(N′Pr)$_2$]$_2$)$_3$ (2) is a very unstable and reactive compound (Scheme 3).

Characterization of {((μ-O)Zr[MeC(N′Pr)$_2$]$_2$)$_n$ (4)*

It is presumed that the polymer {((μ-O)Zr[MeC(N′Pr)$_2$]$_2$)$_n$ (4) is the same for the reactions of 1 and 7 with O$_2$. For the characterization here, the polymer 4 was prepared...
from the reaction of 7 with O₂. The solid-state ¹³C NMR spectrum of 4 (Figure S1) shows peaks at 14.19 ppm for NC(Me)N, 23.27 ppm for -CHMe₂, 46.34 ppm for -CHMe₂, and 152.35 ppm for NC(Me)N. The IR spectrum (Figure S2) shows a C=N peak at 1641 cm⁻¹. A TGA experiment was performed under N₂, the sample was heated from room temperature to 1000 °C at a rate of 10 °C per minute (Figure S3). There was a 36.21% loss which accounted for one amidinate ligand to be removed and 4 is considered to be a stable compound at room temperature. Anal. Calcd: C, 49.31; H, 8.79; N, 14.38. Found: C, 49.24; H, 8.71; N, 14.29.

Mass Spectrometric Studies of 2 and the Reactions between 1 or 7 and H₂O in Air

Zirconium has five stable isotopes and in MS displays a unique isotopic pattern. It is easy to determine whether a compound has one Zr atom or two Zr atoms because their MS patterns are very different. Crystals of 2 (which contained 1) were added to a heated stream of He gas at 400 °C and the peroxo dimer 5 (Figure 2) was observed along with 3. It is believed that the high temperature converted the crystals of 2 to its more stable oligomer which is the peroxo dimer 5.

Since the reactions of Zr(NR₂)₂[MeC(N'Pr)₂]₂ (R = Me, 1; Et, 7) with O₂ or water have been studied, it was of interest to see what products would be detected in MS from the reactions. In MS, there is a brief exposure time for the sample to enter into the gas phase. The exposure to O₂ was not of concern because it takes days for 1 or 7 to react with O₂.

Solid powders of 1 or 7 were kept in a sealed vial under nitrogen until the MS analysis by a JEOL AccuTOF™ DART (Direct Analysis in Real Time) mass
The spectrometer was heated to 200 °C. The powders were collected on the sealed end of a capillary tube and added quickly to the heated stream of He gas in air. Compounds 1 or 7 reacted with H₂O in air and the volatile products [M+H⁺] (species+H⁺) were then analyzed by MS.

Since the reactions of both 1 and 7 with water give the same products, it was not surprising that the same products are observed in MS. The MS analyzer detected three zirconium and oxygen containing products: oxo monomer 9, oxo dimer 3, and a dihydroxyl complex 10 as shown in Scheme 5. The calculated mass for [9+H⁺] is 389.18579 m/z, and the cation was observed at 389.18249 m/z. The calculated and observed isotopic patterns for [9+H⁺] are given in Figure S4. The calculated mass for [10+H⁺] is 407.19635 m/z, and the cation was observed at 407.19077 m/z. The calculated and observed isotopic patterns for [10+H⁺] are shown in Figure S5. The calculated mass for [3+H⁺] is 777.36375 m/z, and the cation was observed at 777.37085 m/z. The calculated and observed isotopic patterns for [3+H⁺], a two Zr atoms complex, are shown in Figure S6. Also, the cations {Zr(NR₂)[MeC(NiPr)₂]₂}⁺ (R = Me, Et) were observed and are likely formed by the MS process. The calculated and observed isotopic patterns for [1-NMe₂⁺] and [2-NEt₂⁺] are given in Figures S7 and S8, respectively.
Figure S1. Solid-state 13C NMR spectrum of 4.
Figure S12. IR spectrum of 4 in KBr.
Figure S3. TGA of 4.
Figure S4. (Top) Calculated and (Bottom) Observed MS for [9+H⁺].
Figure S5. (Top) Calculated and (Bottom) Observed MS for [10+H⁺].
Figure S6. (Top) Calculated and (Bottom) Observed MS for [3+H⁺].
Figure S7. (Top) Calculated and (Bottom) Observed MS of $[\text{I-NMe}_2^+]$.
Figure S8. (Top) Calculated and (Bottom) Observed MS of [7-NEt₂⁺].
Additional references

(S1) S. Ge, A. Meetsma, B. Hessen, Organometalics, 2008, 27, 3131.

(S4) (a) Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen, Göttingen, Germany, 1996; (b) Sheldrick, G. M. SHELXL-97, A Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.