Base-Promoted Synthesis of Coumarins from Salicylaldehydes and Aryl-Substituted 1, 1-Dibromo-1-alkenes under Transition-Metal-Free Conditions

Jianming Liu,*, Xin Zhang, Lijun Shi, Muwen Liu, Yuanyuan Yue, Fuwei Li,*, and Kelei Zhuo,*

E-mail: jmliu@htu.cn, fuweili@licp.cas.cn, and klzhuo@263.net

“Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

bState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.

Contents

1. General information ..2

2. Experimental procedure for the base-promoted tandem reaction2

3. Experiments on investigation of mechanism ...3

4. Characterization data for the products ...9

5. 1H NMR and 13C NMR copies of products ...22

1. General information
All the chemicals and solvents were used as received without further purification. Silica gel was purchased from Qing Dao Hai Yang Chemical Industry Co. NMR spectra of the products were recorded using a Bruker Avance TM spectrometer operating at 400 MHz for 1H and 100 MHz for 13C in CDCl$_3$ unless otherwise noted. High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics microTOF-Q$_s$ spectrometer.

2. Experimental procedure for the base-promoted tandem reaction

2.1 Optimization of reaction conditions

Table 1. Optimization of reaction conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Additive</th>
<th>Solvent</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Na$_2$CO$_3$</td>
<td>--</td>
<td>DMF</td>
<td>Trace</td>
</tr>
<tr>
<td>2</td>
<td>Na$_2$CO$_3$</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>n. d.c</td>
</tr>
<tr>
<td>4</td>
<td>Cs$_2$CO$_3$</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>K$_2$CO$_3$</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>K$_3$PO$_4$</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>NaOAc</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>t-BuOK</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>53</td>
</tr>
<tr>
<td>9</td>
<td>Na$_2$CO$_3$</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Na$_2$CO$_3$</td>
<td>Et$_2$NH</td>
<td>Toluene</td>
<td>n. d.c</td>
</tr>
<tr>
<td>11</td>
<td>Na$_2$CO$_3$</td>
<td>Et$_2$NH</td>
<td>1,4-dioxane</td>
<td>Trace</td>
</tr>
<tr>
<td>12</td>
<td>Na$_2$CO$_3$</td>
<td>Et$_2$NH</td>
<td>NMP</td>
<td>84</td>
</tr>
<tr>
<td>13d</td>
<td>Na$_2$CO$_3$</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>61</td>
</tr>
<tr>
<td>14e</td>
<td>Na$_2$CO$_3$</td>
<td>Et$_2$NH</td>
<td>DMF</td>
<td>59</td>
</tr>
</tbody>
</table>

a Reaction conditions: 1a (1.0 mmol), 2a (1.5 mmol), base (2.0 mmol), Et$_2$NH (0.50 mL) and in solvent (5.0 mL) at 110 ºC for 12 h in air. b Isolated yields. c n.d.c = no desired product. d120 ºC. e100 ºC

2.2 Experimental procedure for the base-promoted tandem reaction of the aryl-substituted 1, 1-dibromoalkenes with salicylaldehydes

A mixture of salicylaldehydes (1.0 mmol), aryl-substituted 1, 1-dibromoalkenes (1.5 mmol), Et$_2$NH (0.50 mL), sodium carbonate (2.0 mmol) and DMF (5.0 mL) was stirred at 110 ºC in air for 12 h. After cooling to room temperature, water (30 mL) was added and the aqueous phase was extracted by EtOAc (5×30 mL). The combined organic phases were dried over Na$_2$SO$_4$, and concentrated in vacuum. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate as eluent to afford the corresponding product.
2.3 Experimental procedure for the base-promoted tandem reaction of the alkyl-substituted 1, 1-dibromoalkenes with salicylaldehydes

A mixture of salicylaldehydes (1.0 mmol), alkyl-substituted 1, 1-dibromoalkenes (1.5 mmol), Et2NH (0.50 mL), sodium carbonate (2.0 mmol) and DMF (5.0 mL) was stirred at 110 °C in air for 12 h. After cooling to room temperature, water (30 mL) was added and the aqueous phase was extracted by EtOAc (5×30 mL). The combined organic phases were dried over Na2SO4, and concentrated in vacuum. The residue was determined by GC-MS, only a trace of desired product was obtained (Scheme 1).

![Scheme 1](image)

3. Experiments on investigation of mechanism

3.1 Base-promoted tandem reaction of salicylaldehydes, (2, 2-dibromovinyl)benzene and TMPO

A mixture of salicylaldehydes (1.0 mmol), 1, 1-dibromoalkenes (1.5 mmol), 2, 2, 6, 6-tetramethylpiperidine-N-oxyl (2.0 mmol), Et2NH (0.50 mL), sodium carbonate (2.0 mmol) and DMF (5.0 mL) was stirred at 110 °C in air for 12 h. After cooling to room temperature, water (30 mL) was added and the aqueous phase was extracted by EtOAc (5×30 mL). The combined organic phases were dried over Na2SO4, and concentrated in vacuum. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate as eluent to afford the corresponding product in 71% yield (Scheme 2).

![Scheme 2](image)
3.2 Base-promoted tandem reaction of salicylaldehydes and (2, 2-dibromovinyl)benzene in H$_2$O18

A mixture of salicylaldehydes (1.0 mmol), 1, 1-dibromoalkenes (1.5 mmol), Et$_2$NH (0.50 mL), sodium carbonate (2.0 mmol), H$_2$O18 (20 mmol) and DMF (5.0 mL) was stirred at 110 ºC in air atmosphere for 12 h. After cooling to room temperature, water (30 mL) was added and the aqueous phase was extracted by EtOAc (5×30 mL). The combined organic phases were dried over Na$_2$SO$_4$, and concentrated in vacuum. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate as eluent to afford the corresponding product in 30% yield (Scheme 3). The product was determined by GC-MS (Figure 1).

3.3 Base-promoted tandem reaction of phenol and (2, 2-dibromovinyl)benzene.

A mixture of phenol (1.0 mmol), (2, 2-dibromovinyl)benzene (1.5 mmol), Et$_2$NH (0.50 mL), sodium carbonate (2.0 mmol) and DMF (5.0 mL) was stirred at 110 ºC in air for 12 h. After
cooling to room temperature, the resultant reaction mixture was determined by TLC and GC-MS. The N, N-diethyl-2-phenylacetamide was obtained in 30% yield (Scheme 4).

![Scheme 4]

\[
\text{N, N-diethyl-2-phenylacetamide}
\]

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \delta 7.98-7.96 (m, 2H), 7.69-7.64 (m, 1H), 7.56-7.52 (m, 2H), 3.60 (q, } J = 8.0 \text{ Hz, 2H), 3.27 (q, } J = 8.0 \text{ Hz, 2H), 1.32 (t, } J = 8.0 \text{ Hz, 3H), 1.28 (s, 2H), 1.19 (t, } J = 8.0 \text{ Hz, 3H). ESI-MS: } m/z = 191 \text{ [M}\text{].}
\]

3.4 Base-promoted tandem reaction of \(p \)-hydroxybenzaldehyde and (bromoethynyl)benzene.
A mixture of \(p \)-hydroxybenzaldehyde (1.0 mmol), (2, 2-dibromovinyl) benzene (1.5 mmol), \(\text{Et}_2\text{NH} \) (0.50 mL), sodium carbonate (2.0 mmol) and DMF (5.0 mL) was stirred at 110 °C in air for 12 h. After cooling to room temperature, the resultant reaction mixture was determined by TLC and GC-MS. The \(\text{N}, \text{N} \)-diethyl-2-phenylacetamide was obtained in 30% yield (Scheme 5).

![Scheme 5](image)

Scheme 5

3.5 Detection and isolation of intermediate A

A mixture of salicylaldehydes (1.0 mmol), 1, 1-dibromoalkenes (1.5 mmol), \(\text{Et}_2\text{NH} \) (0.50 mL), sodium carbonate (2.0 mmol) and DMF (5.0 mL) was stirred at 110 °C in air atmosphere for 2.0 h. After cooling to room temperature, water (30 mL) was added and the aqueous phase was extracted by EtOAc (5×30 mL). The combined organic phases were dried over \(\text{Na}_2\text{SO}_4 \), and concentrated in vacuum. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate as eluent to afford the corresponding product \(\text{A} \) in 25% yield (Scheme 6).

![Scheme 6](image)

Scheme 6

\(^1\text{H} \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.51 (d, \(J = 4.0 \) Hz, 2H), 7.39 (t, \(J = 8.0 \) Hz, 2H), 7.35-7.32 (m, 1H), 7.29 (s, 1H), 7.14 (s, 1H), 7.10-7.08 (s, 1H), 6.85-6.81(m, 2H), 3.49 (d, \(J = 8.0 \) Hz, 2H), 3.25
(dd, J = 8.0 Hz, 2H), 1.31-1.27 (m, 1H), 1.13 (t, J = 6.0 Hz, 3H), 0.81 (t, J = 6.0 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 170.9, 154.4, 138.1, 136.7, 129.4, 128.9, 128.7, 128.2, 125.8, 123.9, 123.8, 120.0, 117.6, 42.9, 38.9, 13.4, 12.2. LC-MS: $m/z = 296$ (M+H).

3.6 Reaction of intermediate A
A mixture of intermediate A (0.50 mmol), Et₂NH (0.25 mL), sodium carbonate (1.0 mmol) and DMF (2.5 mL) was stirred at 110 ºC in air atmosphere for 12 h. After cooling to room temperature, water (20 mL) was added and the aqueous phase was extracted by EtOAc (5×20 mL). The combined organic phases were dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate as eluent to afford the corresponding product in 90% yield (Scheme 7).

![Scheme 7](image)

3.7 Base-promoted tandem reaction of salicylaldehydes and alkynyl bromide

A mixture of salicylaldehydes (1.0 mmol), (bromoethynyl)benzene (1.5 mmol), Et₂NH (0.50 mL), sodium carbonate (2.0 mmol) and DMF (5.0 mL) was stirred at 110 ºC in air atmosphere for 12 h. After cooling to room temperature, water (30 mL) was added and the aqueous phase was extracted by EtOAc (5×30 mL). The combined organic phases were dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by chromatography on silica gel with petroleum ether/ethyl acetate as eluent to afford the corresponding product 3a in 33% yield (Scheme 8).

![Scheme 8](image)

3.4 Base-promoted tandem reaction of p-hydroxybenzaldehyde and (bromoethynyl)benzene.
A mixture of p-hydroxybenzaldehyde (1.0 mmol), (bromoethynyl)benzene (1.5 mmol), Et₂NH (0.50 mL), sodium carbonate (2.0 mmol) and DMF (5.0 mL) was stirred at 110 ºC in air for 12 h. After cooling to room temperature, the resultant reaction mixture was determined by TLC and GC-MS. The N,N-diethyl-2-phenylacetamide was obtained in 22% yield (Scheme 9).

Scheme 9

4. Characterization data for products

3-phenyl-2H-chromen-2-one 3a

1H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.69 (dd, J = 8.4, 2.4 Hz, 2H), 7.59-7.49 (m, 2H), 7.49-7.33 (m, 4H), 7.30 (t, J = 7.6, 0.8 Hz, 1H); 13C NMR (100 MHz, CDCl₃) δ 160.6, 153.5, 139.9, 134.7, 131.4, 128.9, 128.5, 127.9, 124.5, 119.7, 116.5. ESI-MS: m/z = 222 [M⁺].

7-methyl-2-phenyl-4H-chromen-4-one 3b

1H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.72-7.67 (m, 2H), 7.48-7.38 (m, 3H), 7.36-7.31 (m, 2H), 7.25 (t, J = 2.4 Hz, 1H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl₃) δ 160.8, 151.7, 139.9, 134.9, 134.2, 132.5, 128.8, 128.6, 128.5, 128.3, 127.7, 119.4, 116.2, 20.8. HRMS, calculated for C₁₆H₁₂NaO₂ [M+Na⁺]: 259.0726, found: 259.0730.

6-methoxy-3-phenyl-2H-chromen-2-one 3c
6-chloro-3-phenyl-2H-chromen-2-one 3d

1H NMR (400 MHz, CDCl$_3$) δ 7.72 (d, $J = 7.6$ Hz, 1H), 7.69 (dd, $J = 7.8$, 1.4 Hz, 2H), 7.53 (d, $J = 2.3$ Hz, 1H), 7.50-7.40 (m, 4H), 7.31 (d, $J = 8.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 160.0, 151.9, 140.3, 134.8, 131.3, 129.7, 129.6, 129.2, 128.6, 127.1, 120.7, 117.9. HRMS, calculated for C$_{15}$H$_9$ClNaO$_2$ [M+Na$^+$]: 279.0183, found: 279.0179.

5-methyl-3-phenyl-2H-chromen-2-one 3e

1H NMR (400 MHz, CDCl$_3$) δ 7.78 (s, 1H), 7.72 (d, $J = 7.2$, 2H), 7.49-7.39 (m, 5H), 7.19 (t, $J = 3.6$, 1H), 2.52 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 160.8, 151.9, 140.3, 134.8, 132.7, 128.8, 128.5, 128.5, 127.9, 125.9, 125.6, 124.1, 119.4, 15.5. HRMS, calculated for C$_{16}$H$_{13}$O$_2$ [M+H$^+$]: 237.0903, found: 237.0906.

5, 7-di-tert-butyl-3-phenyl-2H-chromen-2-one 3f
\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \delta 7.82 (s, 1H), 7.74 (m, 2H), 7.43 (t, J = 7.2, 1H), 7.41-7.36 (m, 4H), 1.55 (s, 9H), 1.38 (s, 9H); \]
\[\text{13C NMR (100 MHz, CDCl}_3\text{)} \delta 160.3, 150.3, 146.7, 141.3, 137.0, 135.0, 128.6, 128.5, 128.4, 127.1, 126.7, 122.6, 119.6, 35.1, 34.7, 31.1, 30.0. \]
HRMS, calculated for C\text{23}H\text{27}O\text{2} [M+H\text{+}]: 335.1999, found: 335.2006.

3-(4-methoxyphenyl)-2H-chromen-2-one 3g

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \delta 7.68 (s, 1H), 7.72 (dt, J = 9.6, 2.8 Hz, 2H), 7.43 (t, J = 1.6 Hz, 2H), 7.28-7.19 (m, 2H), 6.92 (d, J = 9.6, 2.8 Hz, 2H), 3.77 (s, 3H); \]
\[\text{13C NMR (100 MHz, CDCl}_3\text{)} \delta 160.2, 153.3, 138.5, 131.0, 129.9, 127.9, 127.7, 127.1, 124.5, 119.9, 116.4, 113.9, 55.4. \]
ESI-MS: \(m/z = 252 [\text{M}^+] \).

3-(p-tolyl)-2H-chromen-2-one 3h

\[\text{1H NMR (400 MHz, CDCl}_3\text{)} \delta 7.71 (s, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.46-7.42 (m, 2H), 7.29 (s, 1H), 7.23-7.17 (m, 3H), 2.32 (s, 3H); \]
\[\text{13C NMR (100 MHz, CDCl}_3\text{)} \delta 160.7, 153.44, 139.2, 139.0, 131.8, 131.2, 129.2, 128.4, 127.8, 124.5, 119.8, 116.4, 21.3. \]
HRMS, calculated for C\text{16}H\text{13}O\text{2} (M+H\text{+}): 237.0903, found: 237.0907 (M+H\text{+}).
Figure 3. Single crystal structure of coumarin 3h

3-(4-fluorophenyl)-2H-chromen-2-one 3i

![3-(4-fluorophenyl)-2H-chromen-2-one 3i](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.80 (s, 1H), 7.73-7.68 (m, 2H), 7.56-7.52 (m, 2H), 7.39 (d, J = 8.4 Hz, 1H), 7.33-7.29 (m, 1H), 7.17-7.11 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 164.3, 161.9, 160.6, 153.5, 139.7, 131.5, 130.7, 130.5, 130.4, 127.9, 127.4, 124.6, 119.6, 116.5, 115.6, 115.4. HRMS, calculated for C$_{15}$H$_9$FNaO$_2$ [M+Na$^+$]: 263.0479, found: 263.0482.

3-(4-bromocyclohexa-2,4-dien-1-yl)-2H-chromen-2-one 3j

![3-(4-bromocyclohexa-2,4-dien-1-yl)-2H-chromen-2-one 3j](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.82 (d, J = 2.9 Hz, 1H), 7.57 (ddt, J = 12.5, 9.2, 5.2 Hz, 6H), 7.42-7.23 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) 160.3, 153.5, 140.0, 133.5, 131.7, 131.6, 130.1, 128.0, 127.1, 124.7, 123.2, 119.5, 116.5. HRMS, calculated for C$_{15}$H$_9$BrNaO$_2$ [M+Na$^+$]: 322.9678, found: 322.9673.

3-(4-chlorophenyl)-2H-chromen-2-one 3k

![3-(4-chlorophenyl)-2H-chromen-2-one 3k](image)
3-(2-bromocyclohexa-2,4-dien-1-yl)-2H-chromen-2-one 3l

1H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.69 (d, J = 8.1 Hz, 1H), 7.61-7.25 (m, 2H); 13C NMR (100 MHz, CDCl₃) δ 159.8, 153.9, 142.6, 135.8, 133.1, 131.9, 131.4, 130.3, 128.8, 128.2, 127.5, 124.7, 123.6. HRMS, calculated for C₁₅H₉BrNaO₂ [M+Na⁺]: 322.9678, found: 322.9675.

2-phenyl-3H-benzo[f]chromen-3-one 3m

1H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.28 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 9.0 Hz, 1H), 7.90 (t, J = 6.9 Hz, 1H), 7.83-7.76 (m, 2H), 7.73-7.64 (m, 1H), 7.56 (td, J = 7.7, 3.7 Hz, 1H), 7.53-7.40 (m, 4H); 13C NMR (100 MHz, CDCl₃) δ 160.6, 153.2, 135.7, 135.1, 132.7, 130.4, 129.1, 129.1, 128.9, 128.6, 128.2, 127.3, 126.0, 121.4, 116.7, 113.7. HRMS, calculated for C₁₉H₁₂NaO₂ [M+Na⁺]: 295.0730, found: 295.0730.

2-(p-tolyl)-3H-benzo[f]chromen-3-one 3n
1H NMR (400 MHz, CDCl$_3$) δ 8.54 (s, 1H), 8.28 (d, $J = 8.4$ Hz, 1H), 7.93 (dd, $J = 18.4$, 8.5 Hz, 2H), 7.74-7.64 (m, 3H), 7.57 (dd, $J = 11.1$, 3.9 Hz, 1H), 7.48 (d, $J = 9.0$ Hz, 1H), 7.28 (t, $J = 8.8$ Hz, 2H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 160.7, 153.0, 139.0, 135.0, 132.5, 132.2, 130.4, 129.3, 129.1, 129.4, 128.5, 128.1, 127.3, 126.0, 121.5, 116.7, 113.8, 21.3. HRMS, calculated for C$_{20}$H$_{14}$NaO$_2$ [M$+$Na]$^+$: 309.0873, found: 309.0876.

2-(4-methoxyphenyl)-3H-benzo[f]chromen-3-one 3o

1H NMR (400 MHz, CDCl$_3$) δ 8.53 (s, 1H), 8.31 (d, $J = 8.4$ Hz, 1H), 7.95 (dd, $J = 15.1$, 8.6 Hz, 2H), 7.79 (d, $J = 8.8$ Hz, 2H), 7.73-7.68 (m, 1H), 7.61-7.56 (m, 1H), 7.50 (d, $J = 9.0$ Hz, 1H), 7.04 (d, $J = 8.8$ Hz, 2H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 160.8, 160.2, 152.8, 134.3, 132.3, 130.4, 129.9, 129.1, 128.1, 127.5, 126.8, 126.0, 121.5, 116.7, 114.0, 113.9, 55.4. HRMS, calculated for C$_{20}$H$_{14}$NaO$_3$ [M$+$Na]$^+$: 325.0835, found: 325.0838.

2-(4-fluorophenyl)-3H-benzo[f]chromen-3-one 3p

1H NMR (400 MHz, DMSO-d$_6$) δ 9.03 (s, 1H), 8.76 (d, $J = 8.4$ Hz, 1H), 8.21 (d, $J = 9.0$ Hz, 1H), 8.08 (d, $J = 8.0$ Hz, 1H), 8.01-7.90 (m, 2H), 7.81-7.72 (m, 1H), 7.69-7.60 (m, 2H), 7.42-7.29 (m, 2H); 13C NMR (100 MHz, DMSO-d$_6$) δ 163.5, 161.0, 159.8, 152.6, 136.6, 133.0, 131.2, 131.2,
131.1, 131.0, 130.0, 128.9, 128.8, 128.2, 126.1, 125.1, 116.4, 115.1, 114.9, 113.6. HRMS, calculated for C_{19}H_{11}FNaO_{2} [M+Na⁺]: 313.0642, found: 313.0635.

2-(4-bromophenyl)-3H-benzo[f]chromen-3-one 3q

\[
\text{H NMR (400 MHz, CDCl}_3) \delta 9.06 (s, 1H), 8.75 (d, J = 8.5 Hz, 1H), 8.21 (d, J = 9.1 Hz, 1H), 8.09-8.05 (m, 1H), 7.86 (d, J = 8.6 Hz, 2H), 7.77-7.68 (m, 3H), 7.66-7.60 (m, 2H); ^{13}\text{C NMR (100 MHz, CD}_2\text{Cl}_2) \delta 160.1, 153.4, 135.9, 134.2, 133.0, 131.6, 130.4, 130.3, 129.1, 129.1, 128.3, 126.1, 125.9, 122.9, 121.5, 116.6, 113.6. HRMS, calculated for C_{19}H_{11}BrNaO_{2} [M+Na⁺]: 372.9835, found: 372.9838.
\]

2-(2-bromophenyl)-3H-benzo[f]chromen-3-one 3r

\[
\text{H NMR (400 MHz, CDCl}_3) \delta 8.54 (s, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.77-7.64 (m, 2H), 7.64-7.40 (m, 4H), 7.32 (d, J = 7.2 Hz, 1H); ^{13}\text{C NMR (100 MHz, CDCl}_3) \delta 159.8, 153.8, 138.6, 136.1, 133.2, 131.5, 130.4, 130.2, 129.2, 129.1, 128.4, 127.6, 127.6, 126.1, 123.7, 121.5, 116.9, 113.2. HRMS, calculated for C_{19}H_{12}BrO_{2} [M+H⁺]: 351.0015, found: 351.0020.
\]

2-(4-bromophenyl)-3H-benzo[f]chromen-3-one 3s
3-(pyridin-2-yl)naphthalen-2(1H)-one 4a

1H NMR (400 MHz, CDCl$_3$) δ 8.82-8.73 (m, 1H), 8.69 (ddd, $J = 4.7$, 1.7, 0.9 Hz, 1H), 8.42 (d, $J = 8.1$ Hz, 1H), 7.79 (tt, $J = 5.6$, 2.8 Hz, 1H), 7.65 (ddd, $J = 7.7$, 1.5 Hz, 1H), 7.39 (d, $J = 8.3$ Hz, 1H), 7.35-7.28 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 160.3, 152.1, 151.4, 149.3, 142.5, 136.8, 132.2, 128.9, 125.3, 124.6, 124.1, 123.5, 119.5, 116.4. HRMS, calculated for C$_{14}$H$_9$NNaO$_2$ [M+Na$^+$]: 246.0527, found: 246.0525.

6-methyl-3-(pyridin-2-yl)-2H-chromen-2-one 4b

1H NMR (400 MHz, CDCl$_3$) δ 8.75-8.65 (m, 2H), 8.41 (t, $J = 7.1$ Hz, 1H), 7.79 (td, $J = 7.8$, 1.7 Hz, 1H), 7.42 (s, 1H), 7.37 (d, $J = 8.5$ Hz, 1H), 7.33-7.25 (m, 2H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 160.5, 152.1, 151.4, 149.3, 142.6, 136.7, 134.3, 133.1, 128.6, 125.2, 124.1, 123.4, 119.3, 116.1, 20.8. HRMS, calculated for C$_{15}$H$_{12}$NO$_2$ [M+H$^+$]: 238.0861, found: 238.0863.
6-methoxy-3-(pyridin-2-yl)-2H-chromen-2-one 4c

\[
\text{MeO} \quad \text{O} \\
\quad \text{N} \\
\text{O}
\]

\(^1H \) NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 8.74 (s, 1H), 8.69 (d, \(J = 4.1 \text{ Hz}, 1 \text{H} \)), 8.44 (d, \(J = 8.1 \text{ Hz}, 1 \text{H} \)), 7.80 (td, \(J = 7.9, 1.7 \text{ Hz}, 1 \text{H} \)), 7.31 (t, \(J = 6.5 \text{ Hz}, 2 \text{H} \)), 7.15 (dd, \(J = 9.0, 2.9 \text{ Hz}, 1 \text{H} \)), 7.07 (d, \(J = 2.8 \text{ Hz}, 1 \text{H} \)), 3.86 (s, 3H); \(^13C \) NMR (100 MHz, CDCl\(_3 \)) \(\delta \) 160.5, 156.1, 151.3, 149.4, 148.4, 142.3, 136.77, 125.6, 124.1, 123.5, 120.2, 119.8, 117.4, 110.3, 107.0, 55.8. HRMS, calculated for C\(_{15} \)H\(_{12} \)NO\(_3 \) [M+H\(^+\)]: 254.0807, found: 254.0812.

6-chloro-3-(pyridin-2-yl)-2H-chromen-2-one 4d

\[
\text{Cl} \quad \text{O} \\
\quad \text{N} \\
\text{O}
\]

\(^1H \) NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 8.76-8.66 (m, 2H), 8.42 (d, \(J = 8.1 \text{ Hz}, 1 \text{H} \)), 7.87-7.78 (m, 1H), 7.62 (t, \(J = 5.6 \text{ Hz}, 1 \text{H} \)), 7.52 (dd, \(J = 8.8, 2.3 \text{ Hz}, 1 \text{H} \)), 7.34 (t, \(J = 7.1 \text{ Hz}, 2 \text{H} \)); \(^13C \) NMR (100 MHz, CDCl\(_3 \)) \(\delta \) 159.7, 152.3, 150.7, 149.3, 141.3, 137.1, 132.1, 129.9, 127.9, 124.3, 123.9, 120.5, 117.8. HRMS, calculated for C\(_{14} \)H\(_{8} \)ClNNaO\(_2 \) [M+Na\(^+\)]: 258.0312, found: 258.0316.

2-(pyridin-2-yl)-3H-benzo[f]chromen-3-one 4e

\[
\quad \text{O} \\
\text{O} \\
\quad \text{N}
\]

\(^1H \) NMR (400 MHz, CDCl\(_3 \)) \(\delta \) 9.60 (s, 1H), 8.74 (ddd, \(J = 4.7, 1.8, 0.9 \text{ Hz}, 1 \text{H} \)), 8.53 (d, \(J = 8.1 \text{ Hz}, 1 \text{H} \)), 8.47 (d, \(J = 8.4 \text{ Hz}, 1 \text{H} \)), 8.00 (d, \(J = 9.0 \text{ Hz}, 1 \text{H} \)), 7.90 (t, \(J = 5.7 \text{ Hz}, 1 \text{H} \)), 7.81 (td, \(J = 7.8, 1.9 \text{ Hz}, 1 \text{H} \)), 7.73-7.67 (m, 1H), 7.57 (ddd, \(J = 8.0, 5.2, 1.0 \text{ Hz}, 1 \text{H} \)), 7.49 (d, \(J = 9.0 \text{ Hz}, 1 \text{H} \)),
7.36-7.29 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 160.4, 153.8, 151.4, 149.4, 138.3, 136.8, 133.7, 130.3, 129.6, 129.0, 128.4, 126.2, 124.0, 123.8, 123.4, 122.2, 116.5, 113.6. HRMS, calculated for C$_{18}$H$_{13}$NO$_2$ [M+H$^+$]: 274.0857, found: 274.0856.

3-(furan-2-yl)-2H-chromen-2-one 5a

![Chemical Structure of 3-(furan-2-yl)-2H-chromen-2-one 5a](image)

1H NMR (400 MHz, CDCl$_3$) δ 8.12 (s, 1H), 7.57 (dd, $J = 7.7$, 1.4 Hz, 1H), 7.54-7.47 (m, 2H), 7.40-7.33 (m, 1H), 7.33-7.27 (m, 2H), 6.55 (dd, $J = 3.4$, 1.8 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 158.2, 152.7, 147.6, 143.2, 133.9, 131.1, 127.9, 124.7, 119.4, 118.1, 116.5, 112.9, 112.4. HRMS, calculated for C$_{13}$H$_8$NaO$_3$ [M+Na$^+$]: 235.0362, found: 235.0366.

3-(furan-2-yl)-6-methyl-2H-chromen-2-one 5b

![Chemical Structure of 3-(furan-2-yl)-6-methyl-2H-chromen-2-one 5b](image)

1H NMR (400 MHz, CDCl$_3$) δ 8.06 (s, 1H), 7.52 (d, $J = 1.3$ Hz, 1H), 7.40-7.13 (m, 4H), 6.54 (dd, $J = 3.4$, 1.8 Hz, 1H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 158.4, 150.8, 147.8, 143.1, 134.3, 133.9, 132.2, 127.7, 119.1, 118.0, 116.2, 112.7, 112.4, 20.8. HRMS, calculated for C$_{14}$H$_{10}$NaO$_3$ [M+Na$^+$]: 249.0515, found: 249.0522.

3-(furan-2-yl)-7-methoxy-2H-chromen-2-one 5c

![Chemical Structure of 3-(furan-2-yl)-7-methoxy-2H-chromen-2-one 5c](image)

1H NMR (400 MHz, CDCl$_3$) δ 8.05 (s, 1H), 7.50-7.43 (m, 2H), 7.27 (d, $J = 3.9$ Hz, 1H), 6.89-6.82 (m, 2H), 6.53 (dd, $J = 3.4$, 1.8 Hz, 1H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 162.4, 158.4,
154.4, 147.9, 142.7, 134.3, 128.9, 115.0, 113.0, 113.0, 112.3, 111.6, 100.5, 55.8. HRMS, calculated for C_{14}H_{11}O_{4} [M+H^+]: 243.0652, found: 243.0659.

6-chloro-3-(furan-2-yl)-2H-chromen-2-one 5d

![Image of 6-chloro-3-(furan-2-yl)-2H-chromen-2-one 5d]

1H NMR (400 MHz, CDCl$_3$) δ 7.94 (s, 1H), 7.46 (d, J = 2.2 Hz, 2H), 7.36 (dt, J = 9.8, 4.9 Hz, 1H), 7.31 (d, J = 3.4 Hz, 1H), 7.25-7.17 (m, 1H), 6.48 (dd, J = 3.4, 1.8 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 156.5, 149.9, 146.2, 142.7, 131.2, 129.8, 128.9, 126.0, 119.4, 118.0, 116.8, 112.7, 111.6. HRMS, calculated for C$_{13}$H$_{7}$ClNaO$_3$ [M+Na$^+$]: 268.9970, found: 268.9976.

2-(furan-2-yl)-3H-benzo[f]chromen-3-one 5e

![Image of 2-(furan-2-yl)-3H-benzo[f]chromen-3-one 5e]

1H NMR (400 MHz, CDCl$_3$) δ 8.88 (s, 1H), 8.38 (d, J = 8.4 Hz, 1H), 7.93 (dd, J = 16.1, 8.5 Hz, 2H), 7.71 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 7.62-7.53 (m, 2H), 7.48 (d, J = 9.0 Hz, 1H), 7.42 (d, J = 3.4 Hz, 1H), 6.59 (dd, J = 3.4, 1.8 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 158.2, 152.2, 148.0, 143.3, 132.4, 130.5, 129.6, 129.1, 129.0, 128.2, 126.1, 121.8, 117.1, 116.7, 113.7, 112.9, 112.6. HRMS, calculated for C$_{17}$H$_{10}$NaO$_3$ [M+Na$^+$]: 285.0513, found: 285.0518.

3-(thiophen-2-yl)-2H-chromen-2-one 5f

![Image of 3-(thiophen-2-yl)-2H-chromen-2-one 5f]

1H NMR (400 MHz, CDCl$_3$) δ 7.99 (s, 1H), 7.85-7.75 (m, 1H), 7.58-7.47 (m, 2H), 7.43 (d, J = 5.0 Hz, 1H), 7.38-7.26 (m, 2H), 7.13 (t, J = 4.3 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 159.5, 152.6,
HRMS, calculated for C_{13}H_{9}O_{2}S [M+H^+]: 229.0318, found: 229.0313.

6-methyl-3-(thiophen-2-yl)-2H-chromen-2-one 5g

![Structure of 6-methyl-3-(thiophen-2-yl)-2H-chromen-2-one 5g]

1H NMR (400 MHz, CDCl$_3$) δ 7.96 (s, 1H), 7.82-7.77 (m, 1H), 7.43 (dt, J = 5.2, 1.1 Hz, 1H), 7.32 (d, J = 9.2 Hz, 2H), 7.28-7.24 (m, 1H), 7.13 (ddd, J = 5.0, 3.8, 1.0 Hz, 1H), 2.42 (s, 3H); 13C NMR (100 MHz, DMSO-d$_6$) δ 159.6, 150.8, 136.6, 135.8, 134.6, 132.9, 129.2, 128.5, 127.8, 127.0, 120.9, 119.5, 116.2, 20.8. HRMS, calculated for C$_{14}$H$_{10}$NaO$_3$S [M+Na$^+$]: 265.0294, found: 265.0294.

7-methoxy-3-(thiophen-2-yl)-2H-chromen-2-one 5h

![Structure of 7-methoxy-3-(thiophen-2-yl)-2H-chromen-2-one 5h]

1H NMR (400 MHz, CDCl$_3$) δ 7.97 (s, 1H), 7.75 (dd, J = 3.7, 1.2 Hz, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.42-7.37 (m, 1H), 7.13 (dd, J = 5.1, 3.7 Hz, 1H), 6.92-6.86 (m, 2H), 3.90 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 162.6, 159.8, 154.6, 136.4, 136.0, 128.7, 127.5, 126.9, 126.3, 118.6, 113.1, 100.4, 55.8. HRMS, calculated for C$_{14}$H$_{10}$NaO$_3$S [M+Na$^+$]: 281.0243, found: 281.0241.

6-chloro-3-(thiophen-2-yl)-2H-chromen-2-one 5i

![Structure of 6-chloro-3-(thiophen-2-yl)-2H-chromen-2-one 5i]

1H NMR (400 MHz, CDCl$_3$) δ 7.92 (s, 1H), 7.82 (dt, J = 3.7, 1.0 Hz, 1H), 7.54 (d, J = 2.4 Hz, 1H), 7.50-7.40 (m, 2H), 7.37-7.21 (m, 2H), 7.15 (m, 1H); 13C NMR (100 MHz, DMSO-d$_6$) δ 159.0,
2-(thiophen-2-yl)-3H-benzo[f]chromen-3-one 5j

\[
\begin{align*}
\text{1H NMR (400 MHz, CDCl}_3\text{)} & \delta 8.76 (d, J = 3.4 \text{ Hz}, 1\text{H}), 8.33 (dd, J = 8.9, 3.2 \text{ Hz}, 1\text{H}), 8.02 - 7.86 \text{ (m, 3H)}, 7.77 - 7.68 \text{ (m, 1H)}, 7.59 (dd, J = 9.2, 5.7 \text{ Hz}, 1\text{H}), 7.48 (td, J = 8.4, 7.4, 3.5 \text{ Hz}, 2\text{H}), 7.32 - 7.10 \text{ (m, 1H)}; 13\text{C NMR (100 MHz, DMSO-d}_6\text{)} & \delta 159.6, 152.1, 135.8, 133.2, 132.4, 130.6, 129.7, 129.3, 128.6, 127.5, 126.7, 123.4, 120.5, 116.9, 114.1. \text{HRMS, calculated for } C_{17}H_{10}NaO_2S [M+Na^+] : 301.0294, \text{ found: 301.0300.}
\end{align*}
\]

References

2. CCDC 947235 (3h) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
5. 1H NMR and 13C NMR copies of products

3-phenyl-2H-chromen-2-one 3a
7-methyl-2-phenyl-4H-chromen-4-one 3b
6-methoxy-3-phenyl-2H-chromen-2-one 3c
6-chloro-3-phenyl-2H-chromen-2-one 3d
5-methyl-3-phenyl-2H-chromen-2-one 3e
5, 7-di-tert-butyl-3-phenyl-2H-chromen-2-one 3f
3-(4-methoxyphenyl)-2H-chromen-2-one 3g
3-(p-tolyl)-2H-chromen-2-one 3h
3-(4-fluorophenyl)-2H-chromen-2-one 3i
3-(4-bromocyclohexa-2,4-dien-1-yl)-2H-chromen-2-one 3j
3-(4-chlorophenyl)-2H-chromen-2-one 3k
3-(2-bromocyclohexa-2,4-dien-1-yl)-2H-chromen-2-one 3l
2-phenyl-3H-benzo[f]chromen-3-one 3m
2-(p-tolyl)-3H-benzo[f]chromen-3-one 3n
2-(4-methoxyphenyl)-3H-benzo[f]chromen-3-one 3o
2-(4-fluorophenyl)-3H-benzo[f]chromen-3-one 3p
2-(4-bromophenyl)-3H-benzo[f]chromen-3-one 3q
2-(2-bromophenyl)-3H-benzo[f]chromen-3-one 3r
2-(4-chlorophenyl)-3H-benzo[f]chromen-3-one 3s
6-methyl-3-(pyridin-2-yl)-2H-chromen-2-one 4b
6-methoxy-3-(pyridin-2-yl)-2H-chromen-2-one 4c
6-chloro-3-(pyridin-2-yl)-2H-chromen-2-one 4d
2-(pyridin-2-yl)-3H-benzo[f]chromen-3-one 4e
3-(furan-2-yl)-2H-chromen-2-one 5a
3-(furan-2-yl)-6-methyl-2H-chromen-2-one 5b
3-(furan-2-yl)-7-methoxy-2H-chromen-2-one 5c

\[
\begin{align*}
\text{MeO} & \\
\end{align*}
\]
6-chloro-3-(furan-2-yl)-2H-chromen-2-one 5d
2-(furan-2-yl)-3H-benzo[f]chromen-3-one 5e
3-(thiophen-2-yl)-2H-chromen-2-one 5f
6-methyl-3-(thiophen-2-yl)-2H-chromen-2-one 5g
7-methoxy-3-(thiophen-2-yl)-2H-chromen-2-one 5h
6-chloro-3-(thiophen-2-yl)-2H-chromen-2-one 5i
2-(thiophen-2-yl)-3H-benzo[f]chromen-3-one 5j