Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information for:

Yttrium Catalysed Dehydrocoupling

of Alanes with Amines

A. E. Nako, Sarah J. Gates, Nicole Schäedel, A. J. P. White and Mark R. Crimmin

1. General Experimental	S2
2.1 Thermal Syntheses of Aluminium Amides	S3
2.2 Catalytic Syntheses of Aluminium Amides	S9
3. X-ray Crystallographic Data	S17
4.1 ¹ H– ¹⁵ N HMBC NMR data	S21
4.2 ¹ H, ¹³ C, ¹⁹ F NMR data	S24

1. General Experimental

All manipulations were carried out under standard Schlenk-line or glovebox techniques under an inert atmosphere of dinitrogen. A Saffron model glovebox was employed operating under an inert atmosphere of 2-5 ppm O₂. Solvents were dried over activated alumina from an SPS (solvent purification system) based upon the Grubbs design and degassed before use. Glassware was dried for 12 hours at 150 °C prior to use. d₆-Benzene and d₈-toluene were dried over molten K, distilled, and stored over molecular sieves prior to use. NMR spectra were obtained on Bruker 300, 400 or 500 MHz machines, all peaks are referenced against residual solvent and values are quoted in ppm. Data were processed in Topspin or MestReNova, were NMR yields have been quoted the yields were calculated against ferrocence or durene as an internal standard and processed using the integration package in MestreNova. Infrared spectra were obtained as KBr discs, pressed by a handheld dye or as a solution in n-hexane.

Materials: LiAlH₄ was purified by extraction in to THF (10g in approximately 50 mL), followed by filtration and removal of the solvent under reduced pressure. The mixture was heated to 45 °C to remove the last traces of solvent and the colourless solid isolated proved soluble in THF and Et₂O. Amines were dried over CaH₂ and distilled before use. All other materials were purchased from Sigma-Aldrich and used without further purification. Aluminium hydrides **1a-d** were prepared according to previously published procedures.^[1]

2.1 Thermal Syntheses of Aluminium Amides

Synthesis of [{(MesNCMe)₂CH}Al(H)(NH-4-C₆H₄F)] (**2a**): In a glovebox, [{(MesNCMe)₂CH}AlH₂] (0.707g, 1.95 mmol, 1 equiv.) was weighed out and transferred to a Schlenk tube. Dry diethyl ether (10 mL) was added followed by dropwise addition of the 4-fluoroaniline (0.184 mL, 1.95 mmol, 1 equiv.). The schlenk was sealed and removed from the box, and after 2 h at 25 °C the solvent was removed under reduced pressure. The crude reaction mixture was extracted into hexane (10 mL), filtered and stored at -20 °C. Colourless block crystals of **2a** (0.63 g, 1.33 mmol, 68%) formed overnight and were isolated by filtration. ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 1.50 (s, 6H, *CMe*), 2.07 (s, 6H, *p*-Ar*Me*), 2.25 (s, 12H, *o*-ArMe), 3.12 (s, 1H, NH), 4.03 (br s, 1H, AlH), 5.05 (s, 1H, CH), 6.22-6.25 (m, 2H, -C₆H₄F), 6.71 (s, 2H, Ar*H*), 6.76 (s, 2H, Ar*H*), 6.80-6.85 (m, 2H, -C₆H₄F); ¹³C NMR (C₆D₆, 100 MHz, 298 K) δ 18.8, 19.0, 20.8, 22.5, 97.1, 115.5 (d, ²]_{13C-19F} = 20.0 Hz), 117.7 (d, ³]_{13C-19F} = 7.0 Hz), 129.7, 130.0, 132.9, 135.0, 135.9, 140.1, 148.8 (d, ⁴]_{13C-19F} = 2.0 Hz), 155.0 (d, ¹]_{13C-19F} = 230.0 Hz), 170.1; ¹⁹F NMR (C₆D₆, 300 MHz, 298 K) δ -131.6; Infrared (solid, cm⁻¹) 2855, 1835, 1607, 1530, 1500, 1388; Elemental analysis calc. for C₂₉H₃₅AlFN₃ C, 73.86; H, 7.48; N, 8.91; found C, 73.77; H, 7.60; N, 8.81.

Synthesis of [{(MesNCMe)₂CH}Al(H)(NH-2,4,6-C₆H₂F₃)] (**2b**): In a glovebox, [{(MesNCMe)₂CH}AlH₂] (0.500g, 1.38 mmol, 1equiv.) was weighed out and transferred to a Schlenk tube. The solid was slurried in *n*-hexane (25 mL) and 2,4,6-trifluoroaniline (0.200 g, 1.38 mmol) was added as a solid. The reaction mixture was stirred and gradually became homogeneous, after 4 h at 25 °C a colourless precipitate was observed. The mixture was stirred for 14 h in total under these conditions and then removed from the glovebox. On a vacuum line the solid was isolated by filtration and dried under vacuum and a second crop of colourless crystals of **2b** was obtained following storage of the mother liquor at -20 °C (0.440g, 0.87 mmol, 64 %). ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 1.51 (s, 6H, CMe), 2.08 (s, 6H, ArMe), 2.11 (s, 6H, ArMe), 2.29 (s, 6H, ArMe), 3.30 (s, 1H, NH), 4.22 (br s, 1H, AlH), 5.01 (s, 1H, CH), 6.36-6.40 (m, 2H, Ar^FH), 6.69 (s, 2H, ArH), 6.77 (s, 2H, ArH); ¹³C NMR (C₆D₆, 100 MHz, 298 K) δ 18.0, 19.0, 20.9, 22.7, 98.0, 99.5 (dd, *J* = 26.3 Hz and 26.3 Hz), 127.2 (dt, J = 17.5 and 3.7 Hz), 129.9, 130.0, 133.3, 134.3, 136.0, 151.6 (dt, J = 233.8 Hz and 14.0 Hz), 152.4 (ddd, J = 237.7 Hz, 13.8 Hz and 11.3 Hz), 170.4; ¹⁹F NMR (C₆D₆, 300 MHz, 298 K) δ -127.7, -128.8; Infrared (solid, cm⁻¹) 3369, 3005, 2985, 1817, 1607, 1523, 1507, 1379; Elemental analysis calc. for C₂₉H₃₃AlF₃N₃ C 68.62; H, 6.55; N, 8.28; found C, 68.73; H, 6.57; N, 8.36.

Synthesis of $[({2,6-Me_2C_6H_3NCMe}_2CH}Al(H)(NH-4-C_6H_4F)]$ (2c): In a glovebox, [({2,6- $Me_2C_6H_3NCMe_2CHAIH_2$] (1.0 g, 2.99 mmol, 1 equiv.) and 4-fluoroaniline (0.331g, 2.99 mmol, 1 equiv.) were weighed into separate schlenk tubes. The tubes were sealed and removed from the box and attached to a vacuum line. Diethyl ether (15 mL) was added to each tube, the solution of the dihyride was warmed gentle to aid dissolution and the solution of the aniline was then added via cannula at 25 °C. Gas evolution occurred and the mixture was left to settle for 1 h at room temperature then filtered. The filtrate was concentrated to approximately 10 mL, the product began crystallizing at 25 °C and following storage at -20 °C yielded a colourless crop of crystals. Isolation by filtration gave **2d** (0.83 g, 1.92 mmol, 62 %). ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 1.43 (s, 6H, CMe), 2.07 (s, 6H, o-ArMe), 2.24 (s, 6H, o-ArMe), 3.06 (s, 1H, NH), 5.00 (s, 1H, CH), 6.18-6.21 (m, 2H, -C₆H₄F), 6.81-6.96 (m, 8H, ArH+C₆H₄F); ¹³C NMR (C₆D₆, 75.5 MHz, 298 K) δ 18.9, 19.0, 22.5, 97.2, 115.6 (d, ${}^{2}J_{13C-19F}$ = 22.0 Hz), 117.7 (d, ${}^{3}J_{13C-19F}$ = 7.0 Hz), 126.8, 129.9, 129.3, 133.3, 135.5, 142.8, 148.7, 155.0 (d, ¹J_{13C-19F} = 230.0 Hz), 156.2, 170.0; ¹⁹F NMR (C₆D₆, 300 MHz, 298 K) δ -131.0; Infrared (solid, cm⁻¹) 2918, 1842, 1817, 1528, 1502, 1375; Elemental analysis calc. for C₂₇H₃₁AlFN₃ C, 73.11; H, 7.04; N, 9.47; found C, 73.15; H, 6.97; N, 9.48.

of $[\{MesNC(Me)CHC(Me)NCH_2CH_2NMe_2\}Al(NH-4-C_6H_4F)_2]$ (3): In a glovebox, Synthesis {MesNC(Me)CHC(Me)NCH₂CH₂NMe₂}AlH₂] (0.117g, 0.33 mmol, 1 equiv.) was weighed out and transferred to a 20 mL glass scintillation vial. Dry diethyl ether (2 mL) was added followed by dropwise addition of the 4-fluoroaniline (0.062 mL, 0.66 mmol, 2 equiv.). The vial was sealed and after 1 h at 25 °C the solution was filtered and the solvent was removed under reduced pressure. The crude reaction mixture was extracted into hot hexane (5 mL) and stored at 25 °C. Colourless needle crystals of **3** (0.129 g, 0.22 mmol, 68 %) formed overnight, were isolated by filtration and dried under vacuum. ¹H NMR (C₆D₆, 500 MHz, 298 K) δ 1.00 (d, 6H, ³J_{1H-1H} = 6.5 Hz, CH*Me*₂), 1.10 (d, 6H, ³J_{1H-1H} = 6.5 Hz, CHMe₂), 1.54 (s, 3H, CMe), 1.72 (s, 3H, CMe), 1.89 (s, 6H, NMe₂), 2.20 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CH_{2}$, 3.12 (hept, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, ${}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}$), 3.29 (br s, 2H, NH), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.29 (br s, 2H, NH), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.29 (br s, 2H, NH), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.29 (br s, 2H, NH), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.29 (br s, 2H, NH), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.29 (br s, 2H, NH), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.29 (br s, 2H, NH), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.20 (br s, 2H, NH), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz}, CHMe_{2}), 3.30 (t, 2H, {}^{3}J_{1H-1H} = 6.5 \text{ Hz $_{1H}$ = 6.5 Hz, *CH*₂), 4.90 (s, 1H, *CH*), 6.21 (m, 4H, Ar^F*H*), 6.81 (m, 4H, Ar^F*H*), 7.04 (d, 2H, $^{3}J_{1H-1H}$ = 6.5 Hz, Ar*H*), 7.12 (m, 1H, Ar*H*); ¹³C NMR (C₆D₆, 125 MHz, 298 K) δ 21.4, 23.3, 24.2, 25.0, 28.2, 45.8, 46.2, 60.6, 97.5, 115.6 (d, ${}^{2}J_{13C-19F}$ = 21.6 Hz), 116.9(d, ${}^{3}J_{13C-19F}$ = 6.9 Hz), 124.7, 139.4, 145.1, 148.8, 155.2 (d, ¹J_{13C-19F} = 230.0 Hz), 169.9, 171.2; ¹⁵N NMR (C₆D₆, 41 MHz, 298 K) δ 22.4, 70.1, 164.1, 168.3; ¹⁹F NMR (C₆D₆, 470 MHz, 298 K) δ –131.1; Infrared (solid, cm⁻¹) 3211, 2962, 2867, 2825, 2778, 1620, 1556, 1500, 1396; Elemental analysis calc. for C₃₃H₄₄AlF₂N₅ C, 68.85; H, 7.70; N, 12.16; found C, 68.74; H, 7.78; N, 11.82.

Observation of reaction intermediate [{*MesNC*(*Me*)*CHC*(*Me*)*NCH*₂*CH*₂*NMe*₂}*Al*(*H*)(*NH*-4-*C*₆*H*₄*F*)] (*3*'): In a glovebox, {*MesNC*(*Me*)*CHC*(*Me*)*NCH*₂*CH*₂*NMe*₂}*AlH*₂] (0.39g, 0.1 mmol, 1 equiv.) was weighed out and dissolved in C₆D₆ (0.5 mL). The solution was transferred to a Young's tap NMR followed by addition of the 4-fluoroaniline (0.010 mL, 0.11 mmol, 1 equiv.). The tube was sealed and after 0.5 h at 25 °C ¹H, ¹⁵N and ¹⁹F NMR spectra were recorded. The mixture was predominately **3**' although both **3** and **1d** are present. *In situ data:* ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 1.10 (d, 3H, ³J_{1H-1H} = 6.8 Hz, CH*Me*₂), 1.12 (d, 3H, ³J_{1H-1H} = 6.8 Hz, CH*Me*₂), 1.19 (d, 3H, ³J_{1H-1H} = 6.8 Hz, CH*Me*₂), 2.03 (m, 1H, *CH*₂), 2.14 (m, 1H, *CH*₂), 2.62 (m, 1H, *CH*₂), 2.77 (m, 1H, *CH*₂), 2.82 (br s, 1H, *NH*), 3.12 (hept, 1H, ³J_{1H-1H} = 6.5 Hz, CH*Me*₂), 3.43 (hept, 1H, ³J_{1H-1H} = 6.5 Hz, CH*Me*₂), 4.95 (s, 1H, *CH*), 6.29 (m, 2H, Ar^F*H*), 6.84 (m, 2H, Ar^F*H*), 7.18 (m, 3H, Ar*H*); ¹⁵N NMR (C₆D₆, 41 MHz, 298 K) δ 29.8, 76.8, 145.2, 204.4; ¹⁹F NMR (C₆D₆, 300 MHz, 298 K) δ -133.9.

2.3 Catalytic Synthesis of Aluminium Amides

Synthesis of [{(MesNCMe)₂CH}Al(H){NH-2,4,6-Mes] (**4a**): In a glovebox, [{(MesNCMe)₂CH}AlH₂] (0.120 g, 0.33 mmol, 1 equiv.) and [Y{N(SiMe₃)₂}₃] (0.009 g, 0.016 mmol, 0.05 equiv.) were weighed out into a 20 mL glass scintillation vial. Dry diethyl ether (3 mL) was added followed by addition of the 2,4,6- trimethylaniline (0.046 mL, 0.33 mmol, 1 equiv.). The vial was sealed, and after 1 h at 25 °C the mixture was passed through glass fibre filter paper and the solvent was removed under reduced pressure. The crude reaction mixture was dissolved in hexane and stored at -30 °C overnight. The solution was filtered to remove the [Y{N(SiMe₃)₂}₃] which recrystallized and the solvent was removed under reduced pressure. The crude reaction mixture was dissolved in pentane and stored at -30 °C. Yellow crystals of **4a** (0.114 g, 0.23 mmol, 70 %) formed over 3 days and were isolated by decanting the solvent, washing with cold pentane and drying in vacuo. ¹H NMR (C₆D₆, 500 MHz, 298 K) δ 1.49 (s, 6H, CMe), 2.01 (s, 6H, ArMe), 2.09 (s, 6H, ArMe), 2.19 (s, 3H, ArMe), 2.20 (s, 6H, ArMe), 2.31 (s, 6H, ArMe), 3.00 (s, 1H, NH), 4.66 (br s, 1H, AlH), 4.93 (s, 1H, CHMe₂), 6.68 (s, 2H, ArH), 6.74 (s, 2H, ArH), 6.76 (s, 2H, ArH); ¹³C NMR (C₆D₆, 125 MHz, 298 K) δ 18.7, 19.0, 20.2, 20.6, 20.8, 22.6, 97.2, 123.7, 124.0, 129.6, 129.9, 133.5, 133.8, 135.8, 140.6, 146.5, 169.8; Infrared (solid, cm⁻¹) 3677, 3344, 2958, 2917, 2855, 1858, 1610, 1530, 1477, 1427, 1377; Elemental analysis calc. for C₃₂H₄₂AlN₃ C, 77.54; H, 8.54; N, 8.48; found C, 77.39; H, 8.60; N, 8.67.

Synthesis of [{(MesNCMe)₂CH}Al(H){NH-2,6-Dipp] (4b): In a glovebox, [{(MesNCMe)₂CH}AlH₂] (0.120 g, 0.33 mmol, 1 equiv.) and [Y{N(SiMe₃)₂}₃] (0.009 g, 0.016 mmol, 0.05 equiv.) were weighed out into a 20 mL glass scintillation vial. Dry toluene (2 mL) was added followed by addition of the 2,6, diisopropylaniline (0.061 mL, 0.33 mmol, 1 equiv.). The vial was sealed, and after 2 h at 25 °C the mixture was passed through glass fibre filter paper and the solvent was removed under reduced pressure. The crude reaction mixture was dissolved in a toluene/ hexane solution (1:2) and stored at -30 °C. Yellow tablet crystals of **4b** (0.158 g, 0.29 mmol, 89 %) formed overnight and were isolated by decanting the solvent, washing with cold hexane and drying *in vacuo*. ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 1.07 (d, 12H, ³J_{1H-1H} = 6.8 Hz, CHMe₂), 1.45 (s, 6H, CMe), 2.10 (s, 6H, ArMe), 2.20 (s, 6H, ArMe), 2.30 (s, 6H, ArMe), 2.59 (hept, 2H, ³]_{1H-1H} = 6.8 Hz, CHMe₂), 3.05 (br s, 1H, NH), 4.70 (br s, 1H, AlH), 4.91 (s, 1H, CHMe₂), 6.72 (s, 2H, ArH), 6.73 (s, 2H, ArH), 6.86 (t, 1H, ³J_{1H-1H} = 7.2 Hz, ArH), 7.05 (d, 2H, ³J_{1H-1H} = 7.2 Hz, ArH); ¹³C NMR (C₆D₆, 100 MHz, 298 K) δ 18.7, 19.1, 20.9, 22.7, 24.3, 28.6, 97.4, 117.6, 123.2, 129.8, 130.2, 133.2, 133.8, 135.8, 136.0, 141.0, 145.8, 169.9; Infrared (solid, cm⁻¹) 3678, 3376, 2954, 2920, 2863, 1816, 1530, 1432, 1372; Elemental analysis calc. for C₃₅H₄₈AlN₃ C, 78.17; H, 9.00; N, 7.81; found C, 78.40; H, 9.11; N, 8.00.

Synthesis of $[{(MesNCMe)_2CH}Al(H){NH-2,5-di^tBuC_6H_3}]$ (**4***c*): In glovebox, а [{(MesNCMe)₂CH}AlH₂] (0.120 g, 0.33 mmol, 1 equiv.) and [Y{N(SiMe₃)₂}₃] (0.009 g, 0.016 mmol, 0.05 equiv.) were weighed out into a 20 mL glass scintillation vial. Dry toluene (2 mL) was added followed by addition of the 2,5, ditert-butylaniline (0.068 mL, 0.33 mmol, 1 equiv.). The vial was sealed, and after 1 h at 25 °C the mixture was passed through glass fibre filter paper and the solvent was removed under reduced pressure. The crude reaction mixture was dissolved in a hexane solution and stored at -30 °C. Yellow crystals of 4c (0.120 g, 0.21 mmol, 64 %) formed overnight and were isolated by decanting the solvent, washing with cold hexane and drying in *vacuo*. ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 1.28 (s, 9H, *CMe*₃), 1.47 (s, 9H, *CMe*₃), 1.58 (s, 6H, *CMe*), 2.07 (s, 6H, ArMe), 2.13 (s, 6H, ArMe), 2.31 (s, 6H, ArMe), 3.84 (s, 1H, NH), 4.20 (br s, 1H, AlH), 5.19 (s, 1H, CHMe₂), 6.67 (d, 1H, ³J_{1H-1H} = 2 Hz, ArH), 6.73 (m, 3H, ArH), 6.78 (s, 2H, ArH), 7.23 (d, 1H, ³J_{1H-1H} = 8.0 Hz, ArH); ¹³C NMR (C₆D₆, 100 MHz, 298 K) δ 18.9, 19.0, 20.8, 22.5, 29.9, 31.8, 33.7, 34.3, 98.2, 112.3, 118.2, 126.2, 129.7, 129.9, 132.9, 135.3, 135.9, 140.4, 148.5, 150.0, 170.0; Infrared (solid, cm⁻¹) 3444, 2951, 2908, 2868, 1835, 1612, 1530, 1388; Elemental analysis calc. for C₃₇H₅₂AlN₃ C, 78.54; H, 9.26; N, 7.43; found C, 78.45; H, 9.36; N, 7.37.

Synthesis of [{(MesNCMe)₂CH}Al(H){NH-C(CH₃)₃] (4d): In a glovebox, [{(MesNCMe)₂CH}AlH₂] (0.120 g, 0.33 mmol, 1 equiv.) and [Y{N(SiMe₃)₂}₃] (0.009 g, 0.016 mmol, 0.05 equiv.) were weighed out into a 20 mL glass scintillation vial. Dry toluene (2 mL) was added followed by addition of the *tert*-butylamine (0.087 mL, 0.83 mmol, 2.5 equiv.). The vial was sealed, and after 2 h at 25 °C the mixture was passed through glass fibre filter paper and the solvent was removed under reduced pressure. The crude reaction mixture was extracted into hexane (3 mL) and stored at -30 °C. Colourless tablet crystals of **4d** (0.092 g, 0.21 mmol, 64 %) formed overnight and were isolated by decanting the solvent, washing with cold hexane and drying *in vacuo*. ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 0.56 (d, 1H, ³J_{1H-1H} = 3.6 Hz, NH), 1.03 (s, 9H, *CMe*₃), 1.51 (s, 6H, CHMe₂), 2.13 (s, 6H, Ar*Me*), 2.32 (s, 6H, Ar*Me*), 2.39 (s, 6H, Ar*Me*), 4.53 (br s, 1H, Al*H*), 4.84 (s, 1H, C*H*Me₂), 6.90 (s, 2H, Ar*H*), 6.86 (s, 2H, Ar*H*); ¹³C NMR (C₆D₆, 100 MHz, 298 K) δ 19.1, 19.3, 21.0, 22.6, 35.6, 95.9, 129.5, 129.9, 133.4, 133.9, 135.4, 140.9, 168.8; Infrared (solid, cm⁻¹) 2955, 2920, 1788, 1531, 1448, 1382; Elemental analysis calc. for C₂₇H₄₀AlN₃ C, 74.79; H, 9.30; N, 9.69; found C, 74.22; H, 9.82; N, 9.43.

Synthesis of [{(MesNCMe)₂CH}Al(H){NH-C₁₀H₁₅] (**4e**): In a glovebox, [{(MesNCMe)₂CH}AlH₂] (0.120 g, 0.33 mmol, 1 equiv.) and [Y{N(SiMe₃)₂}₃] (0.009 g, 0.016 mmol, 0.05 equiv.) were weighed out into a 20 mL glass scintillation vial. Dry toluene (2 mL) was added followed by addition of the 1-adamantylamine (0.049 g, 0.33 mmol, 1 equiv.). The vial was sealed, and after 1 h at 25 °C the mixture was passed through glass fibre filter paper and the solvent was removed under reduced pressure. The crude reaction mixture was dissolved in toluene and stored at -30 °C. Colourless microcrystals of **4e** (0.082 g, 0.16 mmol, 48 %) formed overnight and were isolated by decanting the solvent, washing with cold hexane and drying *in vacuo*. ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 0.36 (d, 1H, ³J_{1H-1H} = 3.2 Hz, NH), 1.43 (br t, 6H, ³J_{1H-1H} = 2.8 Hz, Ad-CH₂), 1.47 (br d, 6H, ³J_{1H-1H} = 2.8 Hz, Ad-CH₂), 1.52 (s, 6H CMe), 1.84 (br m, 3H, Ad-CH), 2.13 (s, 6H, ArMe), 2.37 (s, 6H, ArMe), 2.40 (s, 6H, ArMe), 4.52 (br s, 1H, AlH), 4.86 (s, 1H, CHMe₂), 6.81 (s, 2H, ArH), 6.88 (s, 2H, ArH); ¹³C NMR (C₆D₆, 100 MHz, 298 K) δ 19.1, 19.5, 21.0, 22.6, 30.9, 37.0, 49.5, 95.9, 129.5, 129.9, 133.4, 134.1, 135.4, 140.9, 168.8; Infrared (solid, cm⁻¹) 3678, 2905, 2844, 1836, 1609, 1528, 1450, 1387; Elemental analysis calc. for C₃₃H₄₆AlN₃ C, 77.46; H, 9.06; N, 8.21; found C, 77.43; H, 9.12; N, 8.17.

Synthesis of [{(MesNCMe)₂CH}Al(H){N-C₄H₈] (4<i>f): In a glovebox, [{(MesNCMe)₂CH}AlH₂] (0.120 g, 0.33 mmol, 1 equiv.) and [Y{N(SiMe₃)₂}₃] (0.009 g, 0.016 mmol, 0.05 equiv.) were weighed out into a 20 mL glass scintillation vial. Dry diethyl ether (3 mL) was added followed by addition of the pyrrolidine (0.033 mL, 0.33 mmol, 1 equiv.). The vial was sealed, and after 0.5 h at 25 °C the mixture was passed through glass fibre filter paper and the solvent was removed under reduced pressure. The crude reaction mixture was washed with cold hexane to give **4f** as a yellow solid (0.094 g, 0.22 mmol, 66 %). ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 1.66 (s, 6H, *CMe*), 1.69 (m, 4H, *N*CH₂CH₂), 2.23 (s, 6H, *ArMe*), 2.39 (s, 3H, *ArMe*), 2.42 (s, 6H, *ArMe*), 3.26 (m, 4H, *N*CH₂CH₂), 4.22 (br s, 1H, AlH), 5.07 (s, 1H, CHMe₂), 6.88 (s, 2H, ArH), 6.93 (s, 2H, ArH); ¹³C NMR (C₆D₆, 100 MHz, 298 K) δ 18.2, 19.2, 20.8, 22.4, 26.9, 49.3, 97.0, 129.7, 133.1, 134.2, 135.3, 141.2, 168.7; Infrared (solid, cm⁻¹) 3677, 3680, 2955, 2918, 2862, 2790, 1849, 1610, 1527, 1452, 1383; Elemental analysis calc. for C₂₇H₃₈AlN₃ C, 75.14; H, 8.87; N, 9.74; found C, 74.96; H, 8.75; N, 9.63.

Synthesis of [{(DippNCMe)₂CH}Al(H)(NH-Dipp)] (**4***g*): In a glovebox, [{(DippNCMe)₂CH}AlH₂] (0.147 g, 0.33 mmol, 1 equiv.) and [Y{N(SiMe₃)₂}] (0.009 g, 0.016 mmol, 0.05 equiv.) were weighed out into a 20 mL glass scintillation vial. Dry toluene (3 mL) was added followed by addition of the 2,6 diisopropylaniline (0.062 mL, 0.33 mmol, 1 equiv.). The vial was sealed, and after 15 h at 25 °C the mixture was passed through glass fibre filter paper and the solvent was removed under reduced pressure. The crude reaction mixture was dissolved in a toluene/hexane mixture (1:2) and stored at -30 °C. Pale yellow microcrystals of 4g (0.179 g, 0.29 mmol, 87 %) formed overnight and were isolated by decanting the solvent, washing with cold hexane and drying *in vacuo*. ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 1.01 (d, 12H, ³J_{1H-1H} = 6.8 Hz, CH*Me*₂), 1.11 (d, 6H, ${}^{3}J_{1H-1H}$ = 6.8 Hz, CHMe₂), 1.12 (d, 6H, ${}^{3}J_{1H-1H}$ = 6.8 Hz, CHMe₂), 1.18 (d, 6H, ${}^{3}J_{1H-1H}$ = 6.8 Hz, $CHMe_2$), 1.31 (d, 6H, ${}^{3}J_{1H-1H}$ = 6.8 Hz, $CHMe_2$), 1.53 (s, 6H, ArMe), 2.49 (hept, 2H, ${}^{3}J_{1H-1H}$ = 6.8 Hz, CHMe₂), 3.01 (s, 1H, NH), 3.36 (m, CHMe₂), 4.54 (br s, 1H, AlH), 4.96 (s, 1H, CHMe₂), 6.82 (t, 1H, Ar*H*), 7.03-7.13 (m, 8H, ArH); ¹³C NMR (C₆D₆, 100 MHz, 298 K) δ 23.5, 24.5, 24.5, 24.6, 24.7, 25.2, 28.4, 28.6, 28.8, 97.0, 117.5, 123.1, 124.6, 125.1, 127.7, 129.3, 135.5, 140.7, 144.0, 144.6, 145.4, 170.6. [Lit: ¹H NMR (C₇D₈, 300 MHz, 298 K) δ 0.95 (d, 12H, ³J_{1H-1H} = 6.8 Hz, CH*Me*₂), 1.10 (d, 6H, 3 J_{1H-1H} = 6.8 Hz, CH*Me*₂), 1.11 (d, 6H, 3 J_{1H-1H} = 6.8 Hz, CH*Me*₂), 1.13 (d, 6H, 3 J_{1H-1H} = 6.8 Hz, CH*Me*₂), 1.26 (d, 6H, ${}^{3}J_{1H-1H}$ = 6.8 Hz, CHMe₂), 1.55 (s, 6H, ArMe), 2.43 (hept, 2H, ${}^{3}J_{1H-1H}$ = 6.8 Hz, CHMe₂), 2.93 (s, 1H, NH), 3.32 (hept, 2H, ${}^{3}J_{1H-1H}$ = 6.8 Hz, CHMe₂), 4.97 (s, 1H, CHMe₂), 5.50 (br, 1H, AlH), 6.69-6.72, 6.92-7.10 (m, 9H, ArH); ¹³C NMR (C₇D₈, 126 MHz, 298 K) δ 23.4, 24.4, 24.5, 24.6, 24.7, 25.2, 28.4, 28.7, 28.9, 97.9, 117.5, 123.0, 124.6, 125.0, 125.6, 128.2, 128.5, 129.2, 129.3, 135.4, 137.5 140.7, 144.0, 144.5, 145.3, 170.6.]³

Synthesis of [{(DippNCMe)₂CH}Al(H)(NH-4-C₆H₄F)] (4h): In a glovebox, [{(DippNCMe)₂CH}AlH₂] (0.147 g, 0.33 mmol, 1 equiv.) and [Y{N(SiMe₃)₂}] (0.009 g, 0.016 mmol, 0.05 equiv.) were weighed out into a 20 mL glass scintillation vial. Dry diethyl ether (3 mL) was added followed by addition of the 4-fluoroaniline (0.032 mL, 0.33 mmol, 1 equiv.). The vial was sealed, and after 1 h at 25 °C the mixture was passed through glass fibre filter paper and the solvent was removed under reduced pressure. The crude reaction mixture was washed with cold hexane to give **4h** as a pale yellow solid (0.095 g, 0.17 mmol, 52 %). ¹H NMR (C₆D₆, 400 MHz, 298 K) δ 0.94 (d, 6H, ³J_{1H-} $_{1H} = 6.8 \text{ Hz}, \text{CH}Me_2$, 1.01 (d, 6H, 3]_{1H-1H} = 6.8 Hz, CH Me_2), 1.13 (d, 6H, 3]_{1H-1H} = 6.8 Hz, CH Me_2), 1.42 1H, N*H*), 3.35 (hept, 2H, 3]_{1H-1H} = 6.8 Hz, C*H*Me₂), 4.03 (br s, 1H, Al*H*), 5.02 (s, 1H, C*H*Me₂), 6.14 (br m, 2H, -C₆H₄F), 6.83 (m, 2H, -C₆H₄F), 7.08-7.18 (m, 6H, ArH); ¹³C NMR (C₆D₆, 100 MHz, 298 K) δ 23.2, 24.2, 24.7, 25.0, 27.7, 29.0, 97.3, 115.0 (d, 2]_{13C-19F} = 21.7 Hz), 117.6 (d, 3]_{13C-19F} = 10.4 Hz), 124.4, 124.9, 139.8, 143.6, 146.1, 148.3, 155.0 (d, ${}^{1}J_{13C-19F}$ = 230.1 Hz), 170.5; ${}^{19}F$ NMR (C₆D₆, 300 MHz, 298 K) δ -131.2; Infrared (solid, cm⁻¹) 3364, 3064, 2959, 2928, 2868, 1856, 1525, 1504, 1439, 1384; Elemental analysis calc. for C₃₅H₄₇AlFN₃ C, 75.64; H, 8.52; N, 7.56; found C, 75.42; H, 8.69; N, 7.71.

3. Single Crystal X-ray Diffraction Data

The X-ray crystal structure of 2a

The structure of **2a** was found to have crystallographic C_S symmetry with Al, C(2) and the whole of the NH-4-FC₆H₄ substituent sitting on the mirror plane, as do the Al–H and N–H hydrogen atoms. These two hydrogen atoms were located from ΔF maps and refined freely, though the N–H hydrogen atom was subject to an N–H distance constraint of 0.90 Å.

Fig. S2 The crystal structure of **3** (50% probability ellipsoids).

The X-ray crystal structure of 3

The two N–H hydrogen atoms in the structure of **3** were located from ΔF maps and refined freely subject to an N–H distance constraint of 0.90 Å.

Fig. S3 The crystal structure of 4b (50% probability ellipsoids).

The X-ray crystal structure of 4b

The Al–H and N–H hydrogen atoms in the structure of **4b** were located from ΔF maps and refined freely, though the N–H hydrogen atom was subject to an N–H distance constraint of 0.90 Å. The included toluene solvent molecule was found to be disordered across a centre of symmetry. Two unique orientations were identified of *ca*. 29 and 21% occupancy, with a further two orientations of the same occupancies being generated by operation of the centre of symmetry. The geometries of the two unique orientations were optimised, the thermal parameters of adjacent atoms were restrained to be similar, and all of the atoms were refined isotropically.

data	2a	3	4 b
chemical formula	C ₂₉ H ₃₅ AlFN ₃	$C_{33}H_{44}AlF_2N_5$	$C_{35}H_{48}AlN_3$
solvent			$0.5(C_7H_8)$
fw	471.58	575.71	583.81
<i>T</i> (°C)	-100	-100	-100
space group	<i>Pnma</i> (no. 62)	$P2_1/c$ (no. 14)	$P2_1/c$ (no. 14)
<i>a</i> (Å)	15.11825(9)	9.13917(11)	10.8160(3)
<i>b</i> (Å)	19.66971(14)	15.5779(3)	19.4921(8)
<i>c</i> (Å)	9.20725(6)	22.9215(4)	16.6321(6)
a (deg)	90	90	90
β (deg)	90	94.3724(13)	90.876(3)
γ (deg)	90	90	90
$V(Å^3)$	2737.98(3)	3253.81(8)	3506.1(2)
Ζ	4 [b]	4	4
$\rho_{calcd} (g \ cm^{-3})$	1.144	1.175	1.106
λ (Å)	1.54184	1.54184	0.71073
$\mu (mm^{-1})$	0.857	0.870	0.087
no. of unique reflns			
measured (R_{int})	2788 (0.0222)	6268 (0.0218)	6847 (0.0358)
obs, $ F_{\rm o} > 4\sigma(F_{\rm o})$	2591	5363	5127
$R_1(\text{obs}), wR_2(\text{all})[a]$	0.0406, 0.1225	0.0384, 0.1067	0.0497, 0.1318

 Table S1. Crystallographic Data for compounds 2a, 3 and 4b.

[a] $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$; $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2]\}^{1/2}$; $w^{-1} = \sigma^2 (F_0^2) + (aP)^2 + bP$. [b] The molecule has crystallographic C_S symmetry.

Table 1 provides a summary of the crystallographic data for compounds **2a**, **3** and **4b**. Data were collected using Oxford Diffraction Xcalibur PX Ultra (**2a**), Agilent Xcalibur PX Ultra A (**3**) and Agilent Xcalibur 3E (**4**) diffractometers, and the structures were refined using the SHELXTL, SHELX-97, and SHELX-2013 program systems.^[2] CCDC 1007407 to 1007409.

References

- [1] A. E. Nako, S. J. Gates, A. J. P. White, M. R. Crimmin, *Dalton Trans.*, **2013**, *42*, 15199.
- SHELXTL, Bruker AXS, Madison, WI; SHELX-97, G.M. Sheldrick, *Acta Cryst.*, 2008, *A64*, 112-122; SHELX-2013, http://shelx.uni-ac.gwdg.de/SHELX/index.php
- [3] H. Zhu, Z. Yang, J. Magull, H. W. Roesky, H. Schmidt, M. Noltemeyer, *Organometallics*, 2005, 24, 6420.

4.1 ¹H-¹⁵N HMBC Experiments

4.2 ¹H, ¹³C, ¹⁹F NMR data

-100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 -320 -340 -360 $f1\ (ppm)$

-80

-60

-40

-20

0

20

40

- 09

¹⁹F NMR (75.5 MHz, 298 K, C₆D₆)

