Electronic Supplementary Information (ESI)

Self-assembly of lipidated pseudopeptidic triazolophanes to vesicles

V. Haridas,* M. B. Bijesh, Ajeet Chandra, Sakshi Sharma and Ashutosh Shandilya Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India

Table of Contents

1. General experimental section S1-S2
2. Synthesis and characterization S3-S13
3. NMR and mass spectral data. S14-S34
4. Circular Dichroism data. S35
5. Ultramicroscopic studies S35-S39
6. Molecular Dynamics studies. S40-S41
7. References S42

Experimental section

(a) Synthesis and characterization

All reagents were used without further purification. All solvents employed in the reactions were distilled or dried from appropriate drying agents prior to use. Amino acid L-Serine was purchased from SRL India. Progress of reactions was monitored by thin layer chromatography (TLC). Purification of compounds was done by silica gel column chromatography. Silica gel G (Merck) was used for TLC and silica gels with 100-200 mesh was used for column chromatography. Melting points were recorded on a Fisher-Scientific melting point apparatus and were uncorrected. Optical rotations were measured with a Rudolph Research Analytical Autopol® V Polarimeter; where concentrations are given in gram $/ 100 \mathrm{~mL}$. IR spectra were recorded on a Nicolet, Protégé 460 spectrometer as KBr pellets. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Brucker-DPX-300 spectrometer using tetramethylsilane $\left({ }^{1} \mathrm{H}\right)$ as an internal standard. Coupling constants are in Hz and the ${ }^{1} \mathrm{H}$ NMR data are reported as s (singlet), d (doublet), br (broad), t (triplet) and m (multiplet), dd (double doublet). High Resolution mass spectra (HRMS) were recorded in Bruker MicrO-TOF-QII model using ESI technique. Circular Dichroism (CD) spectra were recorded on AVIV Model 410 spectropolarimeter equipped with a temperature controller. CD spectra were recorded using 1 mm length cell. MD simulations were performed on 320 processors SUN Microsystems clusters at Supercomputing Facility (SCFBio) at IIT Delhi.

Microscopic studies

(b) Scanning Electron Microscopy (SEM)

A $10 \mu \mathrm{l}$ aliquot of the sample solution was put on a fresh piece of glass, which is attached to a stub via carbon tape. The sample was dried at room temperature and coated with $\sim 10 \mathrm{~nm}$ of gold. Samples were analyzed using ZEISS EVO 50 SEM.

(c) Field Emission-Scanning Electron Microscopy (FE-SEM)

A $10 \mu 1$ aliquot of the sample solution was put on a fresh piece of glass, which is attached to a stub via carbon tape. The sample was dried at room temperature and coated with $\sim 10 \mathrm{~nm}$ of gold. Samples were analyzed using FEI Quanta 3D FEG High resolution scanning electron microscope (FESEM) combined with High-current ion column with Ga liquid-metal ion source.

(d) Atomic Force Microscopy (AFM)

Bruker Dimension Icon atomic force microscope was used for imaging. Tapping mode is used for the analysis. About $10 \mu \mathrm{l}$ aliquot of the sample solution was transferred onto a freshly cleaved mica and allowed to dry and imaged using AFM.
(e) High Resolution-Transmission Electron Microscopy (HR-TEM)

Samples for HR-TEM were prepared by dissolving the compound in 1:1 methanol and chloroform mixture. A $2 \mu \mathrm{l}$ aliquot of the sample solution was placed on a 200 mesh copper grid. It was then stained with 2% phosphotungstate in water for 2 min . and the excess fluid was removed using a filter paper and samples were viewed using a TECHNAI G2 (20STWIN) electron microscope.

Scheme

Synthesis of 1a

Boc-Serine ($5.33 \mathrm{~g}, 26 \mathrm{mmol}$) was dissolved in 200 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and
 sequentially added N-Methoxy methylamine ($2.8 \mathrm{~g}, 28.7 \mathrm{mmol}$) and
Diisopropylethylamine (DIEA) ($8.89 \mathrm{~mL}, 51.04 \mathrm{mmol}$). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ and $\mathrm{HBTU}(11.8 \mathrm{~g}, 31.1 \mathrm{mmol})$ was added in 4 equal parts over a time period of 1 h . The reaction mixture was left stirred for 8 h . Filtered the reaction mixture and the filtrate was diluted with $100 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed sequentially with $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$, NaHCO_{3} (saturated) and water. The organic part was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 7 g of the crude product. It was then chromatographed over silica gel (60-120 mesh) with $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(97: 3)$ as eluent to yield 3.59 g of the pure product.

Yield: 55.6\%
Appearance: White crystalline solid
Melting point: $120-121^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{30}:-17.20\left(\mathrm{c} 0.104, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.45$ (s, 9H, $\left.-\mathrm{C}\left(\mathrm{C}_{\mathrm{H}_{3}}\right)_{3}\right), 2.65$ (br s, $\left.1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O} \underline{H}\right), 3.24$ (s, 3 H , $\left.-\mathrm{NC} \underline{H}_{3}\right), 3.81\left(\mathrm{~s}+\mathrm{m}, 5 \mathrm{H},-\mathrm{OC} \underline{H}_{3}+-\mathrm{OC} \underline{H}_{2}\right), 4.81(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NHC} \underline{\mathrm{HC}}=\mathrm{O}), 5.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{N} \underline{H}$ $\mathrm{Boc})$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.30,32.08,52.55,61.53,63.11,79.84,155.82,171.08$.
IR (KBr): 3441, 2981, 2934, 1697, 1650, 1512, 1461, 1393, 1368, 1266, $1169 \mathrm{~cm}^{-1}$.
HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}, \mathrm{m} / \mathrm{z}=271.1270$, obtained $\mathrm{m} / \mathrm{z}=271.1271$

Boc-Serine ($2 \mathrm{~g}, 9.75 \mathrm{mmol}$) was dissolved in 100 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sequentially added N -hydoxy succinimide $(1.34 \mathrm{~g}, 11.6$ $\mathrm{mmol})$, DCC ($2.4 \mathrm{~g}, 11.6 \mathrm{mmol}$), hexylamine $(1.53 \mathrm{~mL}, 11.6$ $\mathrm{mmol})$ and triethylamine ($3 \mathrm{~mL}, 21.5 \mathrm{mmol}$). The reaction mixture was left stirred for 24 h . Filtered the reaction mixture, washed the residue with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic part was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 2.8 g of the crude product. The crude product was chromatographed over silica gel ($60-120$ mesh) with EtOAc-Hexane (3:7) to yield 2.3 g of the pure product.

Yield: 82\%
Appearance: Yellow viscous liquid
$[\alpha]_{\mathrm{D}}{ }^{30}:-13.89\left(\mathrm{c} 0.14, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87$ (br t, $3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}-$), 1.29 (br m, $6 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$), $1.46\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{C}_{3}\right)_{3}\right), 1.90\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{C}_{2}-\right), 3.25\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NC} \underline{H}_{2}\right), 3.47(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}$, Ser C \underline{H}_{2}), 3.65 (br dd, $1 \mathrm{H}, \operatorname{Ser} \underline{C H}_{2}$), $4.10(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NHC} \underline{H} \mathrm{C}=\mathrm{O}-$), 5.64 (br d, J = $6 \mathrm{~Hz}, 1 \mathrm{H},-$ $\mathrm{N} \underline{H} \mathrm{Boc}), 6.76$ (br s, $1 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{CH}_{2}-$)
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.92,21.45,25.45,27.25,28.30,30.39,38.53,54.19,61.85$, 79.40, 155.22, 170.18

IR (KBr): 3419, 3392, 2958, 2931, 2859, 1697, 1650, 1556, 1456, 1367, 1251, 1169, 1062
cm^{-1}
HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}, \mathrm{m} / \mathrm{z}=311.1947$, obtained $\mathrm{m} / \mathrm{z}=311.1947$
Synthesis of 2a
$\mathbf{1 a}(1.6 \mathrm{~g}, 6.44 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added triethylamine
 $(1.8 \mathrm{~mL}, 12.9 \mathrm{mmol})$ and stirred for 10 minutes. Tosyl chloride $(2.46 \mathrm{~g}, 12.9$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added over a period of 20 minutes and stirred for 8 h. The reaction mixture was directly loaded on a column of silica gel (230400 mesh) and eluted with $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}$ (97.8:2.2) to yield 0.975 g of pure product.

Yield: 38\%
Appearance: Colorless viscous liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.41$ (s, $\left.9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.45$ (s, $3 \mathrm{H}, \mathrm{ArCH}_{3}$), 3.16 (s, $3 \mathrm{H},-$ $\mathrm{NC} \underline{H}_{3}$), 3.71 (s, $3 \mathrm{H},-\mathrm{OC} \underline{H}_{3}$), $4.23\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ser} \mathrm{C}_{2}-\right), 4.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{NHC} \underline{H C}=\mathrm{O})$, 5.37 (br $\mathrm{d}, 1 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{Boc}), 7.34(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArC} \underline{H}), 7.77(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArC} \underline{H})$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.54,28.17,32.04,50.25,61.52,68.75,79.83,127.90$, 129.84, 132.46, 144.98, 154.92, 168.05

IR (KBr): 3426, 2928, 1759, 1713, 1668, 1497, 1365, $1178 \mathrm{~cm}^{-1}$
HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SNa}, \mathrm{m} / \mathrm{z}=425.1358$, obtained $\mathrm{m} / \mathrm{z}=425.1130$.

Synthesis of 2b

1b ($0.23 \mathrm{~g}, 0.8 \mathrm{mmol}$), was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, added 4(Dimethylamino) pyrinine (DMAP) ($0.058 \mathrm{~g}, 0.47 \mathrm{mmol}$) and triethylamine ($0.56 \mathrm{~mL}, 4.02 \mathrm{mmol}$). To the above mixture at $0^{\circ} \mathrm{C}$, tosyl chloride ($0.18 \mathrm{~g}, 0.94 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added drop wise. The reaction mixture was stirred for 18 h , and evaporated to obtain crude product. It was charged on to a column of silica gel (100-200 mesh) and eluted with EtOAc:Hexane (2:3) to yield 0.162 g of $\mathbf{2 b}$ and 0.072 g of dehydro alanine derivative.

Yield: 49.7\%
Appearance: Colorless viscous liquid
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.89\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}\right.$-), 1.29 (br s, 6 H , $\left.\mathrm{CH}_{2}\left(\mathrm{C}_{2}\right)_{3} \mathrm{CH}_{3}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{C}_{3}\right)_{3}\right), 1.89\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{CH}_{2}-\right), 2.46$ (s, $\left.3 \mathrm{H}, \mathrm{ArC} \underline{H}_{3}\right)$, $3.22\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NHC} \underline{H}_{2}-\right), 4.18(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NHC} \underline{\mathrm{HC}}=\mathrm{O}), 4.36\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ser} \mathrm{C}_{2}\right), 5.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-$ $\mathrm{N} \underline{H} \operatorname{Boc}), 6.35\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{CH}_{2}-\right), 7.36(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArC\underline {H}}), 7.78(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArCH)
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.99,21.66,22.49,26.43,28.22,29.30,31.41,39.77,53.46$, $69.02,80.99,128.02,130.00,132.18,145.31,155.27,167.96$

IR (KBr): 3330, 2958, 2929, 2856, 1685, 1661, 1544, 1518, 1456, 1367, 1305, 1244, 1172 cm^{-1}

Synthesis of 5a

3a ($0.1 \mathrm{~g}, 0.35 \mathrm{mmol}$), was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and added 2
 mL of conc. $\mathrm{NaOH}(2 \mathrm{~g} / 5 \mathrm{~mL})$ and tetrabutylammonium bromide (TBABr) ($0.028 \mathrm{~g}, 0.087 \mathrm{mmol}$), stirred for 20 minutes, added propargyl bromide ($0.12 \mathrm{~mL}, 1.6 \mathrm{mmol}$) and stirred for 12 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, and washed thrice with water. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to yield 0.12 g of the crude product. It was then chromatographed over silica gel (100-200mesh) with EtOAc:Hexane (1:1) to yield 0.05 g of $\mathbf{5 a}$.

Yield: 44\%
Appearance: Colorless viscous liquid.
$[\alpha]_{\mathrm{D}}{ }^{30}:-2.74\left(\mathrm{c} 0.109, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87$ (br s, $3 \mathrm{H}, \mathrm{C}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$), 1.28 (br s, 6 H , $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 1.47\left(\mathrm{~s}+\mathrm{m}, 11 \mathrm{H},-\mathrm{C}\left(\mathrm{C}_{3}\right)_{3}+-\mathrm{NHCH}_{2} \mathrm{CH}_{2}-\right), 2.46(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C} \equiv \mathrm{C} \underline{H}), 3.28(\mathrm{~m}$,
$\left.2 \mathrm{H},-\mathrm{NHCH}_{2}-\right), 3.65\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ser} \underline{C}_{2}-\right.$), $3.89\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{SerC} \underline{H}_{2}-\right), 4.10-4.23(\mathrm{~m}, 3 \mathrm{H},-$ $\mathrm{NHC} \underline{H} \mathrm{C}=\mathrm{O}+-\mathrm{OC} \underline{H}_{2} \mathrm{C} \equiv \mathrm{CH}$), 5.39 (br s, $1 \mathrm{H},(-\mathrm{N} \underline{H} \mathrm{Boc}), 6.41$ (br s, $1 \mathrm{H},-\mathrm{CON}_{\left.\underline{H} \mathrm{CH}_{2}-\right)}$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.95,22.49,26.42,28.27,29.38,31.41,39.59,53.89,58.57$, 69.56, 75.11, 78.97, 80.28, 155.47, 169.81.

IR (KBr): 3313, 2930, 2859, 2359, 1714, 1659, 1538, 1518, 1469, 1366, 1248, 1169, 1108 cm^{-1}

HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}, \mathrm{m} / \mathrm{z}=349.2103$, obtained $\mathrm{m} / \mathrm{z}=349.2096$.

Synthesis of 3a

2a ($3.53 \mathrm{~g}, 8.78 \mathrm{mmol}$) was dissolved in N, N-dimethylformamide (30 mL), and added $\mathrm{NaN}_{3}(2.28 \mathrm{~g}, 35 \mathrm{mmol})$ and was stirred at $40-50^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was evaporated and directly loaded to a silica gel column and eluted with EtOAc:Hexane (3:7) to yield 2 g of the pure product.

Yield: 84 \%
Appearance: Yellow viscous liquid
$[\alpha]_{\mathrm{D}}{ }^{38}:+4.30\left(\mathrm{c} 0.093, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.45\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{C}_{3}\right)_{3}\right), 3.25\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NC} \underline{H}_{3}\right), 3.57(\mathrm{~m}, 2 \mathrm{H},-$ $\mathrm{C}_{2} \mathrm{~N}_{3}$), $3.78\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{N}\left(\mathrm{OC}_{3}\right)\right), 4.86\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{C} \underline{H C}=\mathrm{O}\right), 5.55(\mathrm{br} \mathrm{d}, 1 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{Boc})$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 28.13,31.99,50.55,52.01,61.52,79.69,155.05,169.52$
IR (KBr): 3430 (br), 2978, 2936, 2104, 1711, 1661, 1511, 1391, 1250, 1167, $1052 \mathrm{~cm}^{-1}$
HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}, \mathrm{m} / \mathrm{z}=296.1335$, obtained $\mathrm{m} / \mathrm{z}=296.1333$

Synthesis of 3b

2b $(0.963 \mathrm{~g}, 2.18 \mathrm{mmol})$ was dissolved in DMF, added $\mathrm{NaN}_{3}(2.4 \mathrm{~g}$,
 36.9 mmol). The reaction mixture was stirred at $40-50^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was filtered off through a filter paper, and passed through a sintered funnel containing silica gel. The filtrate was concentrated in reduced pressure and the crude material obtained was chromatographed over silica gel (100-200 mesh) using EtOAc:Hexane ($1: 4$) yielded 0.283 g of the pure product.

Yield: 42%
Appearance: White solid upon standing
Melting point: $59-60^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{30}:+8.40\left(\mathrm{c} 0.095, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.68$ (br s, $3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$-), 1.27 (br s, 6 H , $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}-\right), 1.47\left(\mathrm{~s}+\mathrm{m}, 11 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}+-\mathrm{NHCH}_{2} \mathrm{CH}_{2}-\right), 3.28\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NHCH}_{2}-\right), 3.52$ $\left(\mathrm{dd}, \mathrm{J}_{1}=11.8 \mathrm{~Hz}, \mathrm{~J}_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{SerC} \underline{H}_{2}-\right), 3.85\left(\mathrm{dd}, \mathrm{J}_{1}=12.3 \mathrm{~Hz}, \mathrm{~J}_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Ser $\mathrm{C}_{2}-$), $4.23(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NHC} \underline{H} \mathrm{C}=\mathrm{O}), 5.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{Boc}), 6.29\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{CH}_{2}-\right)$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.69,22.27,26.31,28.04,29.10,31.22,39.54,52.44,53.85$, 80.06, 155.47, 169.49

IR (KBr): 3332, 3089, 2931, 2857, 2102, 1687, 1656, 1551, 1525, 1450, 1374, 1303, 1248, 1169, 1047, $1022 \mathrm{~cm}^{-1}$

HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{Na}, \mathrm{m} / \mathrm{z}=336.2012$, obtained $\mathrm{m} / \mathrm{z}=336.2020$

Compound 3c

3b ($0.214 \mathrm{~g}, 0.68 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$, added TFA ($0.8 \mathrm{~mL}, 10.45 \mathrm{mmol}$) and the reaction mixture was stirred for 4 h , afterwards it was subjected to vacuum. The amine thus obtained was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and added triethylamine $(0.38 \mathrm{~mL}, 2.74 \mathrm{mmol})$ followed by the slow addition of benzoyl chloride (0.96 $\mathrm{g}, 0.68 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was left stirred for 12 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and washed sequentially with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}$ and water. The organic layer was collected, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 0.192 g of $\mathbf{3 c}$

Yield: 88\%
Appearance: Pale yellow solid
Melting point: $73-75^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{30}:+2.02\left(\mathrm{c} 0.099, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87$ (br s, $3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$-), 1.27 (br s, 6 H , $\left.\mathrm{CH}_{3}\left(\mathrm{C}_{2}\right)_{3} \mathrm{CH}_{2}-\right), 1.47\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{CH}_{2}-\right), 3.3\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NHC}_{2} \underline{H}_{2}-\right), 3.63-3.88(\mathrm{~m}, 2 \mathrm{H}$,
 $3 \mathrm{Ar} \underline{H}+1 \mathrm{~N} \underline{H}-), 7.81(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} \underline{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.97,22.49,26.51,29.26,31.40,39.94,52.29,52.83,127.21$, 128.68, 132.18, 133.21, 167.69, 169.06.

IR (KBr): 3299, 3087, 2930, 2861, 2099, 1719, 1638, 1529, 1447, 1296, $1214 \mathrm{~cm}^{-1}$
HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Na}, \mathrm{m} / \mathrm{z}=340.1749$, obtained $\mathrm{m} / \mathrm{z}=340.1755$

Compound 5b

$5 \mathbf{a}(0.301 \mathrm{~g}, 0.92 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$, added TFA ($1.06 \mathrm{~mL}, 13.8 \mathrm{mmol}$) and the reaction mixture was stirred for 4 h. It was then subjected to high vacuum. The amine obtained was
dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and added triethylamine ($0.51 \mathrm{~mL}, 3.68 \mathrm{mmol}$) followed by benzoyl chloride ($0.14 \mathrm{~g}, 0.99 \mathrm{mmol}$). The reaction mixture was left stirred for 12 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed sequentially with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}$ and water. The organic layer was collected, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 0.283 g of $\mathbf{5 b}$

Yield: 93\%
Appearance: Pale yellow solid.
Melting point: $98-99^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{30}:+12.38\left(\mathrm{c} 0.105, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88$ (br s, $3 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$-), 1.30 (br s, 6 H , $\left.\mathrm{CH}_{3}\left(\mathrm{C}_{2}\right)_{3} \mathrm{CH}_{2}-\right), 1.53\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{C}_{2}{ }_{2}\right), 2.47(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C} \equiv \mathrm{C} \underline{H}), 3.30\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NHCH}_{2}-\right)$, $3.71\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ser} \mathrm{C}_{2}-\right.$), $4.06\left(\mathrm{dd}, \mathrm{J}_{1}=9.15 \mathrm{~Hz}, \mathrm{~J}_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ser} \mathrm{CH}_{2}-\right.$), $4.25(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 4.71(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NHC} \underline{H C}=\mathrm{O}), 6.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{N} \underline{H}), 7.16(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H},-$ $\mathrm{N} \underline{H}-), 7.48(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} \underline{H}), 7.83(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} \underline{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.99,22.52,26.48,29.36,31.42,39.79,52.63,58.68,69.24$, 75.30, 79.00, 127.16, 128.61, 131.93, 133.59, 167.32, 169.57

IR (KBr): 3297, 3095, 2928, 2860, 1716, 1629, 1533, 1462, 1366, 1323, 1255, 1215, 1158, $1104 \mathrm{~cm}^{-1}$

HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}, \mathrm{m} / \mathrm{z}=353.1841$, obtained $\mathrm{m} / \mathrm{z}=353.1847$.

Synthesis of 6

$\mathbf{5 a}(0.76 \mathrm{~g}, 2.33 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.6 \mathrm{~mL})$, added TFA ($2.6 \mathrm{~mL}, 34.9 \mathrm{mmol}$) and stirred for 4 h . It was then subjected to vacuum and the amine obtained was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, added triethylamine ($0.65 \mathrm{~mL}, 4.7 \mathrm{mmol}$), stirred for 5 minutes, and benzene dicarbonyl dichloride ($0.237 \mathrm{~g}, 1.17 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dropwise over 10 minutes . The reaction mixture was stirred for 12 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed sequentially with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}$ and water. The organic part was collected, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 0.99 g of the crude product; which was chromatographed over silica gel (100-200 mesh) using EtOAc to yield 0.45 g of $\mathbf{6}$

Yield: 66\%
Appearance: White solid
Melting point: $160-161^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{30}:+12.06\left(\mathrm{c} 0.116, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 0.89$ (br s, $6 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$), 1.31 (br s, 12 H , $\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 1.54\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H},-\mathrm{NHCH}_{2} \underline{\mathrm{H}}_{2}-\right), 2.54(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C} \equiv \mathrm{C} \underline{H}), 3.31\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{CH}_{2}-\right.$), 3.75 (m, 2H, Ser C \underline{H}_{2}), 4.04 (m, 2H, Ser C \underline{H}_{2}), 4.27 (m, 4H -OCH $\underline{H}_{2}-\mathrm{C} \equiv \mathrm{CH}$), 4.76 (br m, 2 H , $-\mathrm{NHC} \underline{H C}=\mathrm{O}), 6.52\left(\right.$ br s, $\left.2 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{CH}_{2}-\right), 7.34(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ser} \mathrm{N} \underline{H}-), 7.54(\mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}), 7.99(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{ArC} \underline{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArC} \underline{H})$
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 14.03,22.55,26.49,29.38,31.43,39.83,52.76,58.72,69.12$, $75.52,78.94,125.76,129.05,130.64,134.03,166.38,169.43$

IR (KBr): 3291, 3103, 3066, 2955, 2929, 2857, 2115, 1642, 1563, 1529, 1466, 1394, 1359, 1304, 1251, 1176, 1106, $1013 \mathrm{~cm}^{-1}$

HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Na}, \mathrm{m} / \mathrm{z}=605.3315$, obtained $\mathrm{m} / \mathrm{z}=605.3323$

Synthesis of 4a

3a $(0.18 \mathrm{~g}, 0.659 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.76 \mathrm{~mL})$, and added TFA ($0.76 \mathrm{~mL}, 9.9 \mathrm{mmol}$), and stirred for 4 h at $0^{\circ} \mathrm{C}$. It was subjected to vacuum and the amine obtained was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and added triethylamine $(0.2 \mathrm{~mL}, 1.44 \mathrm{mmol})$, stirred for 5 minutes, and slowly added benzene dicarbonyl dichloride $(0.067 \mathrm{~g}, 0.33 \mathrm{mmol})$ as a solution in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$. The reaction mixture was stirred for 12 h at $0^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed sequentially with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}$ and water. The organic layer was collected, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 0.130 g of $\mathbf{4 a}$.

Yield: 83 \%

Appearance: Yellow semi solid
$[\alpha]_{\mathrm{D}}{ }^{30}:-2.82\left(\mathrm{c} 0.142, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.30\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.68-3.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{N}_{3} \mathrm{CH}_{2}-\underline{\mathrm{H}}^{2}\right.$), $3.85(\mathrm{~s}, 6 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 5.37(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NHC} \underline{H C}=\mathrm{O}), 7.52(\mathrm{~m}, 3 \mathrm{H},-\mathrm{N} \underline{H}-+\mathrm{ArC} \underline{H}), 7.99(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArC} \underline{H}$), 8.33 (s, 1H, - $\mathrm{Ar} \underline{H}$)
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 32.34,50.19,51.69,61.86,125.88,128.86,130.62,133.64$, 166.17, 169.52

IR (KBr): 3489, 3346, 3060, 3007, 2940, 2103, 1643, 1535, 1467, 1389, 1296, $1182 \mathrm{~cm}^{-1}$

HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{Na} \mathrm{m} / \mathrm{z}=499.1778$ obtained $\mathrm{m} / \mathrm{z}=499.1780$

Synthesis of 4b

3b ($0.282 \mathrm{~g}, 0.9 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.1 \mathrm{~mL})$, and added TFA $(1.1 \mathrm{~mL}, 14.28 \mathrm{mmol})$, and stirred for 4 h at $0^{\circ} \mathrm{C}$. The reaction mixture was subjected to vacuum and the amine obtained was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, added triethylamine $(0.37 \mathrm{~mL}, 2.69 \mathrm{mmol})$, stirred for 5
minutes, and then slowly added benzene dicarbonyl dichloride ($0.914 \mathrm{~g}, 0.45 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The reaction mixture was stirred for 12 h at $0^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL), washed sequentially with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}$ and water. The organic layer was collected, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 0.212 g of the crude product; which was chromatographed over silica gel (100-200 mesh) using EtOAc as eluent to yield 0.14 g of $\mathbf{4 b}$

Yield: 56\%
Appearance: White crystalline solid
Melting point: $169-170^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{30}:+6.38\left(\mathrm{c} 0.094, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.89\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}\right.$), 1.29 (br s, 12H, $\left.\mathrm{CH}_{3}\left(\mathrm{C}_{2}\right)_{3} \mathrm{CH}_{2}-\right), 1.53\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{CH}_{2}-\right), 3.29\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{NHC}_{2}-\right), 3.67\left(\mathrm{dd}, \mathrm{J}_{1}=12.3\right.$ $\left.\mathrm{Hz}, \mathrm{J}_{2}=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ser} \mathrm{C}_{2}\right), 3.86\left(\mathrm{dd}, \mathrm{J}_{1}=12.3 \mathrm{~Hz}, \mathrm{~J}_{2}=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ser} \underline{C}_{2}-\underline{H}^{-}\right), 4.82(\mathrm{q}, \mathrm{J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{NHC} \underline{H} \mathrm{C}=\mathrm{O}), 6.79\left(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{CH}_{2}-\right), 7.45(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArC} \underline{H})$, $7.64(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar} \underline{\mathrm{H}}$), $7.93(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{N} \underline{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArC} \underline{H})$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.95,22.50,26.53,29.28,31.40,40.01,52.03,53.18,126.17$, 128.86, 130.72, 133.71, 166.82, 169.21.

IR (KBr): 3284, 3081, 2930, 2858, 2100, 1639(br), 1553, 1515, 1473, 1455, 1361, 1306, 1271, 1238, 1147, $1104 \mathrm{~cm}^{-1}$

HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{Na}=579.3132$, obtained $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{Na}=579.3131$
Synthesis of S1

The dialkyne 6 ($0.05 \mathrm{~g}, 0.086 \mathrm{mmol}$), diazide 4b $(0.048 \mathrm{~g}, 0.086 \mathrm{mmol})$ and DIEA $(0.02 \mathrm{~mL}, 0.162$ mmol) were dissolved in 50 mL of Ethanol:Toluene (2:1) and added to a solution of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ $(0.0275 \mathrm{~g}, 0.11 \mathrm{mmol})$ and sodium ascorbate (0.085 $\mathrm{g}, 0.43 \mathrm{mmol})$ in 50 mL Ethanol:Toluene:Water (6:3:1) over a period of 10 h under argon. The reaction mixture was stirred for 24 h , and subjected to vacuum to obtain the solid, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{Cl}: \mathrm{NH}_{4} \mathrm{OH}(9: 1)$ until the blue color disappeared. The organic layer was further washed with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and NaHCO_{3}, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 0.0829 g of the product. The purification is done by precipitating from CHCl_{3} by adding hexane.

Yield: 85\%
Appearance: Pale brown solid.

Melting point: $239-240^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{38}:-2.33\left(\mathrm{c} 0.086, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 0.763$ (br s, $12 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}-$), 1.16 (br s, 24 H , $\mathrm{CH}_{3}\left(\mathrm{C}_{2}\right)_{3} \mathrm{CH}_{2}-$), 1.29 (br s, $8 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{C}_{2}-{ }_{2}$), 2.97 (br s, $8 \mathrm{H},-\mathrm{NHCH}_{2}$), 3.63 (br s, 4 H , SerC $\underline{H}_{2}-$), 4.45 (br s, 4H, Ser C $\underline{H}_{2}-$), 4.60 (m, 4H, ser C \underline{H}_{2}), 4.72 (m, 2H, $\mathrm{NHC} \underline{\mathrm{HC}=\mathrm{O}), ~ 4.89 ~}$ $(\mathrm{m}, 2 \mathrm{H},-\mathrm{NHC} \underline{H} \mathrm{C}=\mathrm{O}), 7.46(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N} \underline{H}), 7.75(\mathrm{br} \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar} \underline{H}), 7.86(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} \underline{H}), 7.93(\mathrm{~m}, 7 \mathrm{H}, 2-\mathrm{N} \underline{H}+5 \mathrm{Ar} \underline{H}), 8.15(\mathrm{~m}, 3 \mathrm{H}, \operatorname{trz} \underline{H}+\mathrm{Ar} \underline{H}-), 8.29(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N} \underline{H}-)$, 8.50 (m, 2H, -N $\underline{H}-$), 8.79 (m, 2H, -N $\underline{H-}$)
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 12.97,22.21,26.23,28.87,31.23,39.38,50.64,53.71,54.36$, 68.82, 126.14, 128.51, 130.36, 130.60, 133.81, 167.72, 167.88, 168.86, 170.43

IR (KBr): 3444, 2929, 2858, 1646, 1539, 1468, 1376, 1273, 1108 cm^{-1}
HRMS calcd for $\mathrm{C}_{58} \mathrm{H}_{86} \mathrm{~N}_{14} \mathrm{O}_{10} \mathrm{Na}, \mathrm{m} / \mathrm{z}=1161.6549$ obtained $\mathrm{m} / \mathrm{z}=1161.6536$

Synthesis of S3

The dialkyne $6(0.060 \mathrm{~g}, 0.104 \mathrm{mmol})$, the azide $\mathbf{3 b}$ $(0.065 \mathrm{~g}, 0.208 \mathrm{mmol})$ and DIEA ($0.02 \mathrm{~mL}, 0.162$ $\mathrm{mmol})$ were dissolved in 50 mL of Ethanol: Toluene:Water (6:3:1) and added $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.040$ $\mathrm{g}, 0.162 \mathrm{mmol})$, and sodium ascorbate $(0.085 \mathrm{~g}, 0.43$ $\mathrm{mmol})$ under argon. The reaction mixture was stirred for 24 h , subjected to vacuum to obtain the semisolid, which is dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{Cl}: \mathrm{NH}_{4} \mathrm{OH}(9: 1)$ until the blue color disappeared. The organic layer was further washed with $2 \mathrm{~N}_{2} \mathrm{SO}_{4}$ and NaHCO_{3}, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 0.085 g of the product. The crude product obtained was purified by precipitating by adding hexane to a saturated solution of compound in CHCl_{3}.

Yield: 67\%
Appearance: Pale brown solid
Melting point: $119-120^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{30}:+5.71\left(\mathrm{c} 0.105, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 0.84$ (br s, $12 \mathrm{H}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$), 1.22 (br s, 24 H , $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}-\right), 1.28\left(\mathrm{~s}, 18 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.34$ (br s, $\left.8 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{C}_{2}-\right), 3.04(\mathrm{~m}, 8 \mathrm{H},-$ NHC \underline{H}_{2}), 3.73 ($\mathrm{m}, 8 \mathrm{H}, \operatorname{Ser} \mathrm{C}_{2}-$), 4.3- $4.8\left(\mathrm{~m}, 8 \mathrm{H}, 4-\mathrm{NHC} \underline{\mathrm{HCO}}+4-\mathrm{OC} \underline{H}_{2}-\right.$), $7.11(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 2 \mathrm{H},-\mathrm{CON} \underline{H}-), 7,57(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArC} \underline{H}), 7.94(\mathrm{~s}, 2 \mathrm{H}$, Triazole $\mathrm{C} \underline{H}), 8.05(\mathrm{~m}, 5 \mathrm{H}, 3 \mathrm{ArC} \underline{H}-+$ $2 \mathrm{~N} \underline{H}-), 8.38\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CON} \underline{H} \mathrm{CH}_{2}-\right), 8.62\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CON} \underline{H} \mathrm{CH}_{2}-\right)$

IR (KBr): 3443, 2829, 1645, 1541, 1367, 1275, 1261, 1165, $1109 \mathrm{~cm}^{-1}$

HRMS calcd for $\mathrm{C}_{60} \mathrm{H}_{100} \mathrm{~N}_{14} \mathrm{O}_{12} \mathrm{Na}, \mathrm{m} / \mathrm{z}=1231.7543$ obtained $\mathrm{m} / \mathrm{z}=1231.7519$
Synthesis of S2

A solution of $6(0.05 \mathrm{~g}, 0.086 \mathrm{mmol})$ and the diazide $4 \mathbf{a}(0.041 \mathrm{~g}, 0.086 \mathrm{mmol})$ and DIEA ($0.03 \mathrm{~mL}, 0.172 \mathrm{mmol}$) were dissolved in 50 mL of Ethanol:Toluene ($2: 1$) was added to a solution of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(0.040 \mathrm{~g}, 0.162 \mathrm{mmol})$, and sodium ascorbate ($0.085 \mathrm{~g}, 0.43 \mathrm{mmol}$) in 50 mL Ethanol:Toluene:Water (6:3:1) over a period of 10 h under argon. The reaction mixture was stirred for 24 h , and subjected to vacuum to obtain the solid which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed sequentially with $\mathrm{NH}_{4} \mathrm{Cl}: \mathrm{NH}_{4} \mathrm{OH}(9: 1)$ until the blue color disappeared. The organic layer was further washed with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ and NaHCO_{3}, dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated to yield 0.097 g of the product. It was precipitated by adding hexane to a saturated solution of the compound in CHCl_{3}. The compound was chromatographed over silica gel (100-200 mesh) and eluted with $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CHCl}_{3}(1: 9)$ to yield 0.083 g of pure compound.

Yield: 91 \%
Appearance: White solid
Melting point: $140-142^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{37}:-4.55\left(\mathrm{c} 0.066, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSOd}_{6}$): $\delta 0.83$ (br s, $6 \mathrm{H}, \mathrm{C}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$), 1.22 (br s, 12 H , $\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}\right), 1.34\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{C}_{2}\right), 2.95-3.20\left(\mathrm{~m}, 10 \mathrm{H},-\mathrm{NC}_{3}+\underline{N H C}_{2}\left(\mathrm{CH}_{2}\right)_{4}-\right), 3.66$ (s $\left.+\mathrm{m}, 10 \mathrm{H},-\mathrm{N}\left(\mathrm{OC} \underline{H}_{3}\right)+\operatorname{Ser} \underline{\mathrm{H}}_{2}\right), 4.39-5.10\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ser} \mathrm{CH}_{2}+\right.$ triazoleC $\left.\underline{H}_{2}+2 \mathrm{NHC} \underline{H C}=\mathrm{O}\right)$, 5.41 (br s, $2 \mathrm{H}, 2 \alpha \mathrm{CH}$), 7.55 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H},-\mathrm{N} \underline{H}$), $7.7-8.3$ (m, $8 \mathrm{H}, \operatorname{Ar} \underline{H}+\operatorname{trz} \mathrm{C} \underline{H}-$), 8.36 (br s, 2 H , $\operatorname{Ar} \underline{H}$), 8.6 (br s, $2 \mathrm{H}, \mathrm{N} \underline{H}$), 9.10 (br s, $2 \mathrm{H}, \mathrm{N} \underline{H}$)

IR (KBr): 3314, 3084, 2930, 2858, 1650, 1536, 1467, 1384, 1303, 1277, 1179, $1103 \mathrm{~cm}^{-1}$
HRMS calcd for $\mathrm{C}_{50} \mathrm{H}_{70} \mathrm{~N}_{14} \mathrm{O}_{12} \mathrm{Na}, \mathrm{m} / \mathrm{z}=1081.5195$, obtained $\mathrm{m} / \mathrm{z}=1081.5196$

Compound S4

The alkyne $\mathbf{5 b}(0.068 \mathrm{~g}, 0.207 \mathrm{mmol})$, was dissolved in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and added DIEA ($0.035 \mathrm{~mL}, 0.207 \mathrm{mmol}$), followed by azide $3 \mathrm{c}(0.065 \mathrm{~g}, 0.207 \mathrm{mmol})$. Added $\mathrm{CuI}(0.008 \mathrm{~g}, 0.041 \mathrm{mmol})$ and the reaction mixture was stirred at room temperature for 30 h . The reaction mixture was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{NH}_{4} \mathrm{Cl}: \mathrm{NH}_{4} \mathrm{OH}$ (9:1) until the blue color disappeared. The organic part was further washed with 2 N $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}$, and dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to yield 0.11 g of the product.

The crude product was precipitated from CHCl_{3} by adding hexane. It was chromatographed over silica gel (100-200 mesh) and eluted with EtOAc to yield 0.083 g of pure compound.

Yield: 61.9\%
Melting point: $176-177^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}{ }^{37}:-9.68\left(\mathrm{c} 0.093, \mathrm{CH}_{3} \mathrm{OH}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{3}\left(\mathrm{CH}_{2}\right)_{4}\right.$), $1.10-1.60$ (br s+m, 16 H , $\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}-+\mathrm{CH}_{3}\left(\mathrm{C}_{2}\right)_{3} \mathrm{CH}_{2}-\right), 3.00-3.30\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{NH}\left(\mathrm{C}_{2}\right)-\right), 3.62$ (br dd, 1 H , Ser CH_{2}), 3.93 (br dd, $1 \mathrm{H}, \operatorname{ser} \underline{H}_{2}$), $4.44(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NHC} \underline{H} \mathrm{C}=0), 4.69-4.85(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{SerC} \underline{H}_{2}+\mathrm{OC} \underline{H}_{2}$), $5.00-5.20\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NHC} \underline{H} \mathrm{C}=\mathrm{O}+-\mathrm{OC} \underline{H}_{2}\right), 6.79\left(\mathrm{br} \mathrm{t}, 1 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{CH}_{2}\right), 6.88(\mathrm{br}$ $\left.\mathrm{t}, 1 \mathrm{H},-\mathrm{N} \underline{H} \mathrm{CH}_{2}\right), 7.39(\mathrm{~m}, 4 \mathrm{H}, \operatorname{trz} \mathrm{C} \underline{H}+\mathrm{ArCH}-), 7.49(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArC} \underline{H}), 7.69(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArC} \underline{H}+-$ $\mathrm{N} \underline{H}-), 7.84$ (m, $3 \mathrm{H}, \mathrm{ArC} \underline{H}^{+}-\mathrm{N} \underline{H}-$).

IR (KBr): 3303, 3070, 2927, 2858, 1637, 1533, 1460, 1381, 1322, 1231, 1149, 1108, 1049 cm^{-1}

HRMS: calcd for $\mathrm{C}_{35} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{5} \mathrm{Na}, \mathrm{m} / \mathrm{z}=670.3693$, obtained $\mathrm{m} / \mathrm{z}=670.3684$.

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{\underline{3}}$) of $\mathbf{1 a}$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 a}$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of 2a

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a}$

High Resolution Mass Spectrum of compound 3a

${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 a}$
(

High Resolution Mass spectrum of 4a

${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{1 b}$

$\underline{{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \text { of } \mathbf{2 b}}$

$\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl}_{3}\right)$ of $\mathbf{2 b}$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{5 a}$

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5a

High Resolution Mass Spectra of 5a

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 b}$

High Resolution Mass Spectrum of 3b

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{of}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{4 b}$

High Resolution Mass Spectrum of 4b

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 6
b

${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6$
bijesh

High Resolution Mass Spectrum of 6

${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) of S2

High Resolution Mass Spectrum of S2

${ }^{1} \mathrm{H}(300 \mathrm{MHz}$, DMSO-d6) NMR spectrum of $\mathbf{S 3}$

High Resolution Mass Spectrum of S3

$\underline{{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \text { of } \mathbf{3 c}}$

High Resolution Mass Spectrum of 3c

${ }^{1} \mathrm{H}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) of $\mathbf{5 b}$

Bijesh 1

High Resolution Mass Spectrum of 5b

${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(300} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{S} 4$

High Resolution Mass Spectrum of S4

Figure $\mathbf{S 1}$ (a) ${ }^{1} \mathrm{H}$ NMR (300 MHz) spectra of $\mathbf{S} 1$ in CDCl_{3}. The broadening of the amide NHs and aromatic protons is indicative of aggregation (b) FT-IR spectra of $\mathbf{S 1}(5 \mathrm{mM})$ in CHCl_{3} (c) FT-IR spectra of $\mathbf{4 b}(10 \mathrm{mM})$ in CHCl_{3}.

Figure $\mathbf{S} 2$ CD spectra of $\mathbf{4 b}, \mathbf{6}, \mathbf{S} 1$ and $\mathbf{S 3}$ in methanol

Figure S3 Histograms showing vesicle sizes of (a) S1 (b) S2 (c) S3 measured from SEM

Figure S4 HR TEM images of (a) 0.5 mM solution of $\mathbf{S 1}$ in $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}$ without staining (b) 0.5 mM solution of $\mathbf{S 1}$ in $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}$ stained with phosphotungstic acid.

Figure S5 SEM images of $\mathbf{S 1}$ in $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ (1:1) (a) 0.05 mM (Scale bar $1 \mu \mathrm{~m}$) (b) 0.5 mM (Scale bar $1 \mu \mathrm{~m}$) (c) $1 \mathrm{mM}($ Scale bar 200 nm$)(\mathrm{d}) 2 \mathrm{mM}($ Scale bar $1 \mu \mathrm{~m}$) (e) 5 mM (Scale bar $2 \mu \mathrm{~m}$)

Figure S6 HRTEM images of 0.5 mM of $\mathbf{S 2}$ in $\mathrm{CHCl}_{3} /$ Methanol (1:1) showing (a-b) vesicles and pot-like structures (c) Selected vesicle showing the thickness of the wall.

Figure $\mathbf{S} 7$ SEM images of (a) 0.5 mM solution of $\mathbf{S 2}$ in $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(1: 1)($ Scale bar $4 \mu \mathrm{~m})$ (b) selected region from a showing the diameter of the orifice (Scale bar 430 nm) (c) 0.5 mM of $\mathbf{S 2}$ solution in $\mathrm{CH}_{3} \mathrm{OH}$ (scale bar $1 \mu \mathrm{~m}$)

Figure S8 FIB-SEM images of (a) square inscribed on S1 (Scale bar 500 nm) (b) circle inscribed on $\mathbf{S 2}$ (Scale bar 400 nm)

Figure S9 SEM images of 0.5 mM solution of $\mathbf{S 3}$ in $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(1: 1)$ (Scale bar 200 nm)

Figure S10 HR-TEM images of selected vesicle from S3 showing dimension.

Figure S11 SEM image of a 0.5 mM solution of $\mathbf{S 4}$ in $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(1: 1)$

Figure S12 SEM images of (a) 1 mM solution of $\mathbf{6}$ in CHCl_{3} : Hexane (1:1) (b) Gel of $\mathbf{6}, 10.6 \mathrm{mM}$ in CHCl_{3} : Hexane (1:1). Inset is the inverted vial with gel.

Figure S13 SEM images of (a) 1 mM solution of $\mathbf{4 b}$ in CHCl_{3} : Hexane (1:1) (b) Gel of $\mathbf{4 b}(9.9 \mathrm{mM})$ in CHCl_{3} : Hexane $(1: 3)$ Inset is the inverted vial with gel.

Figure S14 SEM images of 0.5 mM solution of $\mathbf{S 1}$ in (a) $\mathrm{CH}_{3} \mathrm{OH}$ (Scale bar 200 nm) (b) $\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(1: 3)($ Scale bar $2 \mu \mathrm{~m})(\mathrm{c}) \mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}(3: 1)$ (Scale bar 200 nm)

Molecular dynamics simulations

MD simulations were performed on a GPU clusters at Supercomputing Facility (SCFBio) at IIT Delhi. The AMBER 12 package ${ }^{1}$ was used to prepare files for $\mathbf{S 1}$-S3 and for performing Molecular Dynamics (MD) simulations. Molecules were solvated in an octahedron box of $\mathrm{CH}_{3} \mathrm{OH}$ (methanol) with a $10 \AA$ distance between the molecular surface and the box boundary. The partial atomic charges for the molecules were obtained using "antechamber" module of AMBER. The energy minimization and MD simulations of $\mathbf{S 1}-\mathbf{S 3}$ were carried out with the aid of the SANDER module of the AMBER 12 program. At first, the simulation was affected with 1000 step minimization using the steepest descent algorithm followed by a 2000 step minimization using conjugate gradient to remove bad steric contacts. Topology and parameter files for the $\mathbf{S 1} \mathbf{- S 3}$ were prepared using "gaff" based on the atom types of the force field model developed by Cornell et al. ${ }^{2}$ Then the system was equilibrated with solvent molecules at 300 K . Next step involved the equilibration of the molecules S1-S3 with a fixed configuration of the solvent molecules in which the system was slowly heated from $\mathrm{T}=10$ to 300 K for 1 ns . The entire system was then equilibrated at 300 K for 300 ps . The MD simulations were performed with a periodic boundary condition in the NPT ensemble at $\mathrm{T}=298.15 \mathrm{~K}$ with Berendsen temperature coupling and constant pressure $\mathrm{P}=1$ atm with isotropic molecule-based scaling. We used a time step of 2 fs and a nonbonding interaction cutoff radius of $12 \AA$. The Particle Mesh Ewald (PME) method ${ }^{3}$ was used to treat long-range
electrostatic interactions. The coordinates of the trajectory was sampled every 10 ps for analysis of the energy stabilization.

(a)

(b)

Figure $\mathbf{S 1 5}$ (a) MD simulated structure of $\mathbf{S} \mathbf{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$ (b) MD simulated structure of $\mathbf{S 3}$ in $\mathrm{CH}_{3} \mathrm{OH}$

References

1. D. A. Case, T. A. Darden, T. E. Cheatham, III, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W. Götz, I. Kolossváry, K. F.Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M. J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. A. Kollman (2012), AMBER 12, University of California, San Francisco.
2. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 5179-5197.
3. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys., 1995, 103, 8577.
