Electronic Supplementary Information (ESI)

Self-Assembled Ultrathin Crystalline Polymer Film for High

Performance Phototransistors

Hui Li,^{*a,b*} Yishi Wu,^{*a*} Xuedong Wang,^{*a,b*} Qinghua Kong^{*a,b*} and Hongbing Fu*^{*a,c*}

^a Beijing National Laboratory for Molecules Science (BNLMS), Institute of Chemistry, Chinese

Academy of Sciences, Beijing 100190, P. R. China

^b Graduate University of Chinese Academy of Sciences (GUCAS), Beijing 100049, P. R. China

^c Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry,

Capital Normal University, Beijing 100048, P. R. China

Table of Contents

- 1. Materials and instruments
- 2. Device fabrication and characterization.
- 3. Absorption and PL spectra of **PQBOC8** in solid state.
- 4. bright-field optical microscopy images of other typical polymers.
- 5. The TEM images of 2D PQBOC8 film.
- 6. AFM images at different concentrations.
- 7. OFET performance.
- 8. Output characteristics and on/off switching of phototransistors.
- 9. Phototransistor characterization of spin-coated thin film devices.
- 10. Fluorescence decay profile of PQBOC8.

Materials and Instruments: The polymer PQBOC8 used in this work was synthesized according to the literature.¹ Number average molecular weight (M_n) of this polymer is 40.4 kDa and weight average molecular weight (M_w) is 74.7 kDa with a narrow polydispersity of 1.8. P3HT and PBDTTT-C-T were purchased from solarmer materials, Inc. without further purification. The solvent of CHCl₃ was purchased from Beijing Chemical Agent Ltd., China and used without further purification. Ultrapure water with a resistivity of 18.2 M Ω ·cm⁻¹, produced by using a Milli-Q apparatus (Millipore), was used in all experiments. Transmission electron microscopy (TEM) was performed on a JEM-1011, JEOL operated at 100 kV. The samples were prepared by transferring on a carbon-coated copper grid, and dried under vacuum. The X-ray diffraction (XRD) patterns were measured by a D/max 2400 X-ray diffractometer with Cu K_{α} radiation ($\lambda = 1.54050$ Å) operated in the 20 range from 2° to 40° by using the samples transferred onto the SiO₂/Si substrate. UV-vis absorption spectrum was measured on a Shimidazu UV-3600 UV-vis-NIR spectrophotometer. Fluorescence spectrum was recorded by a home-made optical microscopy equipped with a 50×0.9 NA excitation objective and collected underneath using a liquid-nitrogen-cooled CCD (SPEC-10-400B/LbN, Roper Scientific) attached to a polychromator (Spectropro-550i, Acton). The samples were prepared by dipping onto a cleaned quartz plate, and then dried in oven. Atom force microscopy (AFM) was investigated by Brucker Multimode 8 using tapping-mode with a scan speed of 1Hz. The white light source is an iodine-tungsten lamp with wavelength range from 450 to 750 nm. UV light, blue light and green light are obtained from a xenon lamp through a band-pass filter. The fluorescence decay measured by the ps time-resolved fluorescence spectrometer. The excitation laser pulses (480 nm) were supplied by an optical parametric amplifier, which was pumped by a regenerative amplifier. The detail of the instrument has been described elsewhere.²

Fabrication and Characterization of Field-effect Transistors and Phototransistors: The field-effect transistors were fabricated with a bottom-gate top-contact configuration. The substrates were heavily *n*-doped Si wafers covered with 300 nm-thick SiO₂ dielectric (C_i =10 nF cm⁻²). After cleaned, the substrates were

treated with vaporized octadecyltrichlorosilane (OTS). For spin-coated film transistors, the fabrication process was the same as reported previously. For 2D crystalline film devices, the substrate was dipped in beaker, and then dried in oven at 80°C to remove water. All devices used gold as source and drain electrodes which thermally evaporated using copper grid as shadow mask. (Channel length =30 μ m, channel width = 100 μ m). The electrical characteristics were obtained using a Keithly 4200 SCS semiconductor parametric analyzer under ambient condition at room temperature. For phototransistor, light was irradiated on the devices from the semiconductor side. Photoresponsivity (*R*) and photocurrent/dark-current ratio (*P*) are important parameters for phototransistor. The *R* is defined by the following equation:

$$R = \frac{\left(I_{\rm DS,ill} - I_{\rm DS,dark}\right)S^{-1}}{P_{\rm inc}}$$

Where $I_{SD, ill}$ and $I_{DS, dark}$ are the source-drain current under illumination and in dark, respectively. *S* is the effective area of device. P_{inc} is the power of the incident light per unit area. The *P* is defined by the following equation:

$$P = \frac{I_{\rm DS,ill} - I_{\rm DS,dark}}{I_{\rm DS,dark}}$$

Where $I_{SD, ill}$ and $I_{DS, dark}$ are the same as previous defined.

Fig. S1. Absorption and photoluminescence (PL) spectra of PQBOC8 in solid state.

Fig. S2. The 2D films of P3HT (a) and PBDTTT-C-T (b) prepared by $CHCl_3$ /water interface method. Scale bars represent 50 μ m.

Fig. S3. The growing process of 2D film at the interface of $CHCl_3$ /water. (a) before $CHCl_3$ evaporation; (b) after $CHCl_3$ totally evaporation. Scale bars represent 10 μ m.

Fig. S4. The AFM height images of 2D crystalline film at the concentration of (a) 0.1 mg mL⁻¹, (b) 0.05 mg mL⁻¹, (c) 0.02 mg mL⁻¹, and (d) 0.005 mg mL⁻¹, respectively, at resolution of $1 \times 1 \ \mu m$.

Fig. S5. The AFM height images of 2D crystalline ultrathin film at the concentration of 0.005 mg mL^{-1} .

concentration	thickness	mobility	$I_{ m on/off}$	V_{T}
$(mg mL^{-1})$	(nm)	$(\text{cm}^2 \text{ V}^{-1} \text{ s}^{-1})$		(V)
0.1	22	0.054	10^{6}	-10
0.05	19	0.060	10^{5}	-15
0.02	16	0.046	10^{6}	-14
0.005	14	0.130	10 ⁷	-14

 Table S1. OFET properties of 2D films determined at different thickness.

Fig. S6. The output and transfer characteristics of 2D crystalline film at 0.005 mg mL⁻¹.

Fig. S7. (a) The output characteristics of 2D crystalline film phototransistor at different light irradiation intensities with a fixed $V_G=0$ V. (b) The on-off switching behaviors of 2D crystalline film measured at $V_G=0$ V and $V_{DS} = -60$ V with white light power density of 0.28 mW cm⁻².

Fig. S8. Transfer characteristics of 2D crystalline film in the dark and under different wavelength light. (The irradiation intensity is 1.38, 0.092, and 0.043 mW cm⁻² for UV, blue, and green light, respectively.)

Table S2. Phototransistor performances of 2D crystalline film under different wavelength light irradiation.

light source	UV	blue	green
wavelength (nm)	330~350	430~450	540~560
light intensity (mW cm ⁻²)	1.38	0.092	0.043
$R (A W^{-1})$	2.3	454.6	1000
Р	5.4×10^{3}	5.0×10 ⁴	1.2×10^{5}

Fig. S9. (a) Transfer characteristic based on spin-coated thin film transistor in the dark and under illumination. (b) Photoresponsivity and photosensitivity under white light power intensity of 0.28 mW cm^{-2} .

Fig. S10. Time-resolved fluorescence spectra of PQBOC8 thin film by spin-coated and 2D crystalline film.

For spin-coated film, the apparent time constants are 0.10 ± 0.02 ns and 0.77 ± 0.03 ns with the relative prefactors of 45% and 55%, respectively. For crystalline film, the apparent time constants are 0.11 ± 0.01 ns and 0.56 ± 0.02 ns with the relative prefactors of 72% and 28%, respectively.

- 1 H. Li, C. Gu, L. Jiang, L. Wei, W. Hu and H. Fu, *J. Mater. Chem. C*, 2013, 1, 2021-2027.
- 2 H. Liu, H. Jia, L. Wang, Y. Wu, C. Zhan, H. Fu and J. Yao, *Phys. Chem. Chem. Phys.*, 2012, **14**, 14262-14269.