SUPPLEMENTARY INFORMATION

Photo-Induced Glycosylation Using Reusable Organophotoacids

Ryosuke Iwata, Kanjiro Uda, Daisuke Takahashi and Kazunobu Toshima*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Page Contents
S2 General experimental methods
S2 General procedure for glycosylations
S3 Characterization of glycosides 9, 17-21, 25-27
S11 References
S12 1H and 13C NMR spectra
General experimental methods

Melting points were determined on a micro hot-stage (Yanako MP-S3). Optical rotations were measured on a JASCO P-2200 polarimeter. 1H and 13C NMR spectra were recorded on a JEOL ECA-500 (500 MHz) spectrometer. 1H NMR data are reported as follows; chemical shift in parts per million (ppm) downfield or upfield from tetramethylsilane (δ 0.00), CDCl$_3$ (δ 7.26) or acetone-d_6 (δ 2.05) integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet and m = multiplet) and coupling constants (Hz). 13C chemical shifts are reported in ppm downfield or upfield from CDCl$_3$ (δ 77.00) or acetone-d_6 (δ 29.8). For 1H NMR analysis, prime number was used for assigning number to sugar carbon. ESI-TOF Mass spectra were measured on a Waters LCT premier XE. Silica gel TLC and column chromatography were performed on Merck TLC 60F-254 (0.25 mm) and Silica Gel 60 N (spherical, neutral, 40-50 µm) (Kanto Chemical Co., Inc.), respectively.

General procedure for glycosylations by using organophotoacids

To a stirred solution of glycosyl donor (0.1 mmol) and glycosyl acceptor (0.2~0.3 mmol) in Et$_2$O (0.5 M) was added organophotoacid 2 (0.03 mmol) or 5 (0.01 mmol). After stirring for 4 h under the photoirradiation using a UV lamp (365 nm, 12 mW/cm2), the mixture was concentrated in vacuo. The purification of the residue by flash column chromatography gave the corresponding glycoside, and 2 or 5 was recovered.
Cyclohexylmethyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranoside (9α): Colorless syrup; Rf 0.35 (4/1 n-hexane/EtOAc); [α]27D +41.1° (c 0.99, CHCl3); 1H NMR (500 MHz, CDCl3) δ 0.85-1.00 (2H, m), 1.09-1.33 (3H, m), 1.60-1.88 (6H, m), 3.20 (1H, dd, J = 9.5 and 6.0 Hz, OCH2), 3.42 (1H, dd, J = 9.5 and 7.5 Hz, OCH3), 3.55 (1H, dd, J = 9.5 and 3.5 Hz, H-2), 3.58-3.82 (4H, m), 3.97 (1H, dd, J = 9.5 and 9.5 Hz, H-3), 4.47 and 4.61 (2H, ABq, J = 12.5 Hz, ArCH2), 4.47 and 4.83 (2H, ABq, J = 11.0 Hz, ArCH2), 4.64 and 4.76 (2H, ABq, J = 12.0 Hz, ArCH2), 4.73 (1H, d, J = 3.5 Hz, H-1), 4.81 and 4.99 (2H, ABq, J = 10.5 Hz, ArCH2), 7.11-7.16 (2H, m, ArH); 13C NMR (500 MHz, CDCl3) δ 25.7, 25.8, 26.6, 30.0×2, 37.6, 68.5, 70.0, 73.0, 73.4, 73.9, 75.1, 75.6, 77.8, 80.3, 82.1, 97.1, 127.6, 127.7×2, 127.9×2, 128.0, 128.3, 128.4×2, 138.0, 138.3, 138.4, 139.0; HRMS (ESI-TOF) m/z 659.3329 (659.3349 calcd for C41H46O6Na [M+Na]+).

Cyclohexylmethyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (9β): White solid; Rf 0.40 (4/1 n-hexane/EtOAc); [α]27D +4.2° (c 0.99, CHCl3); mp 98.0-99.0 °C; 1H NMR (500 MHz, CDCl3) δ 0.90-1.06 (2H, m), 1.08-1.34 (3H, m), 1.58-1.92 (6H, m), 3.32 (1H, dd, J = 9.5 and 7.0 Hz, OCH2), 3.40-3.49 (2H, m), 3.53-3.77 (4H, m), 3.79 (1H, dd, J = 9.5 and 6.0 Hz, OCH2), 4.37 (1H, d, J = 7.5 Hz, H-1), 4.52 and 4.81 (2H, ABq, J = 11.0 Hz, ArCH2), 4.56 and 4.62 (2H, ABq, J = 12.0 Hz, ArCH2), 4.71 and 4.96 (2H, ABq, J = 11.0 Hz, ArCH2), 4.78 and 4.92 (2H, ABq, J = 10.5 Hz, ArCH2), 7.13-7.18 (2H, m, ArH), 7.22-7.38 (18H, m, ArH); 13C NMR (500 MHz, CDCl3) δ 25.8×2, 26.5, 29.9, 30.1, 38.1, 69.0, 73.4, 74.8, 74.9, 75.0, 75.7×2, 78.0, 82.3, 84.7, 103.8, 127.6, 127.7, 127.8, 128.1, 128.2, 128.3, 128.4, 138.1, 138.2, 138.5, 138.6; HRMS (ESI-TOF) m/z 659.3316 (659.3349 calcd for C41H46O6Na [M+Na]+).

S3
n-Octyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranoside (17α): Colorless syrup; Rf 0.45 (6/1 n-hexane/EtOAc); [α]$_D^{33}$ +37.6° (c 1.10, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 0.83-0.92 (3H, m), 1.20-1.40 (10H, m), 1.58-1.67 (2H, m), 3.41 (1H, dt, J = 10.0 and 6.5 Hz, OCH$_3$), 3.55 (1H, dd, J = 9.5 and 4.0 Hz, H-2), 3.58-3.68 (1H, m), 3.62 (1H, dd, J = 10.0 and 4.0 Hz, H-6), 3.63 (1H, dd, J = 9.5 and 4.5 Hz, H-4), 3.72 (1H, dd, J = 10.0 and 4.0 Hz, H-6), 3.78 (1H, ddd, J = 10.0, 5.0 and 4.0 Hz, H-5), 3.98 (1H, dd, J = 9.5 and 9.5 Hz, H-3), 4.47 and 4.61 (2H, ABq, J = 12.0 Hz, ArCH$_2$), 4.47 and 4.83 (2H, ABq, J = 10.5 Hz, ArCH$_2$), 4.65 and 4.78 (2H, ABq, J = 12.5 Hz, ArCH$_2$), 4.75 (1H, d, J = 3.5 Hz, H-1), 4.81 and 4.99 (2H, d, J = 11.0 Hz, ArCH$_2$), 7.10-7.16 (2H, m, ArH), 7.22-7.39 (18H, m, ArH); 13C NMR (500 MHz, CDCl$_3$) δ 14.1, 22.7, 26.2, 29.2, 29.3, 29.4, 29.8, 31.8, 36.9, 70.2, 73.4, 74.8×2, 75.0, 75.7, 77.9, 82.3, 84.7, 103.6, 127.6×2, 127.7, 127.9, 128.0, 128.1, 128.3, 128.4×2, 138.2, 138.5, 138.6; HRMS (ESI-TOF) m/z 675.3634 (675.3662 calcd for C$_{42}$H$_{52}$O$_6$Na [M+Na]$^+$).

n-Octyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (17β): White solid; Rf 0.50 (6/1 n-hexane/EtOAc); [α]$_D^{33}$ +7.0° (c 0.46, CHCl$_3$); mp 33.5-34.0 °C; 1H NMR (500 MHz, CDCl$_3$) δ 0.82-0.93 (3H, m), 1.19-1.46 (10H, m), 1.58-1.74 (2H, m), 3.44 (1H, dd, J = 9.0 and 7.5 Hz, H-2), 3.42-3.55 (2H, m), 3.57 (1H, dd, J = 9.0 and 9.0 Hz, H-3), 3.63-3.71 (1H, m), 3.64 (1H, dd, J = 9.0 and 9.0 Hz, H-4), 3.75 (1H, dd, J = 10.5 and 2.0 Hz, H-6), 3.96 (1H, dt, J = 9.5 and 6.0 Hz, OCH$_3$), 4.38 (1H, d, J = 8.0 Hz, H-1), 4.52 and 4.81 (2H, ABq, J = 10.5 Hz, ArCH$_2$), 4.56 and 4.61 (2H, ABq, J = 12.0 Hz, ArCH$_2$), 4.71 and 4.96 (2H, ABq, J = 11.5 Hz, ArCH$_2$), 4.78 and 4.93 (2H, ABq, J = 11.0 Hz, ArCH$_2$), 7.13-7.18 (18H, m, ArH), 7.23-7.38 (18H, m, ArH); 13C NMR (500 MHz, CDCl$_3$) δ 14.1, 22.7, 26.2, 29.3, 29.4, 29.8, 31.8, 36.9, 70.2, 73.4, 74.8×2, 75.0, 75.7, 77.9, 82.3, 84.7, 103.6, 127.6×2, 127.7, 127.9, 128.0, 128.1, 128.3, 128.4×2, 138.2, 138.5, 138.6; HRMS (ESI-TOF) m/z 675.3640 (675.3662 calcd for C$_{42}$H$_{52}$O$_6$Na [M+Na]$^+$).
Isopropyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranoside (18α): Colorless syrup; Rf 0.60 (60/1 chloroform/EtOAc); \([\alpha]^{27}_D +37.2^° (c 1.38, CHCl_3); ^1H NMR (500 MHz, CDCl_3) \delta 1.17 and 1.22 (each 3H, d, J = 6.0 Hz, CH_3), 3.55 (1H, dd, J = 10.0 and 3.5 Hz, H-2), 3.61 (1H, dd, J = 10.0 and 2.0 Hz, H-6), 3.64 (1H, dd, J = 9.8 and 8.5 Hz, H-4), 3.73 (1H, dd, J = 10.5 and 3.5 Hz, H-6), 3.84 (1H, ddd, J = 10.0, 3.5 and 1.5 Hz, H-5), 3.89 (1H, qq, J = 6.0 Hz, OCH), 3.99 (1H, dd, J = 9.0 and 9.0 Hz, H-3), 4.46 and 4.61 (2H, ABq, J = 12.0 Hz, ArCH_2), 4.47 and 4.83 (2H, ABq, J = 10.5 Hz, ArCH_2), 4.65 and 4.77 (2H, ABq, J = 12.0 Hz, ArCH_2), 4.81 and 5.00 (2H, ABq, J = 10.5 Hz, ArCH_2), 7.10-7.16 (2H, m, ArH), 7.22-7.41 (18H, m, ArH); \(^{13}C\) NMR (500 MHz, CDCl_3) \delta 21.1, 23.2, 68.5, 69.0, 70.0, 73.1, 73.4, 75.1, 75.7, 77.9, 79.9, 82.1, 94.8, 127.5, 127.6, 127.7, 127.8, 127.9x2, 128.0, 128.2, 128.3, 128.4x2, 138.0, 138.2, 138.3, 139.0; HRMS (ESI-TOF) 605.2849 (605.2879 calcd for C_{37}H_{42}O_6Na [M+Na]^+).

Isopropyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (18β): White solid; Rf 0.46 (5/1 n-hexane/EtOAc); \([\alpha]^{27}_D +10.3^° (c 0.64, CHCl_3); mp 109.5-110.5 °C; ^1H NMR (500 MHz, CDCl_3) \delta 1.24 and 1.32 (each 3H, d, J = 6.0 Hz, CH_3), 3.43 (1H, dd, J = 9.0 and 7.5 Hz, H-4), 3.44 (1H, ddd, J = 9.0, 4.0 and 2.0 Hz, H-5), 3.54 (1H, dd, J = 9.0 and 9.0 Hz, H-3), 3.63 (1H, dd, J = 9.0 and 7.5 Hz, H-2), 3.65 (1H, dd, J = 10.0 and 4.0 Hz, H-6), 3.74 (1H, dd, J = 11.0 and 2.0 Hz, H-6), 4.02 (1H, qq, J = 6.0 Hz, OCH), 4.46 (1H, d, J = 7.5 Hz, H-1), 4.53 and 4.82 (2H, ABq, J = 11.0 Hz, ArCH_2), 4.58 and 4.61(2H, ABq, J = 12.5 Hz, ArCH_2), 4.70 and 4.97 (2H, ABq, J = 11.0 Hz, ArCH_2), 4.78 and 4.92 (2H, ABq, J = 11.0 Hz, ArCH_2), 7.14-7.19 (2H, m, ArH), 7.23-7.39 (18H, m, ArH); \(^{13}C\) NMR (500 MHz, CDCl_3) \delta 22.2, 23.7, 69.2, 72.4, 73.4, 74.8, 75.0, 75.7, 78.0, 82.3, 84.8, 102.2, 127.5, 127.6x2, 127.7x2, 127.9, 128.0, 128.2, 128.3, 128.4, 138.1, 138.3, 138.5, 138.7; HRMS (ESI-TOF) 605.2907 (605.2879 calcd for C_{37}H_{42}O_6Na [M+Na]^+).
Cyclohexyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranoside (19α)\(^1\): Colorless syrup; \(R_f\) 0.64 (60/1 chloroform/EtOAc); \([\alpha]^{27}_D\) +51.0° (c 1.71, CHCl\(_3\)); \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 1.12-1.60 (6H, m), 1.69-1.96 (4H, m), 3.51-3.68 (1H, m), 3.55 (1H, dd, \(J = 10.0\) and 3.5 Hz, H-2), 3.62 (1H, dd, \(J = 11.0\) and 2.0 Hz, H-6), 3.63 (1H, dd, \(J = 10.0\) and 9.5 Hz, H-4), 3.74 (1H, dd, \(J = 10.5\) and 4.0 Hz, H-5), 3.88 (1H, ddd, \(J = 10.0\) and 9.0 Hz, H-3), 4.46 and 4.61 (2H, ABq, \(J = 12.0\) Hz, ArCH\(_2\)), 4.46 and 4.83 (2H, ABq, \(J = 10.5\) Hz, ArCH\(_2\)), 4.66 and 4.74 (2H, ABq, \(J = 12.0\) Hz, ArCH\(_2\)), 4.81 and 5.00 (2H, ABq, \(J = 10.5\) Hz, ArCH\(_2\)), 4.95 (1H, d, \(J = 3.5\) Hz, H-1), 7.11-7.16 (2H, m, ArH), 7.22-7.38 (18H, m, ArH); \(^13\)C NMR (500 MHz, CDCl\(_3\)) δ 24.1, 24.4, 25.6, 31.4, 33.3, 68.6, 70.0, 72.9, 73.4, 75.1, 75.3, 75.6, 77.3, 77.9, 80.0, 82.1, 94.7, 127.5, 127.6, 127.7, 127.8×2, 127.9, 128.0, 128.1, 128.3×2, 138.0, 138.2, 138.3, 139.0; HRMS (ESI-TOF) 645.3193 (645.3192 calcd for C\(_{40}\)H\(_{46}\)O\(_6\)Na \([M+Na]^+\)).

Cyclohexyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (19β)\(^1\): White solid; \(R_f\) 0.48 (60/1 chloroform/EtOAc); \([\alpha]^{27}_D\) +8.7° (c 0.90, CHCl\(_3\)); mp 104-106 °C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 1.19-1.60 (6H, m), 1.70-1.81 (2H, m), 1.90-2.09 (2H, m), 3.44 (1H, dd, \(J = 9.5\) and 9.5 Hz, H-3), 3.45 (1H, ddd, \(J = 9.0, 5.0\) and 1.5 Hz, H-5), 3.51-3.79 (2H, m), 3.62 (1H, dd, \(J = 9.0\) and 8.0 Hz, H-2), 3.75 (1H, dd, \(J = 11.0\) and 2.0 Hz, H-6), 4.50 (1H, d, \(J = 8.0\) Hz, H-1), 4.54 and 4.82 (2H, ABq, \(J = 11.5\) Hz, ArCH\(_2\)), 4.56 and 4.61 (2H, ABq, \(J = 12.5\) Hz, ArCH\(_2\)), 4.71 and 4.99 (2H, ABq, \(J = 10.5\) Hz, ArCH\(_2\)), 4.78 and 4.92 (2H, ABq, \(J = 10.5\) Hz, ArCH\(_2\)), 7.15-7.20 (2H, m, ArH), 7.24-7.38 (18H, m, ArH); \(^13\)C NMR (500 MHz, CDCl\(_3\)) δ 24.0, 24.1, 25.6, 32.0, 33.8, 69.2, 73.4, 74.8×2, 75.0, 75.7, 77.8, 78.0, 82.3, 84.8, 101.9, 127.5×2, 127.6, 127.7×2, 127.9, 128.0, 128.2, 128.3×2, 128.4, 138.1, 138.3, 138.5, 138.7; HRMS (ESI-TOF) \(m/z\) 645.3163 (645.3192 calcd for C\(_{38}\)H\(_{44}\)O\(_6\)Na \([M+Na]^+\)).
2-Phenylethyl 2,3,4,6-tetra-O-benzyl-α-D-glucopyranoside (20α): Colorless syrup; R$_f$ 0.50 (3/1 n-hexane/EtOAc); [α]25D +45.3° (c 1.26, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 2.88-3.00 (2H, m), 3.50-3.71 (6H, m), 3.78-3.83 (1H, m), 3.97 (1H, dd, $J = 9.5$ and 9.5 Hz, H-3), 4.43 and 4.57 (2H, ABq, $J = 12.5$ Hz, ArCH$_2$), 4.45 and 4.81 (2H, ABq, $J = 11.0$ Hz, ArCH$_2$), 4.62 and 4.76 (2H, ABq, $J = 12.0$ Hz, ArCH$_2$), 4.77 (1H, d, $J = 3.5$ Hz, H-1), 4.82 and 4.98 (2H, ABq, $J = 10.5$ Hz, ArCH$_2$), 7.10-7.16 (2H, m, ArH), 7.16-7.40 (23H, m, ArH); 13C NMR (500 MHz, CDCl$_3$) δ 36.0, 68.4, 68.7, 70.1, 73.2, 73.4, 74.9, 75.7, 77.6, 80.0, 82.0, 96.8, 126.3, 127.5, 127.6×2, 127.7, 127.8×2, 128.0×2, 128.3, 128.4×2, 129.0, 137.9, 138.3×2, 138.6, 138.8; HRMS (ESI-TOF) m/z 667.3035 (667.3036 calcd for C$_{42}$H$_{44}$O$_6$Na [M+Na]$^+$).

2-Phenylethyl 2,3,4,6-tetra-O-benzyl-β-D-glucopyranoside (20β): White solid; R$_f$ 0.55 (3/1 n-hexane/EtOAc); [α]25D +12.3° (c 1.16, CHCl$_3$); mp 65.0-66.5 °C; 1H NMR (500 MHz, CDCl$_3$) δ 2.93-3.03 (2H, t, $J = 7.0$ Hz, ArCH$_2$), 3.40-3.49 (2H, m), 3.55-3.82 (5H, m), 4.21 (1H, m), 4.41 (1H, d, $J = 8.0$ Hz, H-1), 4.52 and 4.81 (2H, ABq, $J = 11.0$ Hz, ArCH$_2$), 4.54 and 4.61 (2H, ABq, $J = 12.5$ Hz, ArCH$_2$), 4.60 and 4.75 (2H, ABq, $J = 11.5$ Hz, ArCH$_2$), 4.77 and 4.91 (2H, ABq, $J = 11.0$ Hz, ArCH$_2$), 7.12-7.39 (25H, m, ArH); 13C NMR (500 MHz, CDCl$_3$) δ 36.3, 68.9, 70.6, 73.5, 74.7, 74.8, 75.0, 75.7, 77.8, 82.2, 84.6, 103.6, 126.3, 127.6×2, 127.7, 127.8×2, 128.0, 128.1, 128.3×2, 128.4, 128.9, 138.1×2, 138.4, 138.6, 138.7; HRMS (ESI-TOF) m/z 667.3055 (667.3036 calcd for C$_{42}$H$_{44}$O$_6$Na [M+Na]$^+$).
Methyl 2,3,4-tri-O-benzyl-6-O-(2',3',4',6'-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside (21α): White solid; Rf 0.35 (3/1 n-hexane/EtOAc); [α]D28 +57.1° (c 0.91, CHCl3); mp 102.5-103.5 °C; 1H NMR (500 MHz, CDCl3) δ 3.35 (3H, s, OMe), 3.44 (1H, dd, J = 9.5 and 3.5 Hz), 3.49-3.86 (9H, m), 3.90-4.03 (2H, m), 4.37-4.48 (2H, m), 4.53-4.67 (5H, m), 4.55 (1H, d, J = 3.5 Hz, H-1), 4.71 (1H, ABq, J = 12.0 Hz, ArCH2), 4.77 (1H, ABq, J = 11.0 Hz, ArCH2), 4.81 (1H, ABq, J = 10.5 Hz, ArCH2), 4.82 (1H, ABq, J = 11.0 Hz, ArCH2), 4.92 (1H, ABq, J = 11.5 Hz, ArCH2), 4.93 (1H, ABq, J = 11.5 Hz, ArCH2), 4.96 (1H, ABq, J = 11.5 Hz, ArCH2), 4.98 (1H, d, J = 4.0 Hz, H-1'), 7.08-7.13 (2H, m, ArH), 7.20-7.36 (33H, m, ArH); 13C NMR (500 MHz, CDCl3) δ 55.1, 66.0, 68.4, 70.2, 70.3, 72.4, 73.4×2, 74.9×2, 75.5, 75.7, 77.6, 77.7, 79.9, 80.1, 81.7, 82.1, 97.2, 97.9, 127.5, 127.6, 127.7, 127.9×2, 128.0×2, 128.3×3, 128.4, 138.0, 138.2, 138.4×2, 138.8; HRMS (ESI-TOF) m/z 1009.4470 (1009.4503 calcd for C62H66O11Na [M+Na]+).

Methyl 2,3,4-tri-O-benzyl-6-O-(2',3',4',6'-tetra-O-benzyl-β-D-glucopyranosyl)-α-D-glucopyranoside (21β): White solid; Rf 0.35 (3/1 n-hexane/EtOAc); [α]D27 +17.4° (c 1.13, CHCl3); mp 133-134 °C; 1H NMR (500 MHz, CDCl3) δ 3.32 (3H, s, OMe), 3.40-3.75 (9H, m), 3.82 (1H, dd, J = 10.5 and 3.0 Hz), 3.99 (1H, dd, J = 9.5 and 9.5 Hz, H-3), 4.18 (1H, dd, J = 11.0 and 2.0 Hz), 4.34 (1H, d, J = 8.0 Hz, H-1'), 4.47-4.60 (5H, m), 4.61 (1H, d, J = 3.5 Hz, H-1), 4.65 (1H, ABq, J = 12.0 Hz, ArCH2), 4.71 (1H, ABq, J = 11.0 Hz, ArCH2), 4.74-4.82 (3H, m) 4.80 (1H, ABq, J = 11.0 Hz, ArCH2), 4.90 (1H, ABq, J = 10.5 Hz, ArCH2), 4.96 (1H, ABq, J = 11.0 Hz, ArCH2), 4.97 (1H, ABq, J = 11.5 Hz, ArCH2), 7.13-7.37 (35H, m, ArH); 13C NMR (500 MHz, CDCl3) δ 55.2, 68.5, 69.0, 69.8, 73.3, 73.4, 74.9, 75.0×2, 75.7×2, 77.9, 78.0, 79.8, 82.0×2, 84.8, 98.0, 103.8, 127.5, 127.6×2, 127.7, 127.9×3, 128.0×2, 128.2, 128.4×2, 128.5, 138.1×2, 138.2, 138.3×2, 138.6, 139.0; HRMS (ESI-TOF) m/z 1009.4460 (1009.4503 calcd for C62H66O11Na [M+Na]+).
Cyclohexylmethyl 2,3,4,6-tetra-O-benzyl-α-D-galactopyranoside (25α): Colorless syrup; R_f 0.67 (3/1 n-hexane/EtOAc); [α]_D^{28} +37.3° (c 0.49, CHCl_3); ^1H NMR (500 MHz, CDCl_3) δ 0.82-1.00 (2H, m), 1.08-1.34 (3H, m), 1.58-1.87 (6H, m), 3.21 (1H, dd, J = 9.5 and 6.0 Hz, OCH_2), 3.42 (1H, dd, J = 9.5 and 7.5 Hz, OCH_3), 3.48-3.55 (2H, m), 3.90-4.00 (3H, m), 4.03 (1H, dd, J = 9.5 and 4.0 Hz), 4.39 and 4.48 (2H, ABq, J = 12.0 Hz, ArCH_2), 4.57 and 4.94 (2H, ABq, J = 11.5 Hz, ArCH_2), 4.66 and 4.81 (2H, ABq, J = 12.5 Hz, ArCH_2), 4.73 and 4.85 (2H, ABq, J = 12.0 Hz, ArCH_2), 4.79 (1H, d, J = 3.5 Hz, H-1), 7.21-7.42 (20H, m, ArH); ^13C NMR (500 MHz, CDCl_3) δ 25.7, 25.8, 26.6, 30.0, 30.2, 37.5, 69.1, 69.2, 73.2, 73.4, 73.8, 74.1, 75.1, 79.1, 97.6, 127.7, 127.9, 128.2x2, 128.3x2, 138.1, 138.7, 138.8, 138.9; HRMS (ESI-TOF) m/z 659.3348 (659.3349 calcd for C_{41}H_{48}O_6Na [M+Na]^+).

Cyclohexylmethyl 2,3,4,6-tetra-O-benzyl-β-D-galactopyranoside (25β): White solid; R_f 0.60 (3/1 n-hexane/EtOAc); [α]_D^{28} –7.2° (c 1.45, CHCl_3); mp 101.8-102.8 °C; ^1H NMR (500 MHz, CDCl_3) δ 0.86-1.04 (2H, m), 1.06-1.33 (3H, m), 1.58-1.90 (6H, m), 3.27 (1H, dd, J = 9.5 and 7.5 Hz, OCH_2), 3.47-3.62 (4H, m), 3.75 (1H, dd, J = 9.0 and 5.0 Hz, OCH_2), 3.80 (1H, dd, J = 10.0 and 7.5 Hz, H-2), 3.88 (1H, br d, J = 2.5 Hz, H-4), 4.32 (1H, d, J = 7.5 Hz, H-1), 4.40 and 4.45 (2H, ABq, J = 11.5 Hz, ArCH_2), 4.62 and 4.93 (2H, ABq, J = 11.5 Hz, ArCH_2), 4.70 and 4.76 (2H, ABq, J = 12.0 Hz, ArCH_2), 4.75 and 4.93 (2H, ABq, J = 11.5 Hz, ArCH_2), 7.23-7.38 (20H, m, ArH); ^13C NMR (500 MHz, CDCl_3) δ 25.8x2, 29.8, 30.2, 68.9, 73.1, 73.4, 73.5, 74.4, 75.2, 75.6, 79.6, 82.3, 104.2, 127.5, 127.7, 127.9, 128.1, 128.2, 128.3x2, 128.4, 137.9, 138.6, 138.7x2; HRMS (ESI-TOF) m/z 659.3322 (659.3349 calcd for C_{41}H_{48}O_6Na [M+Na]^+).
Cyclohexylmethyl 2,3,4,6-tetra-O-benzyl-α-D-mannopyranoside (26α): Colorless syrup; Rf 0.60 (4/1 n-hexane/EtOAc); [α]D25 +33.3º (c 0.56, CHCl3); 1H NMR (500 MHz, CDCl3) δ 0.80-1.74 (11H, m), 3.15 (1H, dd, J = 9.5 and 6.0 Hz, OCH2), 3.45 (1H, dd, J = 9.0 and 7.0 Hz, OCH2), 3.68-3.81 (4H, m), 3.86-4.01 (2H, m), 4.48-4.79 (7H, m, ArCH2), 4.82 (1H, d, J = 1.5 Hz, H-1), 4.87 (1H, ABq, J = 11.0 Hz, ArCH2), 7.14-7.39 (20H, m, ArH); 13C NMR (500 MHz, CDCl3) δ 25.7, 25.8, 26.5, 29.8, 30.0, 37.8, 69.3, 71.8, 72.2, 72.5, 73.1, 73.3, 74.9, 75.0, 75.2, 80.3, 97.9, 127.4, 127.5, 127.6, 127.7×2, 127.8, 128.1, 128.2, 128.3×2, 138.4, 138.5, 138.6; HRMS (ESI-TOF) m/z 659.3326 (659.3349 calcd for C41H48O6Na [M+Na]+).

Cyclohexylmethyl 2,3,4,6-tetra-O-benzyl-β-D-mannopyranoside (26β): White solid; Rf 0.60 (4/1 n-hexane/EtOAc); [α]D25 −49.0º (c 0.92, CHCl3); mp 64.5-66.0 ºC; 1H NMR (500 MHz, CDCl3) δ 0.83-1.87 (11H, m), 3.20 (1H, dd, J = 9.0 and 6.5 Hz, OCH2), 3.44 (1H, ddd, J = 8.0, 6.5 and 4.0 Hz, H-5), 3.50 (1H, dd, J = 9.5 and 3.0 Hz, OCH2), 3.71-3.92 (5H, m), 4.35 (1H, br s, H-1), 4.43 and 4.50 (2H, ABq, J = 12.0 Hz, ArCH2), 4.53 and 4.91 (2H, ABq, J = 11.0 Hz, ArCH2), 4.60 and 4.63 (2H, ABq, J = 12.0 Hz, ArCH2), 4.87 and 5.00 (2H, ABq, J = 13.0 Hz, ArCH2), 7.16-7.49 (20H, m, ArH); 13C NMR (500 MHz, CDCl3) δ 25.9×2, 26.6, 29.9, 30.1, 38.1, 69.7, 71.3, 73.4, 73.7, 75.0, 75.1, 75.8, 75.9, 82.4, 102.0, 127.3, 127.4, 127.5, 127.6, 128.1, 128.3×2, 128.4, 138.2, 138.3, 138.5, 138.8; HRMS (ESI-TOF) m/z 659.3380 (659.3349 calcd for C41H48O6Na [M+Na]+).

S10
Cyclohexylmethyl 2-O-benzoyl-3,4,6-tri-O-benzyl-β-D-glucopyranoside (27β): White solid;
R_f 0.40 (4/1 n-hexane/EtOAc); [α]_D^26 +19.9° (c 1.50, CHCl_3); mp 83.0-84.0 °C;
1H NMR (500 MHz, CDCl_3) δ 0.69-0.84 (2H, m), 0.90-1.12 (3H, m), 1.40-1.63 (6H, m), 3.22 (1H, dd, J = 9.7 and 6.9 Hz, OCH_2), 3.52-3.58 (1H, m), 3.66-3.85 (3H, m), 3.78 (1H, dd, J = 9.0 and 2.0 Hz, H-4), 3.81 (1H, dd, J = 9.2 and 9.2 Hz, H-3), 4.47 (1H, d, J = 8.0 Hz, H-1), 4.58 and 4.82 (2H, ABq, J = 10.6 Hz, ArCH_2), 4.59 and 4.65 (2H, ABq, J = 12.3 Hz, ArCH_2), 4.67 and 4.74 (2H, ABq, J = 11.2 Hz, ArCH_2), 5.27 (1H, dd, J = 9.5 and 8.0 Hz, H-2), 7.08-8.06 (20H, m);
13C NMR (500 MHz, CDCl_3) δ 25.6, 26.4, 29.5, 29.6, 37.7, 68.8, 73.5, 73.9, 74.9, 75.0, 75.2, 75.5, 78.1, 82.7, 101.5, 127.6, 127.7, 127.8, 128.0×2, 128.2, 128.3×2, 128.4, 129.7, 130.1, 132.9, 137.8, 137.9, 138.1, 165.2; HRMS (ESI-TOF) m/z 673.3127 (673.3141 calcd for C_{41}H_{66}O_{7}Na [M+Na]^+).

References
^1H and ^{13}C NMR spectra
Figure S1 1H NMR spectrum of 9α

Figure S2 13C NMR spectrum of 9α
Figure S3 \(^1H \) NMR spectrum of \(9\beta \)

Figure S4 \(^{13}C \) NMR spectrum of \(9\beta \)
Figure S5 1H NMR spectrum of 17α

Figure S6 13C NMR spectrum of 17α
Figure S7 1H NMR spectrum of 17β

Figure S8 13C NMR spectrum of 17β
Figure S9 1H NMR spectrum of 18α

Figure S10 13C NMR spectrum of 18α
Figure S11 1H NMR spectrum of 18β

Figure S12 13C NMR spectrum of 18β
Figure S13 1H NMR spectrum of 19α

Figure S14 13C NMR spectrum of 19α
Figure S15 1H NMR spectrum of 19β

Figure S16 13C NMR spectrum of 19β
Figure S17 1H NMR spectrum of 20α

Figure S18 13C NMR spectrum of 20α
Figure S19 1H NMR spectrum of 20β

Figure S20 13C NMR spectrum of 20β
Figure S21 1H NMR spectrum of 21α

Figure S22 13C NMR spectrum of 21α
Figure S23 1H NMR spectrum of 21β

Figure S24 13C NMR spectrum of 21β
Figure S25 1H NMR spectrum of 25α

Figure S26 13C NMR spectrum of 25α
Figure S27 1H NMR spectrum of 25β

Figure S28 13C NMR spectrum of 25β
Figure S29 1H NMR spectrum of 26a

Figure S30 13C NMR spectrum of 26a
Figure S31 1H NMR spectrum of 26β

Figure S32 13C NMR spectrum of 26β
Figure S33 1H NMR spectrum of 27β

Figure S34 13C NMR spectrum of 27β
Figure S35 1H NMR spectrum of recovered 2 (500 MHz, CDCl$_3$)

Figure S36 13C NMR spectrum of recovered 2 (500 MHz, CDCl$_3$)
Figure S35 1H NMR spectrum of recovered 5 (500 MHz, acetone-d_6)

Figure S36 13C NMR spectrum of recovered 5 (500 MHz, acetone-d_6)