A Mild and Metal-free Oxy- and Amino-Fluorination for the Synthesis of Fluorinated Heterocycles

Dixit Parmar and Magnus Rueping*

Institute of Organic Chemistry
RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
Email: magnus.rueping@rwth-aachen.de

Supplementary Information

General information S2
Experimental procedures S3-11
1H NMR, 13C NMR and 19F NMR Spectra of new compounds S13-42
NOE Studies S43-44
General Information

All reagents were obtained from commercial suppliers unless otherwise stated. Organic solvents were routinely dried and/or distilled prior to use and stored over molecular sieves under argon. Solvents for chromatography were technical grade and distilled prior to use. Thin layer chromatography (TLC) was carried out on Merck aluminum support plates Silicagel 60 F$_{254}$. Visualization was achieved under a UV mineral light. Column chromatography was performed using silicagel Merck 60 (particle size 0.2-0.063 mm). Proton NMR (1H NMR) spectra were recorded on Varian 400 MHz and 600 MHz spectrometers at 400 and 600 MHz. Carbon NMR (13C) spectra were similarly recorded at 100 or 150 MHz, using a broadband decoupled mode. 19F measurements were performed at 376 and 282 MHz respectively on Varian 400 MHz and Mercury 300 MHz spectrometers. Proton and carbon NMR chemical shifts (δ) are reported in parts per million (ppm) relative to residual proton signals in CDCl$_3$ (δ = 7.26, 77.16). Fluorine NMR chemical shifts (δ) are reported in parts per million (ppm) relative to CFCl$_3$ (δ = 0.00). Coupling constants (J) are reported in Hertz (Hz) and refer to apparent multiplicities. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, qu: quintet, m: multiplet, br: broad. Mass spectra (EI-MS, 70 eV) were conducted on a Finnigan SSQ 7000 spectrometer. HRMS were recorded on a Thermo Scientific LTQ Orbitrap XL spectrometer. IR spectra were recorded on a Jasco FT/IR-420 spectrometer and are reported in terms of frequency of absorption (cm$^{-1}$). The diastereomeric ratios (dr) of the products were determined by integration of signal in the 1H-NMR. Chemical yields refer to pure isolated substances.
Experimental procedures

General procedure A: Fluoro-Cyclization

To a screw-cap test tube was added the substrate (1 equiv) and Selectfluor (1.1 equiv). The vessel was evacuated and refilled with a N₂ atmosphere 3 times before the addition of MeCN (1 mL/mmol). The reaction was stirred overnight at room temperature before being quenched with aqueous NH₄Cl. The aqueous layer was extracted with EtOAc (×3) and the combined organics were washed with brine, dried (Na₂SO₄) and concentrated in vacuo to yield the crude product. Purification by column chromatography on silica gel gave the title compound.

1-(Fluoromethyl)-1,3-diphenyl-1,3-dihydroisobenzofuran 2a

![Chemical structure of 2a]

As for general procedure A, reaction of phenyl(2-(1-phenylvinyl)phenyl)methanol (56 mg, 0.196 mmol, 1 equiv) and Selectfluor (83 mg, 0.23 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 20:1 hexane:EtOAc the title compound (54 mg, 0.178 mmol, 91%) as a colourless oil and as a 2:1 mixture of diastereoisomers; ν_max (neat)/cm⁻¹ 3035, 2859, 2329, 1600, 1489, 1454, 1272, 1132, 1075, 1011, 926, 888, 752; Characterized as a mixture of two diastereoisomers: δ_H (600 MHz, CDCl₃) 4.82-4.96 (4H, m, 2 × CH₂F), 6.15 (1H, s, CHAr from major dias.), 6.39 (1H, s, CHAr from minor dias.), 6.94-7.65 (28H, m, ArCH); δ_C (150 MHz, CDCl₃) 84.6, 86.2, 86.5 (d, J = 182.8, CH₂F from major dias.), 87.2 (d, J = 181.6, CH₂F from minor dias.), 89.8 (d, J = 18.8, CCH₂F from minor dias.), 89.8 (d, J = 19.1, CCH₂F from major dias.), 122.4, 122.8, 122.8, 126.1, 126.2, 127.8, 128.0, 128.1, 128.1, 128.2, 128.5, 128.6, 128.7, 128.7, 128.8, 140.2, 140.2, 140.3, 140.5, 140.5, 140.9, 140.9, 141.3, 141.4, 143.0, 143.5; δ_F (564 MHz, CDCl₃) -222.1 (t, J = 47.6, CH₂F from minor dias.), -220.4 (t, J = 47.8, CH₂F from major dias.); m/z (El) 271 (M-CH₂F, 100), 193 (32), 165 (23); HRMS for C₂₁H₁₇OFNa calculated for [M+Na]⁺: 327.11556, found 327.11548.

1-(Fluoromethyl)-1-phenyl-3-m-tolyl-1,3-dihydroisobenzofuran 2b

![Chemical structure of 2b]

As for general procedure A, reaction of (2-(1-phenylvinyl)phenyl)(m-tolyl)methanol (64 mg, 0.213 mmol, 1 equiv) and Selectfluor (83 mg, 0.23 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 20:1 hexane:EtOAc the title compound
(51 mg, 0.160 mmol, 75%) as a colourless oil and as a 2:1 mixture of diastereoisomers; \(n_{\text{max}} \) (neat)/cm\(^{-1}\) 3031, 2946, 2865, 1957, 1663, 1604, 1488, 1455, 1381, 1327, 1268, 1155, 1133, 1073, 1027, 933, 910, 884, 762, 729, 699, 651, 582, 502; Characterized as a mixture of two diastereoisomers: \(\delta_H \) (600 MHz, CDCl\(_3\)) 2.30 (3H, s, ArCH\(_3\) from minor dias.), 2.36 (3H, s, ArCH\(_3\) from minor dias.). 4.81-4.96 (4H, m, 2 × CH\(_2\)F), 6.11 (1H, s, CHAr from major dias.), 6.35 (1H, s, CHAr from minor dias.). 6.95-7.64 (26H, m, ArCH); \(\delta_C \) (150 MHz, CDCl\(_3\)) 21.5, 21.6, 84.6, 86.3, 86.5 (d, \(J = 183.0 \), CH\(_2\)F from major dias.), 87.2 (d, \(J = 181.5 \), CH\(_2\)F from minor dias.), 89.7 (d, \(J = 21.1 \), CCH\(_2\)F from minor dias.), 89.8 (d, \(J = 21.9 \), CCH\(_2\)F from major dias.), 122.4, 122.8, 122.8, 125.0, 125.2, 126.2, 126.2, 127.9, 128.1, 128.2, 128.5, 128.5 (×2), 128.6 (×2), 128.6, 128.7 (×2), 128.8, 128.9, 129.2, 129.4, 138.3, 138.5, 140.2, 140.3, 141.0, 141.3, 143.0, 143.5; \(\delta_F \) (564 MHz, CDCl\(_3\)) -222.2 (t, \(J = 47.6 \), CH\(_2\)F from minor dias.), -220.4 (t, \(J = 47.8 \), CH\(_2\)F from major dias.). \(m/z \) (ESI) 319 (M+Na, 24), 357 (100); HRMS for C\(_{22}\)H\(_{19}\)OFK calculated for [M+K]+: 357.10515, found 357.10501.

3-(4-bromophenyl)-1-(fluoromethyl)-1-phenyl-1,3-dihydroisobenzofuran 2c

As for general procedure A, reaction of 3-(4-bromophenyl)(2-(1-phenylvinyl)phenyl)methanol (60 mg, 0.164 mmol, 1 equiv) and Selectfluor (76 mg, 0.21 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 30:1 hexane:EtOAc the title compound (53 mg, 0.138 mmol, 84%) as a colourless oil and as a 2:1 mixture of diastereoisomers; \(n_{\text{max}} \) (neat)/cm\(^{-1}\) 3364, 3056, 1647, 1608, 1489, 1444, 1376, 1308, 1270, 1149, 1021, 905, 769, 705; Characterized as a mixture of two diastereoisomers: \(\delta_H \) (600 MHz, CDCl\(_3\)) 4.71-4.85 (4H, m, 2 × CH\(_2\)F), 6.02 (1H, s, CHAr from major dias.), 6.26 (1H, s, CHAr from minor dias.), 6.83-7.53 (26H, m, ArCH); \(\delta_C \) (150 MHz, CDCl\(_3\)) 83.9, 85.7, 86.3 (d, \(J = 183.0 \), CH\(_2\)F from major dias.), 87.2 (d, \(J = 181.8 \), CH\(_2\)F from minor dias.), 90.0 (d, \(J = 18.4 \), CCH\(_2\)F from minor dias.), 90.1 (d, \(J = 18.7 \), CCH\(_2\)F from major dias.), 122.5, 122.6, 122.7, 122.7, 122.9, 126.1, 126.1, 128.2, 128.3, 128.3, 128.7 (×2), 128.8, 128.9, 129.3, 129.8, 131.8, 131.9, 139.9, 139.9, 140.1, 140.4, 140.6, 140.7, 140.7, 142.5, 143.0; \(\delta_F \) (564 MHz, CDCl\(_3\)) -222.1 (t, \(J = 47.5 \), CH\(_2\)F from minor dias.), -220.1 (t, \(J = 47.8 \), CH\(_2\)F from major dias.). \(m/z \) (Cl) 349 (M-CH\(_2\)F, 100), 351 (M-CH\(_2\)F, 100), 270 (37).
3-(4-Bromophenyl)-1-(fluoromethyl)-1-(4-methoxyphenyl)-1,3-dihydroisobenzofuran 2d

As for general procedure A, reaction of (4-bromophenyl)(2-(1-(4-methoxyphenyl)vinyl)phenyl)methanol (75 mg, 0.190 mmol, 1 equiv) and Selectfluor (74 mg, 0.21 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 10:1 hexane:EtOAc the title compound (55 mg, 0.133 mmol, 70%) as a yellow oil and as a 2:1 mixture of diastereoisomers; \(\nu_{\text{max}} \) (neat)/cm\(^{-1} \) 3073, 2948, 2838, 2077, 1608, 1510, 1486, 1459, 1407, 1298, 1248, 1177, 1131, 1074, 1006, 906, 873, 826, 737, 679; Characterized as a mixture of two diastereoisomers: \(\delta_H \) (400 MHz, CDCl\(_3\)) 3.80 (3H, s, OCH\(_3\) from major dias.), 3.81 (3H, s, OCH\(_3\) from major dias.), 4.74-4.94 (4H, m, 2 \times CH\(_2\)F), 6.06 (1H, s, CHAr from major dias.), 6.31 (1H, s, CHAr from minor dias.), 6.89-7.53 (24H, m, ArCH); \(\delta_C \) (100 MHz, CDCl\(_3\)) 55.4, 55.4, 83.7, 85.4, 86.3 (d, \(J = 183.1 \), CH\(_2\)F from major dias.), 87.1 (d, \(J = 181.8 \), CH\(_2\)F from minor dias.), 89.8 (d, \(J = 18.9 \), CCH\(_2\)F from minor dias.), 89.9 (d, \(J = 19.2 \), CCH\(_2\)F from major dias.), 114.0 (\(\times 2 \)), 122.4, 122.5, 122.6, 122.6, 122.7, 123.0, 127.5 (\(\times 2 \)), 128.1, 128.3, 128.7, 128.9, 129.6 (\(\times 2 \)), 131.8, 131.9 (\(\times 2 \)), 140.3, 140.4, 140.5, 140.7, 143.0, 159.5, 159.6; \(\delta_F \) (376 MHz, CDCl\(_3\)) -221.7 (t, \(J = 47.6 \), CH\(_2\)F from minor dias.), -219.4 (t, \(J = 47.9 \), CH\(_2\)F from major dias.); \(m/z \) (Cl) 413 (M\(^+\), 5), 256 (100), 305 (61);

1-(Fluoromethyl)-1-(4-methoxyphenyl)-3-phenyl-1,3-dihydroisobenzofuran 2e

As for general procedure A, reaction of 3 (2-(1-(4-methoxyphenyl)vinyl)phenyl)(phenyl)methanol (64 mg, 0.203 mmol, 1 equiv) and Selectfluor (79 mg, 0.22 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 10:1 hexane:EtOAc the title compound (59 mg, 0.177 mmol, 87%) as a colourless oil and as a 1.5:1 mixture of diastereoisomers; \(\nu_{\text{max}} \) (neat)/cm\(^{-1} \) 3033, 2944, 2840, 1608, 1510, 1456, 1298, 1248, 1178, 1130, 1080, 1017, 933, 830, 754, 700; Characterized as a mixture of two diastereoisomers: \(\delta_H \) (600 MHz, CDCl\(_3\)) 3.79 (3H, s, OCH\(_3\) from major dias.), 3.80 (3H, s, OCH\(_3\) from major dias.), 4.78-4.93 (4H, m, 2 \times CH\(_2\)F), 6.11 (1H, s, CHAr from major dias.), 6.34 (1H, s, CHAr from minor dias.), 6.89-7.53 (26H, m, ArCH); \(\delta_C \) (150 MHz, CDCl\(_3\)) 55.4, 55.4, 84.4, 86.1, 86.4 (d, \(J = 183.0 \), CH\(_2\)F from major dias.), 87.1 (d, \(J = 181.6 \), CH\(_2\)F from minor dias.), 89.6 (d, \(J = 19.5 \), CCH\(_2\)F from major and minor dias.), 114.0 (\(\times 2 \)), 122.4, 122.7, 122.8, 122.9, 127.6 (\(\times 2 \)), 127.8, 127.9, 128.0, 128.1, 128.4, 128.5, 128.6, 128.6, 128.7, 128.7, 128.8 (\(\times 2 \)), 140.4, 140.7,
141.3, 141.6, 143.1, 143.5, 159.4, 159.5; \(\delta_f \) (564 MHz, CDCl\(_3\)) -222.7 (t, J = 47.6, CH\(_2\)F from minor diast.), -219.7 (t, J = 47.9, CH\(_2\)F from major diast.); \(m/z \) (Cl) 334 (M, 37), 224 (100), 254 (82), 299 (63), 316 (57), 163 (51).

3-Benzyl-1-(fluoromethyl)-1-phenyl-1,3-dihydroisobenzofuran 2f

As for general procedure A, reaction of 2-phenyl-1-(2-(1-phenylvinyl)phenyl)ethanol (59 mg, 0.196 mmol, 1 equiv) and Selectfluor (77 mg, 0.22 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 20:1 hexane:EtOAc the title compound (45 mg, 0.141 mmol, 72%) as a colourless oil and as a 2:1 mixture of diastereoisomers; \(\nu_{\text{max}} \) (neat)/cm\(^{-1}\) 3062, 3030, 2943, 2858, 1956, 1810, 1601, 1494, 1454, 1380, 1276, 1133, 1032, 945, 913, 753, 699, 650, 542; Characterized as a mixture of two diastereoisomers: \(\delta_i \) (600 MHz, CDCl\(_3\)) 3.02 (1H, dd, J = 13.9, 6.1, CH\(_2\)H\(_3\)Ph from minor diast.), 3.16 (1H, dd, J = 14.0, 5.8, CH\(_2\)H\(_3\)Ph from major diast.), 3.21 (1H, dd, J = 13.9, 7.2, CH\(_2\)H\(_3\)Ph from minor diast.), 3.30 (1H, dd, J = 14.0, 6.9, CH\(_2\)H\(_3\)Ph from major diast.), 4.61-4.82 (4H, m, 2 \times CH\(_2\)F), 5.62 (1H, t, J = 6.3, CHCH\(_2\)Ph from major diast.), 5.68 (1H, t, J = 6.7, CHCH\(_2\)Ph from minor diast.), 6.95-7.56 (28H, m, ArCH); \(\delta_c \) (150 MHz, CDCl\(_3\)) 43.1, 43.6, 83.5, 84.4, 86.7 (d, J = 181.4, CH\(_2\)F from major diast.), 87.0 (d, J = 182.0, CH\(_2\)F from minor diast.), 89.2 (d, J = 19.1, CCH\(_2\)F from major diast.), 122.0, 122.1, 122.7, 123.0, 125.9, 126.1, 126.6, 126.7, 127.9, 128.0 (x2), 128.3, 128.4 (x2), 128.4, 128.5, 128.6, 129.8, 130.0 (x2), 137.7, 137.8, 140.5, 140.9, 141.3, 141.4, 142.3, 142.5; \(\delta_f \) (564 MHz, CDCl\(_3\)) -222.1 (t, J = 47.6, CH\(_2\)F from minor diast.), -221.8 (t, J = 47.7, CH\(_2\)F from major diast.); \(m/z \) (ESI) 319 (M+H, 4), 357 (100), 341 (76), 208 (44), 336 (28); HRMS for \(C_{22}H_{19}OFNa \) calculated for [M+Na]\(^+\): 341.13121, found 341.13126.

1-(Fluoromethyl)-3-isobutyl-1-phenyl-1,3-dihydroisobenzofuran 2g

As for general procedure A, reaction of 3-methyl-1-(2-(1-phenylvinyl)phenyl)butan-1-ol (75 mg, 0.282 mmol, 1 equiv) and Selectfluor (110 mg, 0.31 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 20:1 hexane:EtOAc the title compound (62 mg, 0.218 mmol, 77%) as a colourless oil and as a 2:1 mixture of diastereoisomers; \(\nu_{\text{max}} \) (neat)/cm\(^{-1}\) 3063, 3032, 2955, 2871, 1601, 1459, 1370, 1333, 1274, 1132, 1061, 1033, 983, 751, 699, 649,
Characterized as a mixture of two diastereoisomers: δH (600 MHz, CDCl₃) 1.02-1.10 (12H, m, 4 × CH₂), 1.59-1.69 (2H, m, CH₂ from minor diast.), 1.72-1.81 (2H, m, CH₂ from minor diast.), 2.10-2.19 (2H, m, 4 × CH), 4.68-4.85 (4H, m, 2 × CH₂F), 5.36 (1H, dd, J = 9.1, 3.5, CHAr from major diast.), 5.49 (1H, dd, J = 9.5, 3.7, CHAr from minor diast.), 7.17-7.62 (18H, m, ArCH); δC (150 MHz, CDCl₃) 22.2, 22.3, 23.8, 23.8, 25.3 (×2), 46.0, 46.7, 81.0, 82.0, 86.8 (d, J = 181.8, CH₂F from major diast.), 87.0 (d, J = 181.8, CH₂F from minor diast.), 88.9 (d, J = 19.2, CCH₂F from minor diast.), 89.0 (d, J = 18.0, CCH₂F from major diast.), 121.4, 121.5, 122.6, 122.9, 126.0, 127.7, 127.7, 127.9, 128.4, 128.5, 128.5, 140.4, 140.8, 141.2, 141.9, 141.9, 143.8, 143.8, 143.9, 143.9; δF (564 MHz, CDCl₃) -222.0 (t, J = 47.7, CH₂F from minor diast.), -221.6 (t, J = 47.7, CH₂F from major diast.); m/z (EI) 251 (M-CH₂F, 100), 194 (30), 227 (28); HRMS for C₁₉H₂₁OFNa calculated for [M+Na⁺]: 307.14686, found 307.14618.

1,1-Diethyl-3-(fluoromethyl)-3-(4-methoxyphenyl)-1,3-dihydroisobenzofuran 2h

As for general procedure A, reaction of 3-(2-(1-(4-methoxyphenyl)vinyl)phenyl)pentan-3-ol (63 mg, 0.213 mmol, 1 equiv) and Selectfluor (83 mg, 0.23 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 30:1 hexane:EtOAc the title compound (55 mg, 0.175 mmol, 82%) as a colourless oil and a mixture of rotamers; νmax (neat)/cm⁻¹ 2959, 2873, 2838, 2075, 1609, 1509, 1457, 1370, 1299, 1248, 1175, 1081, 1027, 960, 912, 829, 758, 709; Characterized as a mixture of two rotamers: δH (400 MHz, CDCl₃) 0.77 (3H, t, J = 7.4, CH₂CH₃), 0.91 (3H, t, J = 7.4, CH₂CH₃), 1.17-1.96 (4H, m, 2 × CH₂CH₃), 3.79 (3H, s, OCH₃ from 1 rotamer), 3.80 (3H, s, OCH₃ from 1 rotamer), 4.55-4.77 (2H, m, CH₂F), 6.86-7.61 (8H, m, ArCH); δC (100 MHz, CDCl₃) 14.5, 14.6, 17.3, 17.6, 27.6, 28.7, 44.4, 44.7, 55.2 (×2), 87.1 (d, J = 182.6, CH₂F for 1 rotamer), 87.3 (d, J = 183.1, CH₂F for 1 rotamer), 87.7 (d, J = 19.4, CCH₂F from 1 rotamer), 88.1 (d, J = 18.2, CCH₂F from 1 rotamer), 113.5 (×2), 121.1, 121.3, 122.8, 123.1, 127.4 (×2), 127.5 (×2), 128.4 (×2), 133.6, 134.2, 139.2, 139.9, 146.7, 147.4, 159.0, 159.1; δF (376 MHz, CDCl₃) -219.8 (t, J = 47.9, CH₂F from 1 rotamer), -218.8 (t, J = 48.0, CH₂F from 1 rotamer); m/z (Cl) 314 (M⁺, 5), 280 (100);
1-(Fluoromethyl)-1-phenyl-1,3-dihydroisobenzofuran 2i

As for general procedure A, reaction of (2-(1-phenylvinyl)phenyl)methanol (45 mg, 0.214 mmol, 1 equiv) and Selectfluor (84 mg, 0.24 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 10:1 hexane:EtOAc the title compound (38 mg, 0.167 mmol, 78%) as a colourless oil; ν_{max} (neat)/cm^{-1} 3077, 3030, 2944, 2870, 2320, 2096, 1598, 1457, 1358, 1255, 1205, 1132, 1074, 1019, 919, 872, 755, 729, 695; δ_{H} (600 MHz, CDCl₃) 4.76 (1H, dd, J = 23.4, 9.8, CH₃H₂F), 4.84 (1H, dd, J = 22.6, 9.8, CH₃H₂F), 5.21 (1H, d, J = 12.2, CH₃H₂O), 5.27 (1H, d, J = 12.2, CH₃H₂O), 6.62 (7H, m, Ar-CH), 7.55 (2H, d, J = 7.3, Ar-CH); δ_{C} (150 MHz, CDCl₃) 72.6, 86.5 (d, J = 181.5, CH₂F), 90.0 (d, J = 19.0, CH₂F), 121.4, 122.7, 125.9, 127.7, 128.1, 128.5, 128.6, 139.9, 140.7 (d, J = 2.8, ArC), 140.4 (d, J = 3.0, ArC); δ_{F} (376 MHz, CDCl₃) -222.7 (t, J = 47.6, CH₂F); m/z (EI) 251 (M+Na, 5), 413 (100), 394 (18); HRMS for C₁₅H₁₃OFNa calculated for [M+Na]^+: 251.08426, found 251.08295.

1-(Fluoromethyl)-1,3-diphenyl-2-tosylisoidinoline 4a

As for general procedure A, reaction of 4-methyl-N-(phenyl(2-(1-phenylvinyl)phenyl)methyl)benzenesulfonamide (74 mg, 0.169 mmol, 1 equiv) and Selectfluor (66 mg, 0.19 mmol, 1.1 equiv) gave after column chromatography on silica gel eluting with 9:1 hexane:EtOAc the title compound (59 mg, 0.129 mmol, 77%) as a colourless oil and as a 1.2:1 mixture of diastereoisomers; ν_{max} (neat)/cm^{-1} 3038, 2918, 1598, 1489, 1455, 1339, 1157, 1091, 1016, 912, 813, 737, 681; Characterized as a mixture of two diastereoisomers: δ_{H} (600 MHz, CDCl₃) 2.18 (3H, s, CH₃), 2.28 (3H, s, CH₃), 5.54-5.80 (4H, m, 2 × CH₂F), 6.00 (1H, s, CHNTs), 6.22 (1H, s, CHNTs), 6.24 (2H, d, J = 8.3, 2 × Ar-CH from Ts), 6.61 (2H, d, J = 8.3, 2 × Ar-CH from Ts), 6.79-6.94 (6H, m, Ar-CH), 7.02-7.12 (8H, m, Ar-CH), 7.20-7.26 (10H, m, Ar-CH), 7.34-7.47 (8H, m, Ar-CH); δ_{C} (150 MHz, CDCl₃) 21.4, 21.5, 70.1, 70.3, 76.1 (d, J = 18.9, CCH₂F from major diast.), 76.2 (d, J = 19.0, CCH₂F from minor diast.), 85.7 (d, J = 177.2, CH₂F from minor diast.), 86.5 (d, J = 176.6, CH₂F from major diast.), 123.4, 123.4, 123.4, 123.5, 123.8, 123.9, 126.8, 127.5, 128.0, 128.1 (×2), 128.1, 128.2, 128.3, 128.3, 128.4, 128.4, 128.5, 128.8, 128.8, 129.0, 129.9, 136.8, 138.8, 139.4, 139.6, 139.6, 140.1, 140.5, 141.5, 141.5, 141.7, 141.9, 142.1, 142.6; δ_{F} (564 MHz, CDCl₃) -223.3 (t, J = 46.6, CH₂F from major diast.), -221.9 (t, J = 46.9, CH₂F from minor diast.); m/z (EI) 424 (M-CH₂F, 42), 154 (100), 91 (95), 217 (59).
1-(Fluoromethyl)-3-phenyl-1-o-tolyl-2-tosylisoindoline 4b

As for general procedure A, reaction of 4-methyl-N-(phenyl(2-(1-o-tolylvinyl)phenyl)methyl)benzenesulfonamide (43 mg, 0.0948 mmol, 1 equiv) and Selectfluor (40 mg, 0.11 mmol, 1.2 equiv) gave after column chromatography on silica gel eluting with 8:1 hexane:EtOAc the title compound (36 mg, 0.076 mmol, 81%) as a yellow oil and as a 1:2:1 mixture of diastereoisomers; ν_{max} (neat)/cm$^{-1}$ 3065, 3034, 2925, 1598, 1491, 1457, 1342, 1287, 1159, 1091, 1019, 910, 871, 812, 732, 700, 670; Characterized as a mixture of two diastereoisomers: δ_h (600 MHz, CDCl$_3$) 0.97 (3H, s, CH$_3$), 1.61 (3H, s, CH$_3$), 2.21 (3H, s, CH$_3$), 2.32 (3H, s, CH$_3$), 5.28-5.83 (4H, m, 2 × CH$_2$F), 5.98 (1H, s, CHNTs), 6.20 (2H, d, J = 8.3, 2 × Ar-CH from Ts), 6.33 (1H, s, CHNTs), 6.66 (2H, d, J = 8.0, 2 × Ar-CH from Ts), 6.74-7.01 (10H, m, Ar-CH), 6.20-7.38 (16H, m, Ar-CH), 7.50 (2H, d, J = 7.2, 2 × Ar-CH), 7.65-7.70 (2H, m, Ar-CH); δ_c (150 MHz, CDCl$_3$) 20.1, 21.5, 21.6, 22.2, 70.2, 70.2, 75.8 (d, J = 17.4, CCH$_2$F from major diast.), 76.0 (d, J = 19.8, CCH$_2$F from minor diast.), 87.0 (d, J = 178.2, CH$_2$F from major diast.), 87.4 (d, J = 180.5, CH$_2$F from minor diast.), 122.9, 123.2, 123.5, 123.5, 123.8, 125.8, 125.9, 126.6, 127.5, 128.1, 128.2, 128.2, 128.3, 128.4, 128.4, 128.6, 128.7, 128.7, 128.8, 128.9, 129.4, 129.8, 131.7, 131.8, 132.7, 133.0, 134.8, 135.6, 136.4, 137.9, 138.6, 138.9, 139.1, 140.5, 141.0, 141.4, 142.2, 142.3, 142.8; δ_f (564 MHz, CDCl$_3$) -220.4 (t, J = 46.5, CH$_2$F from 1 diastereoisomer), -215.4 (t, J = 47.0, CH$_2$F from 1 diastereoisomer); m/z (Cl) 472 (M+H, 5), 316 (100), 452 (61), 296 (49); HRMS for C$_{29}$H$_{26}$O$_2$NFNaS calculated for [M+Na]$^+$: 494.15605, found 494.15601.

1-(Fluoromethyl)-3-phenyl-1-p-tolyl-2-tosylisoindoline 4c

As for general procedure A, reaction of 4-methyl-N-(phenyl(2-(1-p-tolylvinyl)phenyl)methyl)benzenesulfonamide (36 mg, 0.0795 mmol, 1 equiv) and Selectfluor (34 mg, 0.10 mmol, 1.2 equiv) gave after column chromatography on silica gel eluting with 8:1 hexane:EtOAc the title compound (30 mg, 0.0637 mmol, 80%) as a yellow oil and as a 1:2:1 mixture of diastereoisomers; ν_{max} (neat)/cm$^{-1}$ 3033, 2920, 1599, 1457, 1339, 1157, 1091, 1022, 912, 814, 732, 699; Characterized as a mixture of two diastereoisomers: δ_h (600 MHz, CDCl$_3$) 2.19 (3H, s, CH$_3$), 2.28 (3H, s, CH$_3$), 2.33 (3H, s, CH$_3$), 2.42 (3H, s, CH$_3$), 5.52-5.77 (4H, m, 2 × CH$_2$F), 6.02 (1H, s, CHNTs), 6.20 (1H, s, CHNTs), 6.29 (2H, d, J = 8.3, 2 × Ar-CH from Ts),
6.62 (2H, d, J = 8.3, 2 × Ar-CH from Ts), 6.78-7.03 (12H, m, Ar-CH), 7.10-7.35 (18H, m, Ar-CH); δ_C (150 MHz, CDCl₃) 21.3, 21.3, 21.4, 21.5, 70.1, 70.3, 76.1 (d, J = 18.9, CH₂F from major diast.), 76.1 (d, J = 19.0, CH₂F from minor diast.), 85.7 (d, J = 177.0, CH₂F from major diast.), 86.6 (d, J = 176.5, CH₂F from minor diast.), 123.3 (×2), 123.5, 123.8, 126.9, 127.5, 127.9 (×2), 128.1, 128.1, 128.2, 128.2, 128.3, 128.3, 128.5, 128.7 (×2), 128.7, 128.9, 129.0, 129.1, 129.9, 132.8, 136.7, 137.1, 137.2, 138.3, 138.9, 139.5, 140.4, 141.6, 141.8, 141.9, 142.2, 142.5; δ_F (564 MHz, CDCl₃) -223.4 (t, J = 46.6, CH₂F from 1 diastereoisomer), -222.0 (t, J = 47.0, CH₂F from 1 diastereoisomer); m/z (El) 471 (M⁺, 3), 439 (100); HRMS for C₂₉H₂₆O₃NF₃NaS calculated for [M+Na]⁺: 494.15605, found 494.15561.

1-{(Fluoromethyl)-1-(4-methoxyphenyl)-3-phenyl-2-tosylisoindoline 4d

As for general procedure A, reaction of N-((2-{1-(4
methoxyphenyl)vinyl}phenyl)(phenyl)methyl)-4-methylbenzenesulfonamide
(40 mg, 0.0853 mmol, 1 equiv) and Selectfluor (33 mg, 0.09 mmol, 1.1 equiv)
gave after column chromatography on silica gel eluting with 8:1 hexane:EtOAc
the title compound (33 mg, 0.0678 mmol, 79%) as a yellow oil and as a 1:2:1
mixture of diastereoisomers; ν_max (neat)/cm⁻¹ 3067, 2927, 1606, 1513, 1458,
1340, 1253, 1157, 1090, 1023, 912, 838, 812, 732, 700, 671; Characterized as a mixture of two
diastereoisomers: δ_H (600 MHz, CDCl₃) 2.19 (3H, s, CH₃), 2.29 (3H, s, CH₃), 3.80 (3H, s, OCH₃),
3.88 (3H, s, OCH₃), 5.51-5.76 (4H, m, 2 × CH₂F), 5.98 (1H, s, CHNTs), 6.19 (1H, s, CHNTs), 6.29
(2H, d, J = 8.2, 2 × ArCH), 6.63 (2H, d, J = 8.2, 2 × ArCH), 6.70 (2H, d, J = 8.7, 2 × ArCH), 6.79
(2H, d, J = 7.5, 2 × ArCH), 6.85 (2H, d, J = 7.5, 2 × ArCH), 6.90-7.38 (24H, m, ArCH); δ_C (150
MHz, CDCl₃) 21.4, 21.5, 55.4, 55.6, 70.0, 70.2, 75.9 (d, J = 18.8, CCH₂F from major diast.), 75.9
(d, J = 19.7, CCH₂F from minor diast.), 85.7 (d, J = 177.1, CCH₂F from major diast.), 86.4 (d, J =
176.8, CCH₂F from minor diast.), 113.5, 113.7, 123.4, 123.5, 123.8, 126.6, 126.8, 127.3, 127.5,
127.7, 127.8, 127.9, 128.1, 128.1, 128.2, 128.3, 128.5, 128.7, 128.8, 129.5, 129.6,
129.9, 130.4, 137.0, 139.0, 139.5, 140.4, 141.5, 141.6, 141.9, 142.0, 142.2, 142.52, 159.3,
159.6; δ_F (564 MHz, CDCl₃) -223.0 (t, J = 46.6, CH₂F from 1 diastereoisomer), -221.2 (t, J = 47.0,
CH₂F from 1 diastereoisomer); m/z (El) 487 (M⁺, 5), 454 (100); HRMS for C₂₉H₂₆O₃NF₃NaS
1-(Fluoromethyl)-1-(4-methoxyphenyl)-3-p-tolyl-2-toslysoindoline 4e

As for general procedure A, reaction of N-((2-(1-(4-methoxyphenyl)vinyl)phenyl)(p-tolyl)methyl)-4-methylbenzenesulfonamide (35 mg, 0.0725 mmol, 1 equiv) and Selectfluor (31 mg, 0.09 mmol, 1.2 equiv) gave after column chromatography on silica gel eluting with 8:1 hexane:EtOAc the title compound (28 mg, 0.0559 mmol, 77%) as a yellow oil and as a 1.2:1 mixture of diastereoisomers; ν_{max} (neat)/cm$^{-1}$ 3022, 2928, 1739, 1606, 1512, 1458, 1338, 1251, 1157, 1088, 1020, 913, 836, 726, 668; Characterized as a mixture of two diastereoisomers: δ_H (600 MHz, CDCl$_3$) 2.20 (3H, s, CH$_3$), 2.30 (6H, s, 2 × CH$_3$), 2.32 (3H, s, CH$_3$), 3.05 (3H, OCH$_3$), 3.40 (3H, OCH$_3$), 3.50-3.57 (4H, m, 2 × CH$_2$F), 5.94 (1H, s, CHNTs), 6.15 (1H, s, CHNTs), 6.30 (2H, d, J = 8.3, 2 × ArCH), 6.61 (2H, d, J = 8.3, 2 × ArCH), 6.63 (2H, d, J = 9.0, 2 × ArCH), 6.80 (2H, d, J = 7.3, 2 × ArCH), 6.86 (2H, d, J = 7.3, 2 × ArCH), 6.89 (12H, m, ArCH), 7.02 (2H, d, J = 7.3, 2 × ArCH); ν_{max} (neat)/cm$^{-1}$ 222.7 (t, J = 46.6, CH$_2$F from 1 diastereoisomer); m/z (EI) 501 (M$^+$, 5), 468 (100); HRMS for C$_{30}$H$_{28}$O$_3$NFNaS calculated for [M+Na]$^+$: 524.16661, found 524.16559.

1-(4-Tert-butylphenyl)-1-(fluoromethyl)-3-(3-fluorophenyl)-2-toslysoindoline 4f

As for general procedure A, reaction of N-((2-(1-(4-tert-butylphenyl)vinyl)phenyl)(3-fluorophenyl)methyl)-4-methylbenzenesulfonamide (44 mg, 0.0857 mmol, 1 equiv) and Selectfluor (36 mg, 0.10 mmol, 1.2 equiv) gave after column chromatography on silica gel eluting with 8:1 hexane:EtOAc the title compound (43 mg, 0.009 mmol, 94%) as a yellow oil and as a 1.2:1 mixture of diastereoisomers; ν_{max} (neat)/cm$^{-1}$ 3040, 2960, 2870, 1596, 1485, 1456, 1343, 1264, 1158, 1090, 1022, 948, 911, 885, 840, 811, 784, 727, 668; Characterized as a mixture of two diastereoisomers: δ_H (600 MHz, CDCl$_3$) 1.32 (9H, s, 3 × CH$_3$ from tBu), 1.40...
(9H, s, 3 × CH₃ from tBu), 2.19 (3H, s, CH₃), 2.29 (3H, s, CH₃), 5.48-5.75 (4H, m, 2 × CH₂F), 5.94 (1H, s, CHNTs), 6.20 (1H, s, CHNTs), 6.22 (2H, d, J = 8.3, 2 × Ar-CH from Ts), 6.62 (2H, d, J = 8.3, 2 × Ar-CH from Ts), 6.80-7.29 (24H, m, Ar-CH), 7.36 (2H, d, J = 8.4, 2 × Ar-CH), 7.43 (2H, d, J = 8.4, 2 × Ar-CH); δC (150 MHz, CDCl₃) 21.4, 21.5, 31.5, 31.5, 34.7, 34.8, 69.5, 69.6, 76.0 (d, J = 18.9, CCH₂F from major dias.), 76.1 (d, J = 18.9, CCH₂F from minor dias.), 85.7 (d, J = 176.8, 2 × CH₂F from major dias.), 86.5 (d, J = 176.3, 2 × CH₂F from minor dias.), 114.9, 115.0, 115.2, 116.3, 116.4, 123.2, 123.4, 123.5, 123.6, 123.9, 125.2, 125.4, 125.6, 126.7, 127.5, 127.9, 128.2, 128.5, 128.8, 128.9, 129.7, 129.7, 129.9, 130.0, 136.1, 136.3, 136.7, 138.9, 139.8, 141.0, 141.5, 142.0, 142.1, 142.2, 142.7, 144.7, 144.8, 151.1, 151.8, 162.8 (d, J = 246.4, ArCF), 163.0 (d, J = 245.8, ArCF); δF (564 MHz, CDCl₃) -224.2 (t, J = 46.5, CH₂F from 1 diastereoisomer), -222.2 (t, J = 46.9, CH₂F from 1 diastereoisomer), -114.0 (dd, J = 14.9, 8.9, Ar-CHF from 1 diastereoisomer), -113.4 (dd, J = 14.8, 8.9, Ar-CHF from 1 diastereoisomer); m/z (Cl) 531 (M+H, 5), 398 (100), 376 (84), 512 (72), 328 (48), 498 (45); HRMS for C₃₂H₃₁O₂NF₂NaS calculated for [M+Na]⁺: 554.19358, found 554.19360.
1H NMR, 13C NMR and 19F NMR Spectra of new compounds
NOE Studies

Major diastereoisomer:
Minor diastereoisomer: