SmI₂-H₂O-Mediated 5-*exo*/6-*exo* Lactone Radical Cyclisation Cascades

Irem Yalavac,[†] Sarah E. Lyons,[†] Michael R. Webb,[‡] and David J. Procter^{†*}

[†]School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

[‡]Medicines Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK

david.j.procter@manchester.ac.uk

Supplementary Information

General Methods	2
Experimental Protocols and Characterisation Data	5
Crystal data and Structure Refinements41	L
Figure S1 Crystal Structure of 2b (CCDC 1009956)41	L
Table S1 Crystal data and structure refinement for 2b (CCDC 1009956)41	L
Figure S2 Crystal Structure of 2d (CCDC 1012766)43	5
Table S2 Crystal data and structure refinement for 2d (CCDC 1012766)43	5
References45	5
¹ H and ¹³ C NMR spectra	5

Corresponding Author:

Professor David J. Procter School of Chemistry, University of Manchester Oxford Road Manchester, M13 9PL, United Kingdom

General Methods

¹H-NMR and ¹³C-NMR spectra were recorded on Bruker NMR spectrometers (400 MHz and 500 MHz for ¹H-NMR, 100 MHz and 125 MHz for ¹³C-NMR). ¹H-NMR chemical shifts ($\delta_{\rm H}$) and ¹³C-NMR chemical shifts (δ_C) are quoted in parts per million (ppm) downfield from trimethylsilane (TMS) and coupling constants (J) are quoted in Hertz (Hz). Abbreveations for NMR data are s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sxt (sextet). Infrared (IR) spectra were recorded on a Bruker Alpha FTIR spectrometer and mass spectra were recorded on a Micromass Platform II (ESI), Agilent 5975C Triple Axis GCMS (GC-MS, EI/CI) and Waters QTOF (HRMS). ¹H-NMR and ¹³C-NMR spectra were assigned with the aid of COSY, HSQC, HMBC and DEPT 90/135 NMR techniques and stereochemistry assigned with the aid of X-ray crystallography. Flash column chromatography was carried out using Sigma Aldrich silica gel 60 Angstrom (Å), 240 – 400 mesh. Thin layer chromatography (TLC) was performed on aluminium sheets pre-coated with silica gel, 0.20 mm (Macherey-Nagel, Polygram[®] Sil G/UV₂₅₄). TLC plates were visualised by UV absorption, phosphomolybdic acid, vanillin or potassium permanganate solution and heating. Diiodoethane was washed with diethyl ether and sodium thiosulfate before use. Tetrahydrofuran (THF) was pre-dried over sodium wire and distilled from sodium benzophenone ketyl prior to use. Diisopropylamine (DIPA) and dichloromethane (DCM) were both distilled from calcium hydride prior to use.

Experimental Protocols and Characterisation Data

Preparation of SmI₂¹

An oven-dried flask equipped with a dry stirrer bar was flushed with a strong flow of N_2 for 30 minutes and loaded with samarium metal (-40 mesh, 1.4 equiv.) and washed diiodoethane (1 equiv.). The flask was flushed for another 30 minutes, after which freshly distilled and degassed THF (0.1 M) was added under stirring. Using an exit needle and a gentle flow of N_2 for the first 5-10 minutes allowed for any ethene gas formed *in-situ* to evacuate the reaction vessel. Stirring was continued under a positive pressure of N_2 overnight at room temperature. Before titration, the mixture was allowed to settle for one hour and used straight away.

Ethyl 4-(2-methyl-1,3-dioxolan-2-yl) but anoat $e - S1^2$

To a stirred solution of ethyl 5-oxohexanoate (2.00 mL, 12.6 mmol, 1 equiv.) and ethylene glycol (2.50 mL, 44.3 mmol, 3.5 equiv.) in benzene (18 mL) was added *p*-toluenesulfonic acid monohydrate (48.0 mg, 0.25 mmol, 0.02 equiv.) and the mixture was heated to reflux for 21 hours using Dean-Stark conditions. The solvent was removed *in vacuo* and purification by flash column chromatography (5% EtOAc:hexane) yielded the named compound as a colourless oil (1.95 g, 77%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.26 (3H, t, *J* 7.1, CO₂CH₂CH₃), 1.33 (3H, s, CH₃), 1.61 – 1.79 (4H, m, 2 × CH₂), 2.33 (2H, t, *J* 7.1, CH₂), 3.89 – 3.99 (4H, m, 2 × OCH₂), 4.13 (2H, q, *J* 7.2, CO₂CH₂CH₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.2 (CH₂CH₃), 19.6 (CH₂), 23.8 (CH₃), 34.3 (CH₂), 38.3 (CH₂), 60.2 (CH₂CH₃), 64.6 (-OCH₂CH₂O-), 109.8 (C-OCH₂CH₂O-), 173.5 (CO₂Et).

General Procedure A: Alkylation of protected keto-esters

Ethyl 2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)hept-6-enoate – S2

An oven-dried flask was degassed with N2 and n-BuLi (5.00 mL, 7.89 mmol, 1.1 equiv., 1.6 M in hexane) was added slowly to a mixture of DIPA (1.10 mL, 7.89 mmol, 1.1 equiv.) and THF (4.5 mL) at -78 °C. After stirring the solution for 1 hour at -78 °C, ethyl 4-(2-methyl-1,3-dioxolan-2-yl)butanoate (1.45 g, 7.17 mmol, 1 equiv.) in THF (2.8 mL) was added over 30 minutes using a syringe pump. Stirring was continued for 45 minutes and 5-bromo-1pentene (1.15 mL, 9.75 mmol, 1.36 equiv.) in HMPA (1.5 mL) was added to the mixture, which was allowed to warm to room temperature and stirred overnight. The reaction was quenched with an aqueous saturated solution of NH₄Cl (20 mL). After separation, the aqueous layer was extracted with EtOAc (3×20 mL). The organic layers were combined and washed with brine (20 mL), dried over Na₂SO₄ and concentrated in vacuo. Flash column chromatography (5% EtOAc:hexane) yielded the named compound as a yellow oil (1.20 g, 62%); υ_{max} / cm $^{-1}$ 3078, 2978, 2934, 2862, 1718, 1641, 1446, 1367, 1156, 1027, 911; δ_{H} (400 MHz, CDCl₃) 1.22 (3H, t, J 7.6, CO₂CH₂CH₃), 1.26 (3H, s, CH₃), 1.31 – 1.38 (2H, m, CH₂), 1.39 – 1.71 (6H, m, 3 × CH₂), 1.97 – 2.05 (2H, m, C=CHCH₂), 2.24 – 2.33 (1H, m, CH), 3.83 -3.93 (4H, m, 2 × OCH₂), 4.1 (2H, qd, J 7.3, 1.3, CO₂CH₂CH₃), 4.87 - 5.00 (2H, m, C=CHCH₂), 5.67 – 5.79 (1H, m, C=CHCH₂); δ_{C} (100 MHz, CDCl₃) 14.2 (CH₂CH₃), 23.6 (CH₃), 26.5 (CH₂), 26.6 (CH₂), 31.7 (CH₂), 33.5 (CH₂), 36.5 (CH₂), 45.3 (CH), 60.0 (CH₂CH₃), 64.5 (-OCH₂CH₂O-), 64.5 (-OCH₂CH₂O-), 109.6 (C-OCH₂CH₂O-), 114.6 (CH=CH₂), 138.3 (CH=CH₂), 175.9 (CO₂Et); m/z (ESI+) 294 ([M + Na]⁺, 100%); HRMS (ESI+) found 271.1898, expect 271.1904 for C₁₅H₂₇O₄.

General Procedure B: Deprotection of alkylated keto-esters

Ethyl 2-(3-oxobutyl)hept-6-enoate – S3

A mixture of ethyl 2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)hept-6-enoate (0.60 g, 2.22 mmol, 1 equiv.), *p*-toluenesulfonic acid monohydrate (0.84 g, 4.44 mmol, 2 equiv.) and acetone (25 mL) was stirred at room temperature for 2 hours. After quenching with an aqueous saturated solution of NaHCO₃ (20 mL), the aqueous layer was extracted with CH₂Cl₂ (3×15 mL). The organic layers were combined and dried over Na₂SO₄ and the crude compound was concentrated *in vacuo*. The title compound was obtained by flash column chromatography (5% EtOAc:hexane) as a colourless oil (0.48 g, 96%); v_{max} / cm⁻¹ 2935, 1720, 1367, 1158; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.26 (3H, t, *J* 7.2, CO₂CH₂CH₃), 1.33 – 1.52 (3H, m, 1H from CH₂ + CH₂), 1.58 – 1.69 (1H, m, 1H from CH₂), 1.81 (2H, q, *J* 7.5, CH₂), 2.05 (2H, q, *J* 6.8, C=CHCH₂), 2.13 (3H, s, CH₃), 2.29 – 2.38 (1H, m, CH), 2.44 (2H, td, *J* 7.6, 3.0, COCH₂), 4.14 (2H, q, *J* 6.8, CO₂CH₂CH₃), 4.92 – 5.04 (2H, m, HC=CH₂), 5.71 – 5.84 (1H, m, HC=CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.3 (CH₂CH₃), 25.9 (CH₂), 26.5 (CH₂), 30.0 (CH₂), 31.8 (CH₃), 33.5 (CH₂), 41.1 (CH₂), 44.6 (CH), 60.3 (CH₂CH₃), 114.7 (CH=CH₂), 138.3

 $(CH=CH_2)$, 175.7 (CO_2Et) , 208.0 (CO); m/z (ESI+) 249 $([M + Na]^+, 100\%)$; HRMS (ESI+) found 249.1450, expect 249.1461 for $C_{13}H_{22}O_3Na$.

General Procedure C: Appel reaction

(3-Bromoprop-1-yn-1-yl)benzene – $S4^2$

To a stirred mixture of 3-phenyl-2-propyn-1-ol (1.00 g, 7.57 mmol, 1 equiv.) in CH₂Cl₂ (25 mL) was added CBr₄ (3.01 g, 9.09 mmol, 1.2 equiv.) and the mixture was cooled to 0 °C. PPh₃ (2.38 g, 9.09 mmol, 1.2 equiv.) was added in 3 portions and the reaction was stirred under N₂ at room temperature for 3 hours. The solvent was removed *in vacuo* and inorganic residues were removed by filtration through silica gel (hexane \rightarrow 1% EtOAc:hexane). The crude product was taken through to the next step; $\delta_{\rm H}$ (500 MHz, CDCl₃) 4.18 (2H, s, CH₂Br), 7.3 – 7.4 (3H, m, ArCH), 7.42 – 7.52 (2H, m, ArCH); $\delta_{\rm C}$ (125 MHz, CDCl₃) 15.3 (*C*H₂), 84.2 (C=*C*), 86.7 (*C*=*C*), 122.1 (Ar*C*), 128.3 (Ar*C*H), 128.9 (Ar*C*H), 131.9 (Ar*C*H).

General Procedure D: Barbier-type lactonization reaction

rac-(3R,6S)-6-Methyl-3-(pent-4-en-1-yl)-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2Hpyran-2-one – trans-1a and rac-(3S,6S)-6-ethyl-3-(pent-4-en-1-yl)-6-(1-phenylpropa-1,2dien-1-yl)tetrahydro-2H-pyran-2-one – cis-1a

An oven-dried flask was degassed with N₂ and loaded with NiI₂ (8 mg, 0.027 mmol, 2 mol% with respect to SmI₂) and SmI₂ (17.0 mL, 1.33 mmol, 3 equiv.) and the mixture was cooled to 0 °C. Immediately after the addition of ethyl 2-(3-oxobutyl)hept-6-enoate (100 mg, 0.44 mmol, 1 equiv.) to the stirring mixture, (3-bromoprop-1-yn-1-yl)benzene (112 mg, 0.57 mmol, 1.3 equiv.) in THF (4.4 mL) was added dropwise over 30 minutes. Once warmed up to room temperature, the reaction was opened to air and stirred until decolourisation occurred. The reaction was quenched with Rochelle's salt (10 mL) and extracted from Et₂O (3 × 15 mL). The organic layers were washed with brine (20 mL) and dried over Na₂SO₄. The solvent was removed *in vacuo* and flash column chromatography (5% EtOAc:hexane) yielded *trans*-1a and *cis*-1a as a yellow oil (28 mg, 21% each, combined yield 42%).

For *trans*-1a: $v_{max} / cm^{-1} 3075 2931$, 2860, 1773, 1728, 1445, 1216, 1073, 907, 853, 765, 700; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.42 - 1.54 (3H, m, 1H from $CH_2 + CH_2$), 1.61 (3H, s, CH_3), 1.62 - 1.69 (1H, m, 1H from CH_2), 1.83 - 1.87 (1H, m, 1H from CH_2), 1.88 - 1.96 (1H, m, 1H from CH_2), 2.04 - 2.15 (3H, m, 1H from $CH_2 + CH_2$), 2.23 (1H, ddd, J 14.1, 7.6, 6.3, 1H from CH_2), 2.38 - 2.45 (1H, m, CH), 4.93 - 5.06 (2H, m, HC= CH_2), 5.11 (2H, s, C= CH_2), 5.80 (1H, ddt, J 17.1, 10.2, 6.7, $HC=CH_2$), 7.25 - 7.29 (1H, m, ArH), 7.30 - 7.37 (2H, m, ArH), 7.41 - 7.47 (2H, m, Ar*H*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 22.6 (CH₂), 26.1 (CH₂), 28.1 (CH₃), 30.9 (CH₂), 31.8 (CH₂), 33.6 (CH₂), 38.6 (CH), 78.6 (C=CH₂), 82.9 (quat. C), 110.3 (C=C=CH₂), 114.7 (CH=CH₂), 127.5 (ArCH), 128.4 (ArCH), 129.0 (ArCH), 134.1 (ArC), 138.4 (CH=CH₂), 174.0 (CO), 207.4 (C=CH₂); *m*/*z* (ESI+) 319 ([M + Na]⁺, 100%); HRMS (ESI+) found 319.1661, expect 319.1669 for C₂₀H₂₄O₂Na.

For *cis*-1a: $v_{max} / cm^{-1} 3075$, 2930, 2861, 1726, 1447, 1223, 1135, 1093, 911, 763, 700; δ_{H} (500 MHz, CDCl₃) 1.28 - 1.45 (3H, m, 1H from $CH_2 + CH_2$), 1.51 - 1.53 (3H, s, CH_3), 1.63 - 1.78 (2H, m, 1H from $CH_2 + 1H$ from CH_2), 1.78 - 1.91 (2H, m, 1H from $CH_2 + 1H$ from CH_2), 1.94 - 2.05 (2H, m, CH_2), 2.12 - 2.18 (1H, m, 1H from CH_2), 2.28 - 2.37 (1H, m, CH), 4.85 - 5.03 (4H, m, HC= $CH_2 + C=CH_2$), 5.67 - 5.77 (1H, m, $HC=CH_2$), 7.18 - 7.30 (5H, m, Ar*H*); δ_C (125 MHz, CDCl₃) 22.9 (CH_2), 26.0 (CH_2), 28.7 (CH_3), 31.2 (CH_2), 32.4 (CH_2), 33.7 (CH_2), 39.8 (CH), 78.7 ($C=CH_2$), 83.3 (quat. C), 110.6 ($C=C=CH_2$), 114.8 ($CH=CH_2$), 127.6 (ArCH), 128.4 (ArCH), 129.1 (ArCH), 134.7 (ArC), 138.4 ($CH=CH_2$), 173.5 (CO), 207.1 ($C=CH_2$); m/z (ESI+) 297.3 ([M + H]⁺, 100%); HRMS (ESI+) found 297.1861, expect 297.1849 for C₂₀H₂₅O₂.

General Procedure E: Cascade Cyclisation

(4S,4aS,5S,6S,7R,9aS)-4,5,7-Trimethyl-6-phenyldecahydro-4aH-benzo[7]annulene-4a,7diol 2a and (1S,2R,3R,4S,5R)-1,3-dimethyl-5-(pent-4-en-1-yl)-2-phenylcycloheptane-1,4diol 3a

An oven-dried flask was degassed with N₂ and loaded with distilled H₂O (2.88 mL, 0.16 mol, 4000 equiv.) and *rac*-(3*R*,6*S*)-6-methyl-3-(pent-4-en-1-yl)-6-(1-phenylpropa-1,2-dien-1yl)tetrahydro-2H-pyran-2-one *trans*-1a (12.0 mg, 0.04 mmol, 1 equiv.) in THF (0.4 mL) and the mixture was stirred at room temperature for 5 minutes. SmI₂ (6.40 mL, 0.62 mmol, 16 equiv.) was added over 30 minutes and the reaction mixture was stirred at room temperature under a positive pressure of N₂ in a sealed flask until decolourisation occurred (48 h). The flask was opened to air and the reaction was quenched with Rochelle's salt (3 mL) and extracted from Et₂O (3 × 5 mL). The organic layers were combined and washed with brine (10 mL) and dried over Na₂SO₄. Flash column chromatography (10% EtOAc:hexane \rightarrow 20% EtOAc:hexane) yielded **3a** (4 mg, 33%) and **2a** (1.2 mg, 10%) as a colourless oil.

For **2a**: $v_{max} / cm^{-1} 3423$, 2925, 1450, 1375, 1143, 914, 702; δ_{H} (400 MHz, CDCl₃) 0.73 (3H, d, *J* 6.8, *CH*₃), 1.07 (3H, s, *CH*₃), 1.16 - 1.28 (2H, m, *CH*₂), 1.29 - 1.35 (5H, m, 1H from *CH*₂ + 1H from *CH*₂ + *CH*₃), 1.37 - 1.54 (4H, m, 1H from *CH*₂ + *CH*₂ + *CH*), 1.56 - 1.72 (2H, m, 1H from *CH*₂ + *CH*CH₃), 1.80 (1H, dd, *J* 15.2, 11.7, 1H from *CH*₂), 1.96 - 2.05 (1H, m, 1H from *CH*₂), 2.21 (1H, q, *J* 7.8, *CH*CH₃), 3.89 (1H, s, *CH*Ph), 7.21 - 7.29 (1H, m, Ar*H*), 7.29 - 7.35 (2H, m, Ar*H*), 7.37 - 7.41 (2H, m, Ar*H*); δ_{C} (100 MHz, CDCl₃) 13.3 (*C*H₃), 14.6 (*C*H₃),

26.0 (CH₂), 26.3 (CH₂), 28.2 (CH₃), 30.8 (2 × CH₂), 37.4 (CH), 43.2 (CH₂), 43.6 (CHMe), 45.0 (CH), 49.3 (CHPh), 74.8 (quat. C), 76.8 (quat. C), 126.2 (ArCH), 128.3 (ArCH), 129.6 (ArCH), 145.4 (ArC); m/z (ESI-) 301 ([M - H]⁻, 100%); m/z (ESI+) 267.3 ([M -H₂O - ⁻OH]⁺, 100%); HRMS (ESI+) found 325.2151, expect 325.2144 for C₂₀H₃₀O₂Na.

For **3a**: $\delta_{\rm H}$ (500 MHz, CDCl₃) 0.98 (3H, s, CH₃), 1.15 - 1.22 (1H, m, 1H from CH₂), 1.24 (3H, d, *J* 7.3, CH₃), 1.27 - 1.41 (1H, m, 1H from CH₂), 1.42 - 1.68 (5H, m, 1H from CH₂ + 1H from CH₂ + CH₂ + CH₁, 1.85 - 1.94 (2H, m, CH₂), 1.94 - 2.06 (2H, m, CH₂), 2.38 - 2.46 (1H, m, CHCH₃), 2.85 (1H, s, CHPh), 3.37 (1H, dd, *J* 9.1, 4.3, CHOH), 4.85 - 4.99 (2H, m, HC=CH₂), 5.69 - 5.83 (1H, m, HC=CH₂), 7.14 - 7.20 (1H, m, ArH), 7.21 - 7.31 (4H, m, ArH); $\delta_{\rm C}$ (125 MHz, CDCl₃) 13.8 (CH₃), 24.3 (CH₂), 26.0 (CH₂), 29.3 (CH₃), 29.7 (CH₂), 34.0 (CH₂), 34.2 (CH₂), 42.2 (CH₂), 44.3 (CH), 56.5 (CHPh), 74.2 (quat. C), 80.7 (CHOH), 114.4 (CH=CH₂), 126.6 (ArCH), 128.3 (ArCH), 129.6 (ArCH), 139.0 (CH=CH₂), 139.6 (ArC); *m*/z (ESI+) 325.3 ([M + Na]⁺, 100%); *m*/z (ESI+) 267.3 ([M - H₂O - OH]⁺, 100%).

General Procedure F: Cross-metathesis

(E)-Ethyl 2-(3-oxobutyl)-7-phenylhept-6-enoate – S5

As described in general procedure F, stirring ethyl 2-(3-oxobutyl)hept-6-enoate (0.58 g, 2.55 mmol, 1 equiv.), styrene (0.88 mL, 7.65 mmol, 3 equiv.) and Grubbs' catalyst second

generation (22 mg, 25.5 µmol, 1 mol%) in CH₂Cl₂ (6 mL) overnight at reflux with subsequent work-up and purification by flash column chromatography (toluene $\rightarrow 2\%$ EtOAc:toluene) yielded the named compound as a colourless oil (0.52 g, 67%); v_{max} / cm⁻¹ 3025, 2934, 1717, 1447, 1367, 1154, 1026, 965, 734, 693; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.27 (3H, t, *J* 7.3, CH₂CH₃), 1.42 – 1.57 (3H, m, 1 H from CH₂ + CH₂), 1.64 – 1.75 (1H, m, 1H from CH₂), 1.82 (2H, q, *J* 7.5, CH₂), 2.13 (3H, s, CH₃), 2.21 (2H, q, *J* 6.8, CH₂), 2.31 – 2.41 (1H, m, CH), 2.45 (2H, td, *J* 7.4, 2.8, CH₂), 4.15 (2H, q, *J* 7.1, CH₂CH₃), 6.16 (1H, dt, *J* 15.8, 6.8, CH₂CH=CH), 6.38 (1H, d, *J* 15.9, CH₂CH=CH), 7.2 (1H, tt, *J* 7.1, 1.5, ArH), 7.27 – 7.34 (4H, m, ArH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.3 (CH₂CH₃), 25.9 (CH₂), 26.9 (CH₂), 30.0 (CH₃), 31.9 (CH₂), 32.8 (CH₂), 41.1 (CH₂), 44.6 (CH), 60.3 (CH₂CH₃), 125.9 (ArCH), 126.9 (ArCH), 128.4 (ArCH), 130.2 (CH₂CH=CH and CH₂CH=CH), 137.7 (ArC), 175.7 (CO₂Et), 208.0 (CO); *m*/z (ESI+) 325 ([M + Na]⁺, 100%); HRMS (ESI+) found 320.2214, expect 320.2220 for C₁₉H₃₀O₃N.

rac-(3R,6S)-6-Methyl-3-((E)-5-phenylpent-4-en-1-yl)-6-(1-phenylpropa-1,2-dien-1yl)tetrahydro-2H-pyran-2-one – trans-1b

As described in general procedure D, reaction of (*E*)-ethyl 2-(3-oxobutyl)-7-phenylhept-6enoate (0.25 g, 0.33 mmol, 1 equiv.), (3-bromoprop-1-yn-1-yl)benzene (0.20 g, 1.08 mmol, 1.3 equiv.), SmI₂ (33.0 mL, 2.69 mmol, 4 equiv.) and NiI₂ (20.0 mg, 0.06 mmol, 2 mol % with respect to SmI₂), after work-up and flash column chromatography (5% EtOAc:hexane) yielded *trans*-1b as a yellow oil (combined yield for *cis* and *trans* isomers: 24%, for *trans*- **1b**: 37 mg, 12%); $v_{max} / cm^{-1} 3025$, 2450, 1728, 1493, 1448, 1216, 1092, 1074, 965, 765, 697; δ_{H} (500 MHz, CDCl₃) 1.51 - 1.59 (3H, m, 1H from *CH*₂ + *CH*₂), 1.61 (3H, s, *CH*₃), 1.64 -1.71 (1H, m, 1H from *CH*₂), 1.86 (1H, quin, *J* 6.7, 1H from *CH*₂), 1.93 - 2.01 (1H, m, 1H from *CH*₂), 2.12 (1H, sxt, *J* 6.9, 1H from *CH*₂), 2.19 - 2.29 (3H, m, 1H from *CH*₂ + *CH*₂), 2.40 - 2.48 (1H, m, *CH*), 5.11 (2H, s, C=*CH*₂), 6.21 (1H, dt, *J* 15.8, 6.9, CH₂*CH*=*CH*), 6.39 (1H, d, *J* 15.8, CH₂CH=*CH*), 7.17 - 7.23 (1H, m, Ar*H*), 7.26 - 7.38 (7H, m, Ar*H*), 7.43 - 7.47 (2H, m, Ar*H*); δ_{C} (125 MHz, CDCl₃) 22.7 (*C*H₂), 26.7 (*C*H₂), 28.1 (*C*H₃), 31.0 (*C*H₂), 31.9 (*C*H₂), 32.9 (*C*H₂), 38.6 (*C*H), 78.7 (C=*C*H₂), 82.9 (quat. C), 110.3 (*C*=C=*C*H₂), 125.9 (Ar*C*H), 126.9 (Ar*C*H), 127.5 (Ar*C*H), 128.4 (Ar*C*H), 128.5 (Ar*C*H), 129.0 (Ar*C*H), 130.2 (CH₂*C*H=CH and CH₂CH=*C*H), 134.1 (Ar*C*), 137.7 (Ar*C*), 174.0 (*C*O), 207.4 (*C*=CH₂); *m*/*z* (ESI+) 395.2 ([M + Na]⁺, 100%); HRMS (ESI+) found 395.1996, expect 395.1982 for C₂₆H₂₈O₂Na.

rac-(4R,4aR,5S,6S,7R,9aS)-4-Benzyl-5,7-dimethyl-6-phenyldecahydro-1Hbenzo[7]annulene-4a,7-diol – 2b and (1S,2R,3R,4S,5R)-1,3-dimethyl-2-phenyl-5-((E)-5-phenylpent-4-en-1-yl)cycloheptane-1,4-diol – 4b

As described in general procedure E, reaction of *rac*-(3*R*,6*S*)-6-methyl-3-((*E*)-5-phenylpent-4-en-1-yl)-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one *trans*-1b (35.0 mg, 0.09 mmol, 1 equiv.), H₂O (6.80 mL, 0.38 mol, 4000 equiv.) and SmI₂ (14.0 mL, 1.50 mmol, 16 equiv.), after work-up and flash column chromatography (10% EtOAc:hexane \rightarrow 20% EtOAc:hexane) yielded **4b** (3 mg, 8%) and **2b** (13 mg, 37%) as a colourless oil and a white solid, respectively.

For **2b**: m. p. 149 – 153 °C (MeOH); v_{max} / cm^{-1} 3472, 2933, 1718, 1610, 1454, 1369, 755, 699; δ_{H} (500 MHz, CDCl₃) 1.11 (3H, s, CH₃), 1.13 - 1.19 (2H, m, 1H from CH₂ + 1H from CH₂), 1.20 - 1.26 (1H, m, 1H from CH₂), 1.31 - 1.38 (1H, m, 1H from CH₂), 1.41 - 1.50 (5H, m, CH₂ + CH₃), 1.52 - 1.65 (2H, m, 1H from CH₂ + CH), 1.73 - 1.81 (1H, m, CH), 1.85 (1H, dd, *J* 15.3, 11.8, 1H from CH₂), 1.99 - 2.13 (3H, m, 1H from CH₂Ph + CH₂), 2.52 (1H, q, *J* 7.9, CHCH₃), 2.87 (1H, dd, *J* 13.4, 3.3, 1H from CH₂Ph), 3.93 (1H, s, CHPh), 7.05 - 7.09 (2H, m, ArH), 7.14 - 7.18 (1H, m, ArH), 7.22 - 7.26 (3H, m, ArH), 7.31 - 7.35 (2H, m, ArH), 7.40 - 7.44 (2H, m, ArH); δ_{C} (125 MHz, CDCl₃) 13.3 (CH₃) 25.8 (CH₂), 26.4 (CH₂), 26.6 (CH₂), 28.3 (CH₃), 30.9 (CH₂), 34.7 (CH₂), 43.0 (CHMe), 43.1 (CH₂), 44.4 (CH), 45.2 (CH), 49.4 (CHPh), 74.7 (quat. C), 77.2 (quat. C), 125.7 (ArCH), 126.3 (ArCH), 128.2 (ArCH), 128.3 (ArCH), 129.1 (ArCH), 129.6 (ArCH), 141.3 (ArC), 145.3 (ArC); HRMS (ESI+) found 401.2473, expect 401.2457 for C₂₆H₃₄O₂Na.

For **4b**: $\delta_{\rm H}$ (500 MHz, CDCl₃) 0.89 (3H, d, *J* 6.9, CH₃), 0.95 (3H, s, CH₃), 1.48 - 1.67 (4H, m, CH₂ + CH₂), 1.74 - 1.80 (1H, m, 1H from CH₂), 1.85 - 1.91 (1H, m, 1H from CH₂), 1.97 - 2.06 (1H, m, 1H from CH₂), 2.19 - 2.33 (3H, m, *J* 6.3, 1H from CH₂ + CH₂), 2.55 (1H, sxt, *J* 6.0, CH), 2.77 (1H, s, CHPh), 3.78 (1H, qd, *J* 6.6, 3.2, CHCH₃), 6.20 (1H, dt, *J* 15.8, 6.9, CH₂CH=CH), 6.39 (1H, d, *J* 15.8, CH₂CH=CH), 6.95 - 6.98 (1H, m, ArH), 7.18 - 7.22 (1H, m, ArH), 7.23 - 7.39 (8H, m, ArH); $\delta_{\rm C}$ (125 MHz, CDCl₃) 16.2 (CH₃), 22.9 (CH₂), 26.4 (CH₂), 32.0 (CH₃), 33.0 (CH₂), 34.9 (CH₂), 38.5 (CH₂), 42.2 (CHMe), 53.8 (CH), 63.2 (CHPh), 73.8 (quat. C), 125.9 (ArCH), 126.8 (ArCH), 127.0 (ArCH), 127.9 (ArCH), 128.5 (ArCH), 130.0 (CH₂CH=CH or CH₂CH=CH), 130.2 (CH₂CH=CH or CH₂CH=CH), 130.4 (ArCH), 137.7 (ArC), 137.7 (ArC), 217.2 (CO); *m*/z (ESI+) 394.5 ([M + NH₄]⁺, 100%); HRMS (ESI+) found 399.2301, expect 399.2295 for C₂₆H₃₂O₂Na.

rac-(4S,4aS,5R,6R,7S,9aR)-7-Methyl-5-(methyl-d)-6-phenyl-4-((S)-phenylmethyld)decahydro-4aH-benzo[7]annulene-5,6-d2-4a,7-diol-d2 – 2b-D₄

As described in general procedure E, reaction of rac-(3R,6S)-6-methyl-3-((E)-5-phenylpent-4-en-1-yl)-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one trans-1b (30.0 mg, 0.08 mmol, 1 equiv.), D₂O (6.40 mL, 0.32 mol, 4000 equiv.) and SmI₂ (6.40 mL, 0.64 mmol, 8 equiv.), after work-up and flash column chromatography (10% EtOAc:hexane $\rightarrow 20\%$ EtOAc:hexane) yielded **2b-D₄** (7 mg, 23%) as a colourless oil; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.11 (3H, s CH₃), 1.12 - 1.19 (2H, m, 1H from CH₂ + 1H from CH₂), 1.20 - 1.26 (1H, m, 1H from CH₂), 1.32 - 1.37 (1H, m, 1H from CH₂), 1.41 - 1.47 (4H, m, CH₂ + CDH₂), 1.53 - 1.64 (2H, m, 1H from CH₂ + CH), 1.72 - 1.79 (1H, m, CH), 1.84 (1H, dd, J 15.3, 11.7, 1H from CH₂), 1.98 - 2.08 (2H, m, 1H, CH₂), 2.84 (1H, d, J 2.8, 1H from CDHPh), 7.07 (2H, d, J 7.3, ArH), 7.16 (1H, t, J 7.3, ArH), 7.21 - 7.27 (3H, m, ArH), 7.33 (2H, t, J 7.3, ArH), 7.39 - 7.44 (2H, m, ArH); δ_C (125 MHz, CDCl₃) 12.8 (t, J 19.1, CDH₂), 25.8 (CH₂), 26.4 (CH₂), 26.6 (CH₂), 28.2 (CH₃), 30.8 (CH₂), 34.4 (t, J 19.1, CDHPh), 42.4 (t, J 17.3, CDCH₂D), 43.1 (CH₂), 44.3 (CH), 45.2 (CH), 48.9 (t, J 19.1, CDPh), 74.7 (quat. C), 77.2 (quat. C), 125.7 (ArCH), 126.3 (ArCH), 128.2 (ArCH), 128.3 (ArCH), 129.1 (ArCH), 129.6 (ArCH), 141.2 (ArC), 145.3 (ArC); m/z (ESI+) 405.7 ([M + Na]⁺, 100%); HRMS (ESI+) found 405.2705, expect 405.2708 for C₂₆H₃₀D₄O₂Na.

S14

Ethyl (E)-2-(3-oxobutyl)-7-(4-(trifluoromethyl)phenyl)hept-6-enoate - S6

As described in general procedure F, ethyl 2-(3-oxobutyl)hept-6-enoate (0.22 g, 0.97 mmol, 1 equiv.), 4-(trifluoromethyl)styrene (0.43 mL, 2.92 mmol, 3 equiv.) and Grubbs' catalyst second generation (9.00 mg, 9.72 µmol, 1 mol%) in CH₂Cl₂ (2 mL) overnight at reflux with subsequent work-up and purification by flash colum chromatography (toluene $\rightarrow 2\%$ EtOAc:toluene) yielded the named compound as a colourless oil (0.36 g, 99%); v_{max} / cm^{-1} 2946, 1716, 1635, 1324, 1162, 1108; $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.27 (3H, t, *J* 7.3, CH₂CH₃), 1.44 - 1.57 (3H, m, 1H from CH₂ + CH₂), 1.64 - 1.74 (1H, m, 1H from CH₂), 1.83 (2H, q, *J* 7.5, CH₂), 2.14 (3H, s, CH₃), 2.24 (2H, q, *J* 6.7, CH₂), 2.33 - 2.42 (1H, m, 1H from CH₂), 2.45 (1H, qd, *J* 7.9, 2.5, CH), 4.15 (2H, q, *J* 7.3, CH₂CH₃), 6.29 (1H, dt, *J* 15.8, 6.9, CH₂CH=CH), 6.41 (1H, d, *J* 15.8, CH₂CH=CH), 7.42 (2H, d, *J* 8.2, ArH), 7.54 (2H, d, *J* 7.9, ArH); $\delta_{\rm C}$ (125 MHz, CDCl₃) 14.3 (CH₂CH₃), 25.9 (CH₂), 26.7 (CH₂), 30.0 (CH₃), 31.9 (CH₂), 32.8 (CH₂), 41.0 (CH₂), 44.6 (CH), 60.3 (CH₂CH₃), 125.4 (q, *J*³ 3.6, ArCH), 125.6 (q, *J*¹ 271.6, CF₃), 126.0 (ArCH), 129.0 (q, *J*² 32.7, ArCCF₃), 129.1 (CH₂CH=CH), 133.1 (CH₂CH=CH), 141.1 (ArC), 175.6 (CO₂Et), 208.0 (CO); *m*/z (ESI+) 393.4 ([M + Na]⁺, 100%); HRMS (ESI+) found 393.1637, expect 393.1653 for C₂₀H₂G₃F₃Na.

rac-(3R,6S)-6-Methyl-6-(1-phenyl-propa-1,2-dien-1-yl)-3-((E)-5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yl)tetrahydro-2H-pyran-2-one – trans-1c

As described in general procedure D, reaction of ethyl (E)-2-(3-oxobutyl)-7-(4-(trifluoromethyl)phenyl)hept-6-enoate (0.25 g, 0.68 mmol, 1 equiv.), (3-bromoprop-1-yn-1vl)benzene (0.17 g, 0.88 mmol, 1.3 equiv.), SmI₂ (27.0 mL, 2.72 mmol, 4 equiv.) and NiI₂ (16.0 mg, 0.05 mmol, 2 mol% with respect to SmI₂), after work-up and flash column chromatography (5% EtOAc:hexane) yielded *trans-*1c as a yellow oil (combined yield for *cis* and *trans* isomers: 24%, for *trans*-1c: 36 mg, 12%); v_{max} / cm⁻¹ 2934, 1728, 1614, 1324, 1162, 1119, 1067; $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.53 - 1.59 (3H, m, 1H from CH₂ + CH₂), 1.62 (3H, s, CH₃), 1.64 - 1.72 (1H, m, 1H from CH₂), 1.86 (1H, quin, J 6.4, 1H from CH₂), 1.91 - 2.01 (1H, m, 1H from CH₂), 2.12 (1H, sxt, J 6.9, 1H from CH₂), 2.20 - 2.30 (3H, m, 1H from CH₂) + CH₂), 2.40 - 2.48 (1H, m, CH), 5.11 (2H, s, C=CH₂), 6.31 (1H, dt, J 15.7, 6.7, CH₂CH=CH), 6.42 (1H, d, J 15.9, CH₂CH=CH), 7.24 - 7.30 (1H, m, ArH), 7.34 (2H, t, J 7.6, ArH), 7.43 (4H, dd, J 13.1, 7.7, ArH), 7.54 (2H, d, J 8.1, ArH); δ_C (125 MHz, CDCl₃) 22.7 (CH₂), 26.4 (CH₂), 28.1 (CH₃), 31.0 (CH₂), 31.8 (CH₂), 32.9 (CH₂), 38.6 (CH), 78.7 (C=CH₂), 83.0 (quat. C), 110.2 (C=C=CH₂), 124.2 (q, J¹ 271.6, CF₃), 125.4 (q, J³ 3.6, ArCH), 126.0 (ArCH), 127.5 (ArCH), 128.4 (ArCH), 128.6 (q, J² 32.7, ArCCF₃), 128.9 (CH₂CH=CH), 129.0 (ArCH), 133.1 (CH₂CH=CH), 134.0 (ArC), 141.1 (ArC), 174.0 (CO), 207.4 (*C*=CH₂); m/z (ESI+) 463.2 ([M + Na]⁺, 100%); HRMS (ESI+) found 463.1848, expect 463.1855 for C₂₇H₂₇O₂F₃Na.

rac-(4S,4aS,5R,6R,7S,9aR)-5,7-Dimethyl-6-phenyl-4-(4-

(trifluoromethyl) benzyl) decahydro-4aH-benzo[7] annulene-4a, 7-diol - 2c

As described in general procedure E, reaction of rac-(3R,6S)-6-methyl-6-(1-phenyl-propa-1,2-dien-1-yl)-3-((*E*)-5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yl)tetrahydro-2H-pyran-2-one trans-1c (40.0 mg, 0.09 mmol, 1 equiv.), H₂O (6.50 mL, 0.36 mol, 4000 equiv.) and SmI₂ (7.30 mL, 0.73 mmol, 8 equiv.), after work-up and flash column chromatography (10% EtOAc:hexane \rightarrow 20% EtOAc:hexane) yielded 2c (10 mg, 24%) as a colourless oil; v_{max} / cm^{-1} 3458, 2953, 2872, 1623, 1451, 1321, 1186, 1121, 1085; δ_{H} (500 MHz, CDCl₃) 1.12 (3H, m, CHCH₃), 1.14 - 1.19 (2H, m, 1H from CH₂ + 1H from CH₂), 1.22 - 1.27 (2H, m 1H from $CH_2 + 1H$ from CH_2), 1.40 - 1.51 (5H, m, $CH_2 + CH_3$), 1.53 - 1.65 (2H, m, 1H from $CH_2 + CH_3$) CH), 1.78 (1H, tt, J 11.3, 4.1, CH), 1.85 (1H, dd, J 15.3, 11.8, 1H from CH₂), 1.99 - 2.07 (2H, m, CH₂), 2.19 (1H, dd, J 13.2, 11.3, 1H from CH₂Ph), 2.48 (1H, q, J 7.6, CHCH₃), 2.91 (1H, dd, J 13.2, 2.8, 1H from CH₂Ph), 3.91 (1H, s, CHPh), 7.18 (2H, d, J 7.9, ArH-CF₃), 7.23 -7.27 (1H, ArH), 7.34 (2H, t, J 7.6, ArH), 7.41 (2H, d, J 7.3, ArH), 7.50 (2H, d, J 7.9, ArH-CF₃); δ_C (125 MHz, CDCl₃) 13.2 (CH₃), 25.7 (CH₂), 26.4 (CH₂), 26.6 (CH₂), 28.3 (CH₃), 30.8 (CH₂), 34.7 (CH₂), 42.9 (CHMe), 43.1 (CH₂), 44.2 (CH), 45.1 (CH), 49.4 (CHPh), 74.7(quat. C), 77.2 (quat. C), 125.1 (q, J³ 3.6, ArCH), 125.4 (q, J¹ 271.6, CF₃) 126.4 (ArCH), 128.2 (q, J² 31.8, ArCCF₃), 128.4 (ArCH), 129.4 (ArCH), 129.6 (ArCH), 145.2 (ArC), 145.6 (ArC); m/z (ESI+) 469.5 ([M + Na]⁺, 100%); HRMS (ESI+) found 469.2321, expect 469.2330 for C₂₇H₃₃O₂F₃Na.

Ethyl (E)-7-(4-bromophenyl)-2-(3-oxobutyl)hept-6-enoate – S7

As described in general procedure F, ethyl 2-(3-oxobutyl)hept-6-enoate (0.20 g, 0.88 mmol, 1 equiv.), Hoveyda-Grubbs II catalyst (5.50 mg, 8.80 μ mol, 1 mol%) and 4-bromostyrene (0.49 g, 2.65 mmol, 3 equiv.) in CH₂Cl₂ (5 mL) after work-up and column chromatography on silica gel eluting with (petroleum ether -10% EtOAc:petroleum ether) gave the title compound as a yellow oil (0.15 g, 45%); v_{max} /cm⁻¹ 2935, 1716, 1487, 1445, 1401, 1366, 1154, 1096, 1072, 1026; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.27 (3H, t, *J* 7.1, CH₂CH₃), 1.41 - 1.56 (3H, m, 1H from CH₂ + CH₂), 1.61 - 1.74 (1H, m, 1H from CH₂), 1.78 - 1.86 (2H, m, CH₂), 2.13 (3H, s, CH₃), 2.17 - 2.24 (2H, m, CH₂), 2.32 - 2.40 (1H, m, CH), 2.41 - 2.49 (2H, m, CH₂CCO), 4.15 (2H, q, *J* 7.1, CH₂CH₃), 6.12 - 6.22 (1H, m, CH=CHPh), 6.27 - 6.36 (1H, m, CH=CHPh), 7.20 (2H, d, *J* 8.6, ArH), 7.41 (2H, d, *J* 8.6, ArH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.3 (CH₃), 25.9 (CH₂), 26.8 (CH₂), 30.0 (CH₃), 31.9 (CH₂), 32.8 (CH₂), 41.1 (CH₂), 44.6 (CH), 60.3 (CH₂CH₃), 120.5 (ArC), 127.5 (ArCH), 129.1 (CH₂CH=CH), 131.1 (CH₂CH=CH), 131.5 (ArCH), 136.6 (ArC), 175.6 (CO₂Et), 207.9 (CO); *m*/z (ESI+) 381.0 ([M+H]⁺, 100%).

rac-(3R,6S)-3-((E)-5-(4-Bromophenyl)pent-4-en-1-yl)-6-methyl-6-(1-phenyl-2l5-propa-1,2dien-1-yl)tetrahydro-2H-pyran-2-one – trans-1d

As described in general procedure D, reaction of ethyl (E)-7-(4-bromophenyl)-2-(3oxobutyl)hept-6-enoate (0.24 g, 0.63 mmol, 1 equiv.), (3-bromoprop-1-yn-1-yl)benzene (0.16 g, 0.82 mmol, 1.3 equiv.), SmI₂ (23.0 mL, 2.22 mmol, 3.5 equiv.) and NiI₂ (14.0 mg, 0.04 mmol, 2 mol% with respect to SmI₂), after work-up and flash column chromatography (5% EtOAc:hexane) yielded *trans-1d* as a yellow oil (combined yield for *cis* and *trans* isomers: 22%, for *trans*-1d: 30 mg, 11%); v_{max} / cm⁻¹ 2934, 1726, 1487, 1216, 1072; $\delta_{\rm H}$ (500 MHz, $CDCl_3$) 1.51 - 1.59 (3H, m, 1H from $CH_2 + CH_2$), 1.62 (3H, m, CH_3), 1.63 - 1.71 (1H, m, 1H) from CH₂), 1.86 (1H, quin, J 6.6, 1H from CH₂), 1.92 - 1.98 (1H, m, 1H from CH₂), 2.11 (1H, sxt, J 7.3, 1H from CH₂), 2.19 - 2.27 (3H, m, 1H from CH₂ + CH₂), 2.40 - 2.47 (1H, m, CH), 5.12 (2H, s, C=CH₂), 6.20 (1H, dt, J 15.8, 6.9, CH₂CH=CH), 6.32 (1 H, d, J 15.8, CH₂CH=CH), 7.18 - 7.21 (2H, m, ArH), 7.26 - 7.30 (1H, m, ArH), 7.31 - 7.35 (2H, m, ArH), 7.39 - 7.42 (2H, m, ArH), 7.43 - 7.46 (2H, m, ArH); δ_C (125 MHz, CDCl₃) 22.7 (CH₂) 26.5 (CH₂) 28.1 (CH₃) 31.0 (CH₂) 31.9 (CH₂) 32.9 (CH₂) 38.6 (CH) 78.7 (C=CH₂) 83.0 (quat. C) 110.3 (C=C=CH₂) 120.5 (ArC) 127.5 (ArCH) 128.4 (ArCH) 129.0 (ArCH) 129.1 (CH₂CH=CH) 131.1 (CH₂CH=CH) 131.5 (ArCH) 134.0 (ArC) 136.6 (ArC) 173.9 (CO) 207.4 (C=CH₂); m/z (ESI+) 485.5 ([M + K]⁺, 100%); HRMS (ESI+) found 451.1267, expect 451.1267 for C₂₆H₂₈O₂Br.

rac-(4S,4aS,5R,6R,7S,9aR)-4-(4-Bromobenzyl)-5,7-dimethyl-6-phenyldecahydro-4aHbenzo[7]annulene-4a,7-diol – 2d

As described in general procedure E, reaction of rac-(3R,6S)-3-((E)-5-(4-bromophenyl)pent-4-en-1-yl)-6-methyl-6-(1-phenyl-propa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one trans-1d (70 mg, 0.16 mmol, 1 equiv.), H₂O (11.2 mL, 0.62 mol, 4000 equiv.) and SmI₂ (12.5 mL, 1.24 mmol, 8 equiv.), after work-up and flash column chromatography (10% EtOAc:hexane \rightarrow 20% EtOAc:hexane) yielded 2d (14 mg, 20%) as a white solid; m. p. 151 – 155 °C (MeOH); υ_{max} / cm⁻¹ 3472, 2962, 2924, 1622, 1492, 1470, 1432, 1016; δ_H (500 MHz, CDCl₃) 1.12 (3H, s, CH₃), 1.14 - 1.16 (1H, m, 1H from CH₂), 1.21 - 1.26 (1H, m, 1H from CH₂), 1.27 - 1.33 (1H, m, 1H from CH₂), 1.43 (3H, d, J 7.6, CH₃), 1.45 - 1.48 (2H, m, CH₂), 1.52 - 1.59 (2H, m, 1H from CH₂ + CH), 1.60 - 1.65 (1H, m, 1H from CH₂), 1.72 (1H, tt, J 7.6, 3.7, CH), 1.84 (1H, dd, J 15.3, 11.8, 1H from CH₂), 1.99 - 2.11 (3H, m, 1H from CH₂Ph + CH₂), 2.47 (1H, q, J 7.7, CHCH₃), 2.80 (1H, dd, J 13.6, 3.5, 1H from CH₂Ph), 3.90 (1H, s, CHPh), 6.94 (2H, d, J 8.2, ArH), 7.23 - 7.28 (2H, m, ArH), 7.31 - 7.38 (4H, m, ArH), 7.41 (2H, d, J 7.3, ArH); δ_{C} (125 MHz, CDCl₃) 13.2 (CH₃), 25.7 (CH₂), 26.4 (CH₂), 26.5 (CH₂), 28.3 (CH₃), 30.8 (CH₂), 34.2 (CH₂), 42.9 (CHMe), 43.1 (CH₂), 44.3 (CH), 45.1 (CH), 49.4 (CHPh), 74.7 (quat. C), 77.2 (quat. C), 119.4 (ArC), 126.4 (ArCH), 128.4 (ArCH), 129.6 (ArCH), 130.8 (ArCH), 131.2 (ArCH), 140.3 (ArC), 145.2 (ArC); *m*/*z* (ESI+) 479.3 ([M + Na]⁺, 100%); HRMS (ESI+) found 479.1570, expect 479.1562 for C₂₆H₃₃O₂BrNa.

Ethyl (E)-2-(3-oxobutyl)-7-(p-tolyl)hept-6-enoate – S8

As described in general procedure F, ethyl 2-(3-oxobutyl)hept-6-enoate (0.60 g, 2.65 mmol, 1 equiv.), 4-methylstyrene (1.00 g, 7.96 mmol, 3 equiv.) and Grubbs' catalyst second generation (45.0 mg, 53.1 µmol, 1 mol%) in CH₂Cl₂ (10 mL) overnight at reflux with subsequent work-up and purification by flash colum chromatography (toluene $\rightarrow 2\%$ EtOAc:toluene) yielded the named compound as a colourless oil (0.58 g, 69%); v_{max} / cm⁻¹ 2934, 1717, 1512, 1446, 1367, 1155; $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.27 (3H, t, *J* 7.3, CH₂CH₃), 1.44 - 1.54 (3H, m, 1H from CH₂ + CH₂), 1.64 - 1.73 (1H, m, 1H from CH₂), 1.82 (2H, q, *J* 7.3, CH₂), 2.13 (3H, s, CH₃), 2.20 (2H, q, *J* 6.7, CH₂), 2.33 (3H, s, CH₃), 2.34 - 2.39 (1H, m, 1H from CH₂), 2.44 (2H, td, *J* 7.5, 3.9, CH), 4.15 (2H, q, *J* 7.3, CH₂CH₃), 6.13 (1H, dt, *J* 15.7, 7.0, CH₂CH=CH), 6.34 (1H, d, *J* 15.8, CH₂CH=CH), 7.10 (2H, d, *J* 7.9, ArH), 7.23 (2H, d, *J* 8.2, ArH); $\delta_{\rm C}$ (125 MHz, CDCl₃) 14.3 (CH₂CH₃), 21.1 (ArCH₃), 25.9 (CH₂), 27.0 (CH₂), 29.9 (CH₃), 31.8 (CH₂), 32.7 (CH₂), 41.1 (CH₂), 44.6 (CH), 60.2 (CH₂CH₃), 125.8 (ArCH), 129.1 (CH₂CH=CH + CH₂CH=CH), 130.0 (ArCH), 134.8 (ArC), 136.5 (ArC), 175.7 (CO₂Et), 208.0 (CO); *m*/z (ESI+) 317.5 ([M + H]⁺, 100%); HRMS (ESI+) found 339.1931, expect 339.1936 for C₂₀H₂₈O₃Na.

rac-(3R,6S)-6-Methyl-6-(1-phenyl-2l5-propa-1,2-dien-1-yl)-3-((E)-5-(p-tolyl)pent-4-en-1yl)tetrahydro-2H-pyran-2-one – trans-1e

As described in general procedure D, reaction of ethyl (E)-2-(3-oxobutyl)-7-(p-tolyl)hept-6enoate (0.23 g, 0.71 mmol, 1 equiv.), (3-bromoprop-1-yn-1-yl)benzene (0.18 g, 0.95 mmol, 1.3 equiv.), SmI₂ (25.0 mL, 2.49 mmol, 3.5 equiv.) and NiI₂ (16.0 mg, 0.05 mmol, 2 mol% with respect to SmI₂), after work-up and flash column chromatography (5% EtOAc:hexane) yielded *trans*-1e as a yellow oil (combined yield for *cis* and *trans* isomers: 20%, for *trans*-1e: 28 mg, 10%); v_{max} / cm⁻¹ 2923, 1726, 1512, 1492, 1446, 1215, 1091; δ_{H} (400 MHz, CDCl₃) 1.51 - 1.55 (2H, m, CH₂), 1.59 - 1.71 (5H, m, CH₂ + CH₃), 1.85 (1H, quin, J 6.6, 1H from CH₂), 1.92 - 2.00 (1H, m, 1H from CH₂), 2.11 (1H, sxt, J 6.8, 1H from CH₂), 2.18-2.25 (3H, m, 1H from $CH_2 + CH_2$), 2.33 (3H, s, Ar CH_3), 2.39 - 2.47 (1H, m, CH), 5.11 (2H, s, C= CH_2), 6.17 (1H, dt, J 15.6, 7.1, CH₂CH=CH), 6.35 (1H, d, J 15.9, CH₂CH=CH), 7.10 (2H, d, J 7.8, ArH), 7.23 (2H, d, J 8.3, ArH), 7.28 - 7.30 (1H, m, ArH), 7.31 - 7.36 (2H, m, ArH), 7.43 -7.46 (2H, m, ArH); δ_C (125 MHz, CDCl₃) 21.1 (ArCH₃), 22.6 (CH₂), 26.7 (CH₂), 28.1 (CH₃), 31.0 (CH₂), 31.8 (CH₂), 32.9 (CH₂), 38.6 (CH), 78.7 (C=CH₂), 82.9 (quat. C), 110.2 (C=C=CH₂), 125.8 (ArCH), 127.5 (ArCH), 128.4 (ArCH), 128.9 (ArCH), 129.1 (ArCH), 129.2 (CH₂CH=CH), 130.0 (CH₂CH=CH), 134.0 (ArC), 134.9 (ArC), 136.6 (ArC), 174.0 (CO), 207.4 (C=CH₂); m/z (ESI+) 387.2 ([M + H]⁺, 100%); HRMS (ESI+) found 387.2310, expect 387.2319 for C₂₇H₃₁O₂.

rac-(4S,4aS,5R,6R,7S,9aR)-5,7-Dimethyl-4-(4-methylbenzyl)-6-phenyldecahydro-4aHbenzo[7]annulene-4a,7-diol – 2e

As described in general procedure E, reaction of rac-(3R,6S)-6-methyl-6-(1-phenyl-215propa-1,2-dien-1-yl)-3-((E)-5-(p-tolyl)pent-4-en-1-yl)tetrahydro-2H-pyran-2-one trans-1e (28.0 mg, 0.07 mmol, 1 equiv.), H₂O (5.20 mL, 0.29 mol, 4000 equiv.) and SmI₂ (5.80 mL, 0.58 mmol, 8 equiv.), after work-up and flash column chromatography (10% EtOAc:hexane \rightarrow 20% EtOAc:hexane) yielded **2e** (7 mg, 26%) as a yellow oil; v_{max} / cm⁻¹ 3486, 2965, 2879, 1514, 1479, 1398, 1085; δ_H (400 MHz, CDCl₃) 1.11 (3H, s, CH₃), 1.12 - 1.18 (1H, m, 1H from CH₂), 1.19 - 1.26 (1H, m, 1H from CH₂), 1.29 - 1.34 (1H, m, 1H from CH₂), 1.39 - 1.51 (5H, m, CH₂ + CH₃), 1.53 - 1.63 (3H, m, 1H from CH₂ + 1H from CH₂ + CH), 1.70 - 1.77 (1H, m, CH), 1.85 (1H, dd, J 15.4, 11.9, 1H from CH₂), 1.98 - 2.09 (3H, m, 1H from CH₂Ph + CH₂), 2.31 (3H, s, ArCH₃), 2.51 (1H, q, J 7.6, CHCH₃), 2.82 (1H, dd, J 13.4, 3.3, 1H from CH₂Ph), 3.92 (1H, s, CHPh), 6.95 (2H, d, J 7.8, ArH), 7.06 (2H, d, J 7.8, ArH), 7.22 - 7.27 (1H, m, Ar*H*), 7.33 (2H, dd, *J* 7.8, 7.1, Ar*H*), 7.42 (2H, d, *J* 7.1, Ar*H*); δ_C (125 MHz, CDCl₃) 13.3 (CH₃), 21.0 (ArCH₃), 25.8 (CH₂), 26.4 (CH₂), 26.6 (CH₂), 28.3 (CH₃), 30.9 (CH₂), 34.2 (CH₂), 43.0 (CHMe), 43.2 (CH₂), 44.4 (CH), 45.2 (CH), 49.4 (CHPh), 74.7 (quat. C), 77.2 (quat. C), 126.3 (ArCH), 128.3 (ArCH), 128.9 (ArCH), 129.0 (ArCH), 129.6 (ArCH), 135.1 (Ar*C*), 138.0 (Ar*C*), 145.3 (Ar*C*); *m*/*z* (ESI+) 415.5 ([M + Na]⁺, 100%); HRMS (ESI+) found 415.2626, expect 415.2613 for $C_{27}H_{36}O_2Na$.

Ethyl (E)-7-(2-chlorophenyl)-2-(3-oxobutyl)hept-6-enoate – S9

As described in general procedure F, ethyl 2-(3-oxobutyl)hept-6-enoate (0.30 g, 1.33 mmol, 1 equiv.), 2-chlorostyrene (0.51 mL, 3.98 mmol, 3 equiv.) and Grubbs' catalyst second generation (12.0 mg, 13.3 µmol, 1 mol%) in CH₂Cl₂ (3 mL) overnight at reflux with subsequent work-up and purification by flash colum chromatography (toluene $\rightarrow 2\%$ EtOAc:toluene) yielded the named compound as a colourless oil (0.29 g, 66%); v_{max} / cm⁻¹ 2935, 1718, 1470, 1440, 1367, 1156; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.27 (3H, t, *J* 7.1, CH₂CH₃), 1.43 - 1.58 (3H, m, 1H from CH₂ + CH₂), 1.64 - 1.75 (1H, m, 1H from CH₂), 1.79 - 1.87 (2H, m, CH₂), 2.14 (3H, s, CH₃), 2.26 (2H, q, *J* 6.6, CH₂), 2.33 - 2.42 (1H, m, CH), 2.42 - 2.49 (2H, m, CH₂), 4.16 (2H, q, *J* 7.2, CH₂CH₃), 6.11 - 6.22 (1H, m, CH₂CH=CH), 6.75 (1H, d, *J* 16.1, CH₂CH=CH), 7.09 - 7.23 (2H, m, ArH), 7.33 (1H, d, *J* 7.8, ArH), 7.49 (1H, d, *J* 7.7, ArH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.4 (CH₃), 26.0 (CH₂), 26.8 (CH₂), 30.0 (CH₃), 31.9 (CH₂), 33.0 (CH₂), 41.1 (CH₂), 44.6 (CH), 60.3 (CH₂CH₃), 126.5 (2 × CH=CHPh), 126.6 (ArCH), 126.8 (ArCH), 128.0 (ArCH), 129.6 (ArCH), 133.2 (ArC), 135.8 (ArC), 175.7 (CO₂Et), 208.0 (CO); *m*/z (ESI+) 337.3 ([M + H]⁺, 100%); HRMS (ESI+) found 359.1377, expect 359.1390 for C₁₉H₂₅O₃ClNa.

rac-(3R,6S)-3-((E)-5-(2-Chlorophenyl)pent-4-en-1-yl)-6-methyl-6-(1-phenyl-2l5-propa-1,2dien-1-yl)tetrahydro-2H-pyran-2-one – trans-1f

As described in general procedure D, reaction of ethyl ethyl (E)-7-(2-chlorophenyl)-2-(3oxobutyl)hept-6-enoate (0.36 g, 1.07 mmol, 1 equiv.), (3-bromoprop-1-yn-1-yl)benzene (0.27 g, 1.39 mmol, 1.3 equiv.), SmI₂ (34.0 mL, 3.74 mmol, 3.5 equiv.) and NiI₂ (16.0 mg, 74.6 μ mol, 2 mol% with respect to SmI₂), after work-up and flash column chromatography (5% EtOAc:hexane) yielded *trans-***1f** as a yellow oil (combined yield for *cis* and *trans* isomers: 20%, for *trans*-1f: 44 mg, 10%); v_{max} / cm⁻¹ 2929, 1945, 1721, 1492, 1469, 1215, 1074; δ_{H} (400 MHz, CDCl₃) 1.43 - 1.56 (6H, m, 1H from CH₂ + CH₂ + CH₃), 1.55 - 1.64 (1H, m, 1H from CH₂), 1.74 - 1.82 (1H, m, 1H from CH₂), 1.84 - 1.92 (1H, m, 1H from CH₂), 2.03 (1 H, sxt, J 6.7, 1H from CH₂), 2.11 - 2.23 (3H, m, 1H from CH₂ + CH₂), 2.32 - 2.39 (1H, m, CH), 5.03 (2H, s, C=CH₂), 6.07 - 6.17 (1H, m, CH₂CH=CH), 6.67 (1H, d, J 15.7, CH₂CH=CH), 7.05 (1H, t, J 7.3, ArH), 7.11 (1H, t, J 7.3 ArH), 7.15 - 7.21 (2H, m, ArH), 7.24 - 7.28 (2H, m, ArH), 7.36 (2H, d, J 7.5, ArH), 7.41 (1H, d, J 7.6 ArH); δ_C (125 MHz, CDCl₃) 22.9 (CH₂), 26.8 (CH₂), 28.4 (CH₃), 31.5 (CH₂), 32.3 (CH₂), 33.2, (CH₂), 38.6 (CH), 78.9 (C=CH₂), 83.0 (quat. C), 110.5 (C=C=CH₂), 126.4 (CH₂CH=CH), 126.5 (CH₂CH=CH), 126.8 (ArCH), 127.7 (ArCH), 128.1 (ArCH), 128.6 (ArCH), 129.2 (ArCH), 129.5 (ArCH), 132.7 (ArCH), 133.3 (ArC), 134.1 (ArC), 135.7 (ArC), 174.5 (CO), 208.3 (C=CH₂); m/z (ESI+) 407.3 ([M + H_{1}^{+} , 100%); HRMS (ESI+) found 429.1603, expect 429.1592 for $C_{26}H_{27}O_2CINa$.

S25

rac-(4S,4aS,5R,6R,7S,9aR)-4-(2-Chlorobenzyl)-5,7-dimethyl-6-phenyldecahydro-4aHbenzo[7]annulene-4a,7-diol – 2f

As described in general procedure E, reaction of rac-(3R,6S)-6-methyl-6-(1-phenyl-215propa-1,2-dien-1-yl)-3-((E)-5-(p-tolyl)pent-4-en-1-yl)tetrahydro-2H-pyran-2-one trans-1f (38.0 mg, 0.09 mmol, 1 equiv.), H₂O (6.70 mL, 0.37 mol, 4000 equiv.) and SmI₂ (7.5 mL, 0.75 mmol, 8 equiv.), after work-up and flash column chromatography (10% EtOAc:hexane \rightarrow 20% EtOAc:hexane) yielded 2f (7 mg, 17%) as a white solid; m. p. 149 - 155 °C (MeOH); v_{max} / cm⁻¹ 3329, 2918, 2852, 1448, 1386, 1264; δ_{H} (500 MHz, CDCl₃) 1.11 (3H, s, CH_3), 1.12 - 1.20 (2H, m, 1H from CH_2 + 1H from CH_2), 1.22 - 1.24 (1H, m, 1H from CH_2), 1.42 - 1.47 (2H, m, CH₂), 1.48 (3H, d, J 7.6, CH₃), 1.54 - 1.60 (2H, m, 1H from CH₂ + CH), 1.86 (1H, dd, J 15.4, 11.7, 1H from CH₂), 1.98 - 2.07 (4H, m, 1H from CH₂ + CH + CH₂), 2.37 (1 H, dd, J 13.1, 11.2, 1H from CH₂Ph), 2.46 (1H, q, J 7.9, CHCH₃), 2.94 (1H, dd, J 13.2, 4.4, 1H from CH₂Ph), 3.91 (1H, s, CHPh), 7.05 - 7.08 (1H, m, ArH), 7.10 - 7.13 (2H, m, ArH), 7.23 - 7.26 (1H, m, ArH), 7.29 - 7.31 (1H, m, ArH), 7.32 - 7.36 (2H, m, ArH), 7.40 - 7.44 (2H, m, ArH); δ_C (125 MHz, CDCl₃)* 13.3 (CH₃), 25.7 (CH₂), 26.4 (CH₂), 26.4 (CH₂), 28.3 (CH₃), 30.7 (CH₂), 32.7 (CH₂), 41.7 (CHMe), 43.0 (CH₂), 43.1 (CH), 45.1 (CH), 49.5 (CHPh), 126.3 (ArCH), 126.4 (ArCH), 127.2 (ArCH), 128.3 (ArCH), 129.4 (ArCH), 129.6 (ArCH), 131.9 (ArCH), 134.2 (ArC), 138.7 (ArC), 145.3 (ArC); m/z (ESI+) 435.7 ([M + Na]⁺, 100%). *two quaternary carbons not observed.

Ethyl (E)-4,4-dimethylhepta-2,6-dienoate – S10

An oven-dried round bottom flask was flushed with N₂ and loaded with (carbethoxymethylene)triphenylphosphorane (12.0 g, 34.0 mmol, 1.7 equiv.) and dry toluene (60 mL). To the stirred solution was added 2,2-dimethyl-4-pentenal (1.36 mL, 10.0 mmol, 1 equiv.) and the resulting solution was heated at 80 °C overnight. After cooling to room temperature, the solvent was removed *in vacuo* and flash column chromatography (5% Et₂O:hexane) yielded **S10** (3.31 g, 91%) as a colourless oil; $v_{max} / cm^{-1} 3091$, 2982, 1707, 1679, 1382, 1302, 1279, 1186, 1018; δ_{H} (400 MHz, CDCl₃) 1.01 (6H, s, 2 × CH₃), 1.24 (3H, t, *J* 7.2, CH₂CH₃), 2.06 (2H, dt, *J* 7.4, 1.1, CH₂), 4.14 (2H, q, *J* 7.1, CH₂CH₃), 4.93 - 5.03 (2H, m, CH=CHCO₂Et); δ_{C} (100 MHz, CDCl₃) 14.1 (CH₃), 26.0 (2 × CH₃), 36.6 (quat. *C*), 46.3 (*C*H₂), 60.0 (*C*H₂CH₃), 117.6 (CH=*C*H₂), 117.8 (*C*H=CHCO₂Et), 134.1 (*C*H=CH₂), 157.4 (CH=CHCO₂Et), 166.9 (*C*O₂Et); *m*/*z* (ESI+) 183.1 ([M + H]⁺, 100%); HRMS (ESI+) found 205.1205, expect 205.1204 for C₁₁H₁₈O₂Na.

Methyl 4,4-dimethylhept-6-enoate – S11

Magnesium powder (2.70 g, 0.11 mol, 8 equiv.) was added slowly to a stirred solution of ethyl (*E*)-4,4-dimethylhepta-2,6-dienoate (2.50 g, 13.7 mmol, 1 equiv.) in dry MeOH (130 mL) in an oven-dried round bottom flask flushed with N₂.The reaction was stirred at room temperature overnight and more magnesium powder (0.67 g, 27.5 mmol, 2 equiv.) was

added. After stirring for an additional 2 hours, the reaction was neutralised with 2 M HCl and EtOAc was added (150 mL). The layers were separated and the aqueous layer was washed with EtOAc (150 mL). The organic layers were combined, washed with brine (150 mL) and dried over MgSO₄. Concentration *in vacuo* and filtration through silica gel yielded **S11** (1.21 g, 53%) as a crude colourless oil, which was taken through to the next step; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.87 (6H, s, 2 × CH₃), 1.53 - 1.59 (2H, m, CH₂CH₂CO₂CH₃), 1.95 (2H, dt, *J* 7.4, 1.1, CH₂CH=CH₂), 2.25 - 2.31 (2H, m, CH₂CO₂CH₃), 3.66 (3H, s, CO₂CH₃), 4.97 - 5.07 (2H, m, CH=CH₂), 5.80 (1H, m, CH=CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 26.5 (2 × CH₃), 29.3 (CH₂), 32.7 (quat. *C*), 36.4 (*C*H₂), 46.2 (*C*H₂), 51.5 (CO₂CH₃), 117.1 (CH=CH₂), 135.0 (CH=CH₂), 174.7 (CO₂Me).

Methyl (E)-4,4-dimethyl-7-phenylhept-6-enoate – S12

As described in general procedure F, methyl 4,4-dimethylhept-6-enoate (1.20 g, 7.05 mmol, 1 equiv.), styrene (2.40 mL, 21.2 mmol, 3 equiv.) and Grubb's catalyst second generation (60.0 mg, 70.5 µmol, 1 mol%) in CH₂Cl₂ (18 mL) overnight at reflux with subsequent work-up and purification by flash colum chromatography (toluene $\rightarrow 2\%$ EtOAc:toluene) yielded the named compound as a colourless oil (0.8 g, 46%); v_{max} / cm⁻¹ 3042, 2979, 1744, 1465, 1214, 1180; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.93 (6H, s, 2 × CH₃), 1.60 - 1.67 (2H, m, CH₂CH₂CO₂CH₃), 2.12 (2H, dd, *J* 7.5, 0.8, CH₂CH), 2.30 - 2.36 (2H, m, CH₂CO₂CH₃), 3.68 (3H, s, CO₂CH₃), 6.18 - 6.29 (1H, m, CH=CHPh), 6.39 (1H, d, *J* 15.5, CH=CHPh), 7.22 (1H, t, *J* 7.2, ArH), 7.31 (2H, t, *J* 7.5, ArH), 7.37 (2H, d, *J* 7.3, ArH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 26.6 (2 × CH₃), 29.4 (CH₂), 33.5 (quat. *C*), 36.5 (CH₂), 45.4 (CH₂), 51.6 (CO₂CH₃), 126.0 (ArCH), 126.9 (ArCH),

127.0 (*C*H=CHPh), 128.5 (Ar*C*H), 132.4 (CH=*C*HPh), 137.7 (Ar*C*), 174.7 (*C*O₂Me); *m/z* (ESI+) 269.3 ([M + Na]⁺, 100%).

2-(2-Iodoethyl)-2-methyl-1,3-dioxolane – S13³

To a rapidly stirred solution of methyl vinyl ketone (3.00 mL, 36.0 mmol, 1 equiv.) and NaI (6.50 g, 43.3 mmol, 1.2 equiv.) in MeCN (36 mL) was quickly added TMSCI (5.50 mL, 43.3 mmol, 1.2 equiv.) and the mixture was stirred for 25 minutes. Ethylene glycol (2.40 mL, 43.3 mmol, 1.2 equiv.) was added quickly and the reaction was stirred vigorously for another 25 minutes. The reaction mixture was then poured into a separating funnel containing 5% NaHCO₃ (15 mL) and hexane (60 mL), creating an aqueous bottom layer, the reaction mixture in the middle and a top hexane layer. The bottom layer was removed and the organic layers washed with 5% sodium thiosulfate (15 mL). The aqueous layers were combined and extracted with EtOAc (2 × 60 mL). The organic layers were combined and dried over MgSO₄. The solvent was removed *in vacuo*, keeping the water bath below 25 °C, and flash column chromatography (5% EtOAc:hexane) yielded the named compound as an orange oil (1.2 g, 15%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.29 - 1.33 (3H, m, CH₃), 2.26 - 2.34 (2H, m, CH₂), 3.13 - 3.20 (2H, m, CH₂), 3.87 - 4.02 (4H, m, -OCH₂CH₂O-).

Methyl (E)-4,4-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-7-phenylhept-6-enoate – S14

As described in general procedure A, alkylation of methyl (E)-4,4-dimethyl-7-phenylhept-6enoate (0.22 g, 0.89 mmol, 1 equiv.) using LDA (0.75 M, 1.3 mL, 0.98 mmol, 1.1 equiv.), then 2-(2-iodoethyl)-2-methyl-1,3-dioxolane (0.28 g, 1.22 mmol, 1.36 equiv.) and HMPA (0.2 mL), after work-up and purification yielded S14 as an orange oil (75 mg, 17%); v_{max} / cm⁻¹ 2983, 2893, 1714, 1479, 1392, 1210, 1181, 1080; δ_H (500 MHz, CDCl₃) 0.89 (3H, s, J 4.4, CH₃), 0.90 (3H, s, J 4.4, CH₃), 1.29 (3H, s, CH₃), 1.33 (1H, dd, J 14.2, 2.2, 1H from CH₂), 1.51 - 1.58 (2H, m, 1H from CH₂ + 1H from CH₂), 1.64 - 1.71 (2H, m, 1 H from CH₂ + 1 H from CH₂), 1.87 (1H, dd, J 14.2, 9.8, 1H from CH₂), 2.10 (2H, dd, J 7.6, 0.9, CH₂), 2.42 -2.50 (1H, m, CH), 3.67 (3H, s, CO₂CH₃), 3.86 - 3.96 (4H, m, -OCH₂CH₂O-), 6.18 - 6.26 (1H, m, CH=CHPh), 6.37 (1H, d, J 15.8, CH=CHPh), 7.21 (1H, tt, J 7.3, 1.3, ArCH), 7.31 (2H, t, J 7.3, ArCH), 7.36 (2H, d, J 7.3, ArCH); δ_C (125 MHz, CDCl₃) 23.8 (CH₃), 26.7 (CH₃), 26.9 (CH₃), 29.3 (CH₂), 34.2 (quat. C), 36.7 (CH₂), 41.4 (CH), 44.4 (CH₂), 45.9 (CH₂), 51.5 (CO₂CH₃), 64.6 (2 × -OCH₂CH₂O-), 109.6 (C-OCH₂CH₂O-), 126.0 (ArCH), 126.9 (ArCH), 127.2 (CH=CHPh), 128.5 (ArCH), 132.4 (CH=CHPh), 137.7 (ArC), 177.6 (CO₂Me); m/z (ESI+) 383.5 ([M + Na]⁺, 100%); HRMS (ESI+) found 383.2211, expect 383.2198 for C₂₂H₃₂O₄Na.

Methyl (E)-4,4-dimethyl-2-(3-oxobutyl)-7-phenylhept-6-enoate – S15

As described in general procedure B, reaction of methyl (*E*)-4,4-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-7-phenylhept-6-enoate (0.21 g, 0.58 mmol, 1 equiv.) and *p*-toluenesulfonic acid monohydrate (0.22 g, 1.17 mmol, 2 equiv.) in acetone (10 mL), after work-up and purification yielded **S15** as a pale yellow oil (0.15 g, 83%); v_{max} / cm⁻¹ 2958, 1729, 1714, 1465, 1365, 1186, 1156; $\delta_{\rm H}$ (500 MHz, CDCl₃) 0.89 (3H, s, *J* 4.4, CH₃), 0.90 (3H, s, *J* 4.4, CH₃), 1.31 (1H, dd, *J* 14.2, 2.5, 1H from CH₂), 1.78 (2H, q, *J* 7.6, CH₂), 1.86 (1H, dd, *J* 14.2, 9.8, 1H from CH₂), 2.08 - 2.12 (5H, m, CH₂ + CH₃), 2.41 (2H, q, *J* 7.4, CH₂), 2.46 - 2.53 (1H, m, CH), 3.67 (3H, s, CO₂CH₃), 6.17 - 6.25 (1H, m, CH=CHPh), 6.38 (1H, d, *J* 15.8, CH=CHPh), 7.20 (1H, tt, *J* 7.3, 1.3, ArCH), 7.30 (2H, t, *J* 7.3, ArCH), 7.36 (2H, d, *J* 7.6, ArCH); $\delta_{\rm C}$ (125 MHz, CDCl₃) 26.6 (CH₃), 26.9 (CH₃), 28.5 (CH₂), 29.9 (CH₃), 34.1 (quat. C), 40.5 (CH), 40.8 (CH₂), 44.2 (CH₂), 45.7 (CH₂), 51.5 (CO₂CH₃), 125.9 (ArCH), 126.9 (ArCH), 127.0 (CH=CHPh), 128.4 (ArCH), 132.4 (CH=CHPh), 137.6 (ArC), 177.1 (CO₂Me), 207.6 (CO); *m*/z (ESI+) 339.4 ([M + Na]⁺, 100%); HRMS (ESI+) found 339.1934, expect 339.1936 for C₂₀H₂₈O₃Na.

rac-(3S,6S)-3-((E)-2,2-Dimethyl-5-phenylpent-4-en-1-yl)-6-methyl-6-(1-phenyl-2l5-propa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one – trans-1g

As described in general procedure D, reaction of methyl (E)-4,4-dimethyl-2-(3-oxobutyl)-7phenylhept-6-enoate (0.10 g, 0.32 mmol, 1 equiv.), (3-bromoprop-1-yn-1-yl)benzene (0.08 g, 0.41 mmol, 1.3 equiv.), SmI₂ (11 mL, 1.11 mmol, 3.5 equiv.) and NiI₂ (7 mg, 22.1 µmol, 2 mol % with respect to SmI₂), after work-up and flash column chromatography (5% EtOAc:hexane) yielded *trans-*1g as a yellow oil (combined yield for *cis* and *trans* isomers: 26%, for *trans*-1g: 13 mg, 13%); δ_H (500 MHz, CDCl₃) 0.87 (3H, s, J 4.4, CH₃), 0.88 (3H, s, J 4.4, CH₃), 1.17 (1H, dd, J 14.2, 5.4, 1H from CH₂), 1.62 - 1.70 (4H, m, 1H from CH₂ + CH₃), 1.83 - 1.91 (1H, m, 1H from CH₂), 2.01 - 2.13 (2H, m, CH₂), 2.15 - 2.22 (1H, m, 1H from CH₂), 2.25 (1H, dd, J 14.2, 4.1, 1H from CH₂), 2.27 - 2.34 (1H, m, 1H from CH₂), 2.51 - 2.58 (1H, m, CH), 5.14 (2H, s, C=CH₂), 6.19 - 6.26 (1H, m, CH=CHPh), 6.32 (1H, d, J 15.8, CH=CHPh), 7.21 (1H, tt, J 7.3, 1.6, ArCH), 7.27 - 7.32 (3H, m, ArCH), 7.32 - 7.37 (4H, m, ArCH), 7.47 (2H, d, J 7.3, ArCH); δ_C (125 MHz, CDCl₃) 26.1 (CH₂), 26.9 (CH₃), 26.9 (CH₃), 28.8 (CH₃), 32.4 (CH₂), 34.3 (quat. C), 35.2 (CH), 42.9 (CH₂), 45.9 (CH₂), 78.7 (C=CH₂), 82.7 (quat. C), 110.4 (C=C=CH₂), 126.0 (ArCH), 126.9 (ArCH), 127.2 (ArCH), 127.5 (ArCH), 128.5 (ArCH), 128.9 (ArCH), 132.4 (CH₂CH=CH and CH₂CH=CH), 133.7 (ArC), 137.7 (ArC), 175.0 (CO), 207.3 (C=CH₂); m/z (ESI+) 423.5 ([M + Na]⁺, 100%).

S32

General Procedure G: Sonogashira reaction

5-Phenylpent-4-yn-1-ol - S16⁴

An oven dried flask was degassed with N₂ and loaded with THF (25 mL), DIPA (10 mL), iodobenzene (2.70 mL, 24.1 mmol, 2 eq.) and 4-pentyn-1-ol (1.10 mL, 13.4 mmol, 1 equiv.). PdCl₂(PPh₃)₂ (173 mg, 0.25 mmol, 2 mol%) and CuI (30 mg, 0.16 mmol, 1 mol%) were added to the mixture, which was heated under reflux for 18 hours. The reaction mixture was filtered through celite, the residue washed and the filtrate concentrated *in vacuo*. The crude product was purified by flash column chromatography (15% \rightarrow 25% EtOAc:petroleum ether) to give the named compound as a dark orange oil (1.55 g, 78%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.82 (2H, quin, *J* 6.6, CH₂), 2.50 (2H, t, *J* 7.1, CH₂), 2.74 (1H, br. s, OH), 3.76 (2H, t, *J* 5.2, CH₂), 7.19 - 7.30 (3H, m, ArH), 7.36 - 7.41 (2H, m, ArH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 15.8 (CH₂), 31.2 (CH₂), 61.3 (CH₂), 80.9 (C=C), 89.3 (C=C), 123.6 (ArC), 127.5 (ArCH), 128.1, (ArCH), 131.4, (ArCH).

(5-Iodopent-1-yn-1-yl)benzene – S17⁴

As described in general procedure C, reaction of 5-phenylpent-4-yn-1-ol (0.15 g, 0.94 mmol, 1 equiv.), PPh₃ (0.37 g, 1.43 mmol, 1.5 equiv.), imidazole (95.0 mg, 1.46 mmol, 1.5 equiv.) and I₂ (0.36 g, 1.42 mmol, 1.5 equiv.) after work-up and flash column chromatography (hexane) yielded the named compound as a colourless oil (0.18 g, 72%); $\delta_{\rm H}$ (400 MHz,

CDCl₃) 2.11 (2H, quin, *J* 6.8, CH₂), 2.57 (2H, t, *J* 6.7, CH₂), 3.38 (2H, t, *J* 6.8, CH₂), 7.27 - 7.33 (3H, m, Ar*H*), 7.36 - 7.45 (2H, m, Ar*H*); δ_{C} (100 MHz, CDCl₃) 5.4 (CH₂), 20.4 (CH₂), 32.1 (CH₂), 81.7 (C=C), 87.8 (C=C), 123.5 (ArC), 127.8 (ArCH), 128.2 (ArCH), 131.6 (ArCH).

Ethyl 2-(3-oxobutyl)-7-phenylhept-6-ynoate – S18

As described in general procedure A, treatment of ethyl 4-(2-methyl-1,3-dioxolan-2yl)butanoate (1.00 g, 4.94 mmol, 1 equiv.) in THF (2 mL) with 2.0 M LDA in hexane (3.50 mL, 5.50 mmol, 1.1 equiv.), followed by addition of (5-bromopent-1-yn-1-yl)benzene (1.32 g, 5.93 mmol, 1.2 equiv.) in HMPA (1.0 mL), after work-up gave the crude acetal protected keto-ester, which was used without further purification. As described in general procedure B, reaction of the crude ester with *p*-toluenesulfonic acid monohydrate (1.89 g, 9.89 mmol, 2 equiv.) in acetone (50 mL), after work-up and purification by column chromatography on silica gel (petroleum ether \rightarrow CH₂Cl₂:petroleum ether) gave the title compound (0.98 g, 66% over 2 steps) as a colourless oil; v_{max} /cm⁻¹ 2937, 1716, 1598, 1490, 1366, 1257, 1153, 1096, 1069, 1025; $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.27 (3H, t, *J* 7.1, CH₂CH₃), 1.57 - 1.70 (3H, m, 1H from CH₂ + CH₂), 1.76 - 1.82 (1H, m, 1H from CH₂), 1.85 (2H, q, *J* 7.8, CH₂), 2.13 (3H, s, CH₃), 7.26 - 7.31 (3H, m, ArH), 7.37 - 7.41 (2H, m, ArH); $\delta_{\rm C}$ (125 MHz, CDCl₃) 14.3 (CH₃), 19.2 (CH₂), 25.8 (CH₂), 26.3 (CH₂), 30.0 (CH₃), 31.4 (CH₂), 41.0 (CH₂), 44.3 (CH), 60.3 (CH₂CH₃), 81.0 (PhC=C), 89.4 (PhC=C), 123.8 (ArC), 127.6 (ArCH), 128.2 (ArCH), 131.5 (ArCH), 175.5 (CO₂Et), 207.9 (CO); m/z (ESI+) 301.3 ([M+H]⁺, 100%); HRMS (ESI+) found 323.1613, expect 323.1623 for C₁₉H₂₄O₃Na.

(3-Bromoprop-1-ynyl)dimethyl(phenyl)silane – S19²

Si Br

A solution of LDA was prepared by adding *n*-BuLi (1.54 M solution in hexane, 11.4 mL, 17.6 mmol, 1.1 equiv.) to diisopropylamine (2.40 g, 17.6 mmol, 1.1 equiv.) in Et₂O (27 mL) at -78 °C under N₂ and stirring for 1 h. To this solution was added propargylic bromide (80% solution in toluene, 1.78 mL, 16.0 mmol, 1 equiv.) and the reaction was stirred for 1 h before the addition of chlorodimethyl(phenyl)silane (2.68 g, 16.0 mmol, 1 equiv.) and the resulting reaction mixture allowed to warm to room temperature overnight. The reaction was quenched by the addition of aqueous saturated NH₄Cl (15 mL) and the aqueous layer extracted with Et₂O (3 × 30 mL). The combined organic layers were washed with brine (20 mL), dried (Na₂SO₄) and concentrated *in vacuo* to yield the crude product. Purification by column chromatography on silica gel eluting with 1:80 Et₂O in pentane, gave the title compound (3.70 g, 91%) as a yellow oil; $\delta_{\rm H}$ (500 MHz, CDCl₃) 0.31 (6H, s, Si(CH₃)₂Ph), 3.82 (2H, s, CH₂), 7.22-7.27 (3H, m, ArH), 7.48-7.50 (2H, m, ArH); $\delta_{\rm C}$ (100 MHz, CDCl₃) -1.3 (Si(CH₃)₂Ph), -1.1 (Si(CH₃)₂Ph), 14.5 (CH₂), 90.3 (C≡CCH₂), 101.6 (C≡CSi), 127.9 (ArCH), 133.6 (ArCH), 133.8 (ArCH), 136.2 (ArC).

(3R,6S)-6-(1-(Dimethyl(phenyl)silyl)-propa-1,2-dien-1-yl)-6-methyl-3-(5-phenylpent-4-yn-1-yl)tetrahydro-2H-pyran-2-one – trans-1h

As described in general procedure D, reaction of methyl (E)-4,4-dimethyl-2-(3-oxobutyl)-7phenylhept-6-enoate 0.44 (3-bromoprop-1-(109)mmol, 1 equiv.), mg, ynyl)dimethyl(phenyl)silane (112 mg, 0.57 mmol, 1.3 equiv.), SmI₂ (13.0 mL, 1.33 mmol, 3 equiv.) and NiI₂ (10.0 mg, 0.03 mmol, 2 mol % with respect to SmI₂), after work-up and flash column chromatography (petroleum ether \rightarrow 5% EtOAc:petroleum ether) yielded *trans*-1h as a colourless oil (combined yield for cis and trans isomers: 41%, for trans-1h: 73 mg, 21%); v_{max} /cm⁻¹ 2954, 1927, 1731, 1489, 1428, 1249, 1098; δ_H (500 MHz, CDCl₃) 0.35 - 0.38 (3H, s, SiCH₃), 0.45 - 0.49 (3H, s, SiCH₃), 1.33 (3H, s, CH₃), 1.35 - 1.49 (4H, m, 1H from CH₂ + 1H from $CH_2 + CH_2$), 1.58 - 1.64 (1H, m, 1H from CH_2), 1.70 - 1.83 (4H, m, $CH_2 + CH_2$), 1.89 (1H, ddd, J 13.7, 7.9, 5.5, 1H from CH₂), 2.27 (2H, td, J 7.0, 2.4, CH), 4.53 (2H, s, C=CH₂), 7.18 - 7.33 (8H, m, ArH), 7.47 - 7.51 (2H, m, ArH); δ_C (125 MHz, CDCl₃) -1.9 (SiCH₃), -1.5 (SiCH₃), 19.4 (CH), 22.8 (CH₂), 26.1 (CH₂), 29.6 (CH₃), 30.7 (CH₂), 33.3 (CH₂), 38.3 (CH₂), 72.3 (C=C=CH₂), 80.9 (C≡CPh), 84.8 (quat. C), 89.7 (C≡CPh), 102.7 (C=C=CH₂), 127.5 (ArCH), 127.8 (ArCH), 128.2 (ArCH), 129.2 (ArCH), 131.5 (ArCH), 131.9 (ArC), 134.1 (ArCH), 137.8 (ArC), 173.6 (CO), 207.9 (C=C=CH₂); m/z (ESI+) 429.0 $([M+H]^+, 100\%)$; HRMS (ESI+) found 451.2048, expect 451.2069 for C₂₈H₃₂O₂SiNa.
6-Allyl-6-methyltetrahydro-2H-pyran-2-one - S20⁵

As described in general procedure D, reaction of methyl 5-oxohexanoate (300 mg, 1.90 mmol, 1 equiv.), allyl bromide (252 mg, 2.09 mmol, 1.1 equiv.), SmI₂ (76.0 mL, 7.59 mmol, 3 equiv.) and NiI₂ (48.0 mg, 0.15 mmol, 2 mol % with respect to SmI₂), after work-up and flash column chromatography (petroleum ether \rightarrow 10% EtOAc:petroleum ether) yielded **S20** as a colourless oil (245 mg, 84%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.37 (3H, s, CH₃), 1.63 - 1.71 (1H, m, 1H from CH₂), 1.77 - 1.93 (3H, m, 1H from CH₂ + CH₂), 2.40 - 2.58 (4H, m, CH₂ + CH₂), 5.10 - 5.19 (2H, m, CH=CH₂), 5.80 (1H, ddt, *J* 14.5, 10.2, 7.3, CH=CH₂); $\delta_{\rm C}$ (100 MHz, CDCl₃) 16.5 (CH₂), 26.3 (CH₃), 29.3 (CH₂), 31.4 (CH₂), 46.1 (CH₂CH=CH₂), 83.6 (quat. *C*), 119.4 (CH=CH₂), 132.3 (CH=CH₂), 171.2 (CO).

6-Cinnamyl-6-methyltetrahydro-2H-pyran-2-one – S21⁵

As described in general procedure F, methyl 4,4-dimethylhept-6-enoate 6-allyl-6methyltetrahydro-2H-pyran-2-one (500 mg, 3.57 mmol, 1 equiv.), *trans*-stilbene (1.93 g, 10.7 mmol, 3 equiv.) and Hoveyda–Grubbs second generation catalyst (52.0 mg, 82.0 µmol, 2.3 mol%) in CH₂Cl₂ (10 mL) overnight at reflux with subsequent work-up and purification by flash column chromatography (petroleum ether \rightarrow 2% EtOAc:petroleum ether) yielded the named compound as a yellow oil (300 mg, 40%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.34 (3H, s, CH₃), 1.59 - 1.67 (2H, m, CH₂), 1.73 - 1.87 (2H, m, CH₂), 2.33 - 2.47 (2H, m, CH₂), 2.50 (2H, dd, *J* 7.4, 1.1, CH₂CH=CHAr), 6.12 (1H, dt, J 15.7, 7.5, PhCH=CH), 6.39 (1H, d, J 15.7, PhCH=CH), 7.12 - 7.31 (5H, m, ArH); δ_C (100 MHz, CDCl₃) 16.5 (CH₂), 26.4 (CH₃), 29.3 (CH₂), 31.6 (CH₂), 45.4 (CH₂), 84.0 (quat. *C*), 123.8 (PhCH=CH), 126.1 (ArCH), 127.4 (ArCH), 128.5 (ArCH), 134.2 (PhCH=CH), 136.9 (ArC), 171.2 (CO).

(E)-5-Phenylpent-4-en-1-ol – S22⁶

Ph____OH

To a solution of LiAlH₄ (1.04 g, 27.3 mmol, 3 equiv.) in THF (16 mL) was added 5phenylpent-4-yn-1-ol (1.46 g, 9.11 mmol, 1 equiv.) dropwise at 0 °C. The reaction mixture was stirred at 60 °C over night. Once complete and cooled to 0 °C, the reaction was diluted with ether and carefully quenched with H₂O. After the addition of Rochelle's salt, the layers were separated and the aqueous layer extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (30 mL), dried over Na₂SO₄ and concentrated *in vacuo*. The compound was purified using flash column chromatography (petroleum ether \rightarrow 5% \rightarrow 10% \rightarrow 20% EtOAc:petroleum ether), yielding the named compound as an orange oil (1.33 g, 89%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.73 – 1.82 (2H, m, CH₂), 2.07 (1H, s, OH), 2.29 – 2.37 (2H, m, CH₂), 3.71 (2H, t, *J* 6.4, CH₂OH), 6.26 (1H, dt, *J* 15.7, 6.9, CH₂CH=CH), 6.45 (1H, d, *J* 15.9, CH₂CH=CH), 7.21 – 7.26 (1H, m, ArH), 7.28 – 7.42 (4H, m, ArH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 29.3 (CH₂), 32.1 (CH₂), 62.2 (CH₂), 125.8 (ArCH), 126.9 (ArCH), 128.4 (ArCH), 130.0 (CH=CHPh), 130.2 (CH=CHPh), 137.5 (ArC).

(E)-(5-Iodopent-1-en-1-yl)benzene - S23⁷

Ph_____I

As described in general procedure C, reaction of (*E*)-5-phenylpent-4-en-1-ol (1.16 g, 7.16 mmol, 1 equiv.), PPh₃ (2.82 g, 16.8 mmol, 1.5 equiv.), imidazole (0.73 g, 16.8 mmol, 1.5 equiv.) and I₂ (2.73 g, 16.8 mmol, 1.5 equiv.), after work-up and flash column chromatography (hexane) yielded the title compound as a colourless oil (1.65 g, 85%); $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.93 (2H, quin, *J* 7.0, CH₂), 2.27 (2H, qd, *J* 7.1, 1.4, CH₂I), 3.16 (2H, t, *J* 6.9, CH₂CH=CH), 6.08 (1H, dt, *J* 15.8, 7.0, CH₂CH=CH), 6.39 (1H, d, *J* 15.8, CH₂CH=CH), 7.14 (1H, tt, *J* 6.5, 1.5, Ar*H*), 7.20 - 7.30 (4H, m, Ar*H*); $\delta_{\rm C}$ (100 MHz, CDCl₃) 6.3 (CH₂), 32.8 (CH₂), 33.5 (CH₂), 126.0 (ArCH), 127.1 (ArCH), 128.3 (ArCH), 128.5 (CH=CHPh), 131.3 (CH=CHPh), 137.4 (ArC).

(3R,6S)-6-Cinnamyl-6-methyl-3-((E)-5-phenylpent-4-en-1-yl)tetrahydro-2H-pyran-2-one – trans-1i

As described in general procedure A, alkylation of (*S*)-6-cinnamyl-6-methyltetrahydro-2Hpyran-2-one (250 mg, 1.08 mmol, 1 equiv.) using LDA (1 M, 1.22 mL, 1.20 mmol, 1.1 equiv.), then (*E*)-(5-iodopent-1-en-1-yl)benzene (887 mg, 3.25 mmol, 2.7 equiv.) in HMPA (0.5 mL), after work-up and purification yielded *trans*-1i as a colourless oil (197 mg, 49%); v_{max} /cm⁻¹ 2975, 2944, 1721, 1494, 449, 1380, 1360, 1298, 1199, 1110; $\delta_{\rm H}$ (400 MHz, CDCl₃) 1.41 - 1.45 (3H, s, CH₃), 1.54 - 1.79 (5H, m, 1H from CH₂ + CH₂ + CH₂), 1.85 - 2.04 (3H, m, 1H from $CH_2 + CH_2$), 2.24 (2H, q, *J* 7.1, CH_2), 2.40 - 2.48 (1H, m, CH), 2.50 - 2.62 (2H, m, $CCH_2CH=CH$), 6.13 - 6.25 (2H, m, 2 × PhCH=CH), 6.36 - 6.50 (2H, m, 2 × PhCH=CH), 7.17 - 7.26 (2H, m, Ar*H*), 7.27 - 7.39 (8H, m, Ar*H*); δ_C (100 MHz, CDCl₃) 22.3 (*C*H₂), 26.7 (*C*H₂), 27.5 (*C*H₃), 31.0 (*C*H₂), 31.4 (*C*H₂), 32.9 (*C*H₂), 39.5 (*C*H), 44.6 (*CC*H₂CH=CH), 83.8 (quat. *C*), 123.9 (PhCH=*C*H), 125.9 (Ar*C*H), 126.2 (Ar*C*H), 126.9 (Ar*C*H), 127.5 (Ar*C*H), 128.5 (Ar*C*H), 128.6 (Ar*C*H), 130.2 (Ph*C*H=*C*H + PhCH=*C*H), 134.2 (Ph*C*H=CH), 137.0 (Ar*C*), 137.7 (Ar*C*), 174.2 (*C*O); *m*/*z* (ESI+) 375.4 ([M+H]⁺, 100%); HRMS (ESI+) found 397.2128, expect 397.2144 for C₂₆H₃₀O₂Na.

Crystal data and Structure Refinements

Figure S1 Crystal Structure of 2b (CCDC 1009956)

Table S1 Crystal data and structure refinement for 2b (CCDC 1009956)

Empirical formula	$C_{26}H_{34}O_2$
Formula weight	378.53
Temperature/K	566(2)
Crystal system	orthorhombic
Space group	Pca2 ₁
a/Å	13.7848(12)
b/Å	12.024(2)
c/Å	12.7279(13)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2109.7(5)
Z	4
$\rho_{calc}mg/mm^3$	1.192
μ/mm^{-1}	0.073
F(000)	824.0
2Θ range for data collection	6.402 to 50.052°
Index ranges	$-9 \le h \le 16, -14 \le k \le 5, -15 \le l \le 14$

*SmI*₂–*H*₂*O*-mediated 5-exo/6-exo lactone radical cyclisation cascades

Reflections collected	4485
Independent reflections	3103[R(int) = 0.0732]
Data/restraints/parameters	3103/1/257
Goodness-of-fit on F ²	1.043
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0906, wR_2 = 0.1778$
Final R indexes [all data]	$R_1 = 0.1502, wR_2 = 0.2192$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.25

Figure S2 Crystal Structure of 2d (CCDC 1012766)

Table S2 Crystal data and structure refinement for 2d (CCDC 1012766)

Empirical formula	C26 H33 Br O2
	0-01-00-0-0-
Formula weight	457.43
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	a = 11.0845(3) Å
	b = 12.9326(3) Å
	c = 15.6251(4) Å
Volume	2210.80(10) Å ³
Z	4
Density (calculated)	1.374 Mg/m ³
Absorption coefficient	2.672 mm ⁻¹
F(000)	960
Crystal size	0.19 x 0.15 x 0.07 mm ³
Theta range for data collection	3.43 to 72.15°.
Index ranges	-13<=h<=12, -15<=k<=15, -19<=l<=19

Reflections collected	19984
Independent reflections	8306 [R(int) = 0.0292]
Completeness to theta = 67.00°	96.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8350 and 0.712437
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8306 / 0 / 529
Goodness-of-fit on F ²	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0329, wR2 = 0.0829
R indices (all data)	R1 = 0.0368, wR2 = 0.0855
Largest diff. peak and hole	0.512 and -0.551 e.Å ⁻³

References

- ¹ M. Szostak, M. Spain and D. J. Procter, J. Org. Chem., 2012, 77, 3049.
- ² D. Parmar, H. Matsubara, K. Price, M. Spain and D. J. Procter, *J. Am. Chem. Soc.*, **2012**, *134*, 12751.
- ³ N. Nazef, R. D. M. Davies and M. F. Greaney, Org. Lett., 2012, 14, 3720.
- ⁴ D. M. Barber, H. J. Sanganee and D. J. Dixon, Org. Lett., 2012, 14, 5290.
- ⁵ D. Parmar, K. Price, M. Spain, H. Matsubara, P. Bradley, D. J. Procter, *J. Am. Chem. Soc.*, **2011**, *133*, 2418.
- ⁶ R. Matsubara and T. F. Jamison, J. Am. Chem. Soc., 2010, 132, 6880.
- ⁷ A. Han, T. Spataru, J. Hartung, G. Li, and J. R. Norton, J. Org. Chem., 2014, 79, 1938.

¹H and ¹³C NMR spectra

Ethyl 2-(3-oxobutyl)hept-6-enoate – S3

(3R,6S)-6-Methyl-3-(pent-4-en-1-yl)-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one – trans-1a

(3S,6S)-6-Methyl-3-(pent-4-en-1-yl)-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one – cis-1a

(4S,4aS,5S,6S,7R,9aS)-4,5,7-Trimethyl-6-phenyldecahydro-4aH-benzo[7]annulene-4a,7diol - 2a

(1S,2R,3R,4S,5R)-1,3-Dimethyl-5-(pent-4-en-1-yl)-2-phenylcycloheptane-1,4-diol -3a

2013-02-05-djp-49.010.001.1r.esp

(E)-Ethyl 2-(3-oxobutyl)-7-phenylhept-6-enoate – S5

(3R,6S)-6-Methyl-3-((E)-5-phenylpent-4-en-1-yl)-6-(1-phenylpropa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one – trans-1b

(1S,2R,3R,4S,5R)-1,3-Dimethyl-2-phenyl-5-((E)-5-phenylpent-4-en-1-yl)cycloheptane-1,4-diol-4b

(4R,4aR,5S,6S,7R,9aS)-4-Benzyl-5,7-dimethyl-6-phenyldecahydro-1H-benzo[7]annulene-4a,7-diol – 2b

(4S, 4aS, 5R, 6R, 7S, 9aR) - 7 - Methyl - 5 - (methyl - d) - 6 - phenyl - 4 - ((S) - phenyl methyl - d) decahydro-data ((S) - phenyl - d) - 6 - phenyl - 4 - ((S) - phenyl - d) - ((S) - p

4aH-benzo[7]annulene-5,6-d2-4a,7-diol-d2 - 2b-D4

Ethyl (E)-2-(3-oxobutyl)-7-(4-(trifluoromethyl)phenyl)hept-6-enoate – S6

(3R,6S)-6-Methyl-6-(1-phenyl-propa-1,2-dien-1-yl)-3-((E)-5-(4-(trifluoromethyl)phenyl)pent-4-en-1-yl)tetrahydro-2H-pyran-2-one – trans-1c

(4S, 4aS, 5R, 6R, 7S, 9aR) - 5, 7 - Dimethyl - 6 - phenyl - 4 - (4 - (trifluoromethyl) benzyl) decahydro-benzyl) decahydro-benzyl decahydro-benzyl decahydro-benzyl) decahydro-benzyl decahydr

4aH-benzo[7]annulene-4a,7-diol – 2c

Ethyl (E)-7-(4-bromophenyl)-2-(3-oxobutyl)hept-6-enoate – S7

rac-(3R, 6S)-3-((E)-5-(4-Bromophenyl)pent-4-en-1-yl)-6-methyl-6-(1-phenyl-2l5-propa-1, 2-propa-1, 2-propa-1,

dien-1-yl)tetrahydro-2H-pyran-2-one – trans-1d

(4S,4aS,5R,6R,7S,9aR)-4-(4-Bromobenzyl)-5,7-dimethyl-6-phenyldecahydro-4aHbenzo[7]annulene-4a,7-diol – 2d

Ethyl (E)-2-(3-oxobutyl)-7-(p-tolyl)hept-6-enoate – S8

rac-(3R,6S)-6-Methyl-6-(1-phenyl-propa-1,2-dien-1-yl)-3-((E)-5-(p-tolyl)pent-4-en-1-

yl)tetrahydro-2H-pyran-2-one – trans-1e

110 100 90 Chemical Shift (ppm)

(4S, 4aS, 5R, 6R, 7S, 9aR)-5, 7-Dimethyl-4-(4-methylbenzyl)-6-phenyldecahydro-4aH-

benzo[7]annulene-4a,7-diol – 2e

Ethyl (E)-7-(2-chlorophenyl)-2-(3-oxobutyl)hept-6-enoate – S9

rac-(3R, 6S)-3-((E)-5-(2-Chlorophenyl)pent-4-en-1-yl)-6-methyl-6-(1-phenyl-propa-1, 2-phenyl-propa-1, 2-phenyl-phenyl-propa-1, 2-phenyl-propa-1, 2-phenyl-phenyl-propa-1, 2-phenyl-propa-1, 2-phenyl-phenyl-propa-1, 2-phenyl-propa-1, 2-phenyl-phenyl-phenyl-propa-1, 2-phenyl-pheny

dien-1-yl)tetrahydro-2H-pyran-2-one – trans-1f

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 Chemical Shift (ppm)

rac-(4S,4aS,5R,6R,7S,9aR)-4-(2-Chlorobenzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl)-5,7-dimethyl-6-phenyldecahydro-4aH-benzyl - 5,7-dimethyl-6-phenyldecahydro-4aH-benzyl - 5,7-dimethyl-6-phenzyl - 5,7-dimethyl-6-phenyldecahydro-4aH-benzyl - 5,7-dimethyl-6-phenyldecahydro-4aH-benzyl - 5,7-dimethyl-6-phenyldecahydro-4aH-benzyl - 5,7-dimethyl-6-phenyldecahydro-4aH-benzyl - 5,7-dimethyl-6-phenyldecahydro-4aH-benzyl - 5,7-dimethyl-6-phenyldecahydro-4aH-benzyl - 5,7-dimethyl - 5,7-di

benzo[7]annulene-4a, 7-diol-2f

ethyl (E)-4,4-dimethylhepta-2,6-dienoate – S10

200 192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)

ethyl (E)-4,4-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-7-phenylhept-6-enoate – S14

$methyl\,(E)\mbox{-}4,\mbox{-}dimethyl\mbox{-}2\mbox{-}(3\mbox{-}oxobutyl)\mbox{-}7\mbox{-}phenylhept\mbox{-}6\mbox{-}enoate\mbox{-}S15$

(3S,6S)-3-((E)-2,2-dimethyl-5-phenylpent-4-en-1-yl)-6-methyl-6-(1-phenyl-2l5-propa-1,2-dien-1-yl)tetrahydro-2H-pyran-2-one-trans-1g

Ethyl 2-(3-oxobutyl)-7-phenylhept-6-ynoate - S18

(3R,6S)-6-(1-(Dimethyl(phenyl)silyl)--propa-1,2-dien-1-yl)-6-methyl-3-(5-phenylpent-4-yn-1-yl)tetrahydro-2H-pyran-2-one trans-1h

(3R,6S)-6-Cinnamyl-6-methyl-3-(5-phenylpent-4-en-1-yl)tetrahydro-2H-pyran-2-one trans-1i

