Enhanced resistive switching effect by illumination in self-assembly NiWO$_4$ nano-nests

Bai Sun,ab Wenxi Zhao,ab Lujun Wei,a Hongwei Li,a and Peng Chen*$_^a$

aSchool of Physics Science and Technology, Southwest University, Chongqing 400715, China
bInstitute for Clean Energy & Advanced Materials (ICEAM), Southwest University, Chongqing 400715, China

Supplementary Information

1. Preparation details of NiWO$_4$:

In our case, self-assembly NiWO$_4$ nano-nests grown on Ti substrate were synthesized by hydrothermal method. Analytical Na$_2$WO$_4$·2H$_2$O (0.05 mol) and Ni(NO$_3$)$_2$·6H$_2$O (0.05 mol) were first dissolved in 40 ml deionized water with stirring, followed by addition of 0.5 g cationic surfactant cetyltrimethylammonium bromide (CTAB). After stirring continuously for 2 hour, 2.0 g of NaOH was added with stirring for 30 min. Finally the solution was transferred to a 50 ml sealed Teflon-lined stainless steel autoclave. The cleaned Ti substrate was placed in the solution in autoclave. Then the autoclave was kept at 220 °C for 72 hours. After the autoclave was cooled to room temperature, the Ti substrate was rinsed by deionized water and subsequently dried at 60 °C for overnight.

2. Material characteristics

Microstructure of NiWO$_4$ nano-nests was characterized by X-ray diffraction (XRD, Shimadzu

Electronic Supplementary Material (ESI) for ChemComm.
This journal is © The Royal Society of Chemistry 2014
XRD-7000 X-ray diffractometer) with Cu $K\alpha$ radiation. Surface morphology of NiWO$_4$ nano-nests grown on Ti substrate was characterized using scanning electron microscopy (SEM, JSM-6510). The microstructure, selected area electron diffraction (SAED) pattern and the energy dispersive X-ray spectroscopy (EDS) spectra of the NiWO$_4$ nano-nests were observed by transmission electron microscopy (JEM-2100) at an acceleration voltage of 200 kV. For the characterization of UV-vis absorption spectrum, in order to exclude the interference of Ti substrate, we have scraped off NiWO$_4$ nano-nests from the Ti substrate for UV-vis absorption spectrum characterization.

3. Device characteristics

In the test of resistive switching effect, Ag and Ti are the top electrode and bottom electrode, respectively, where the Ag electrode with area of about 1 mm2 was prepared by vacuum deposition. Current-voltage (I-V) characterizations were tested using the electrochemical workstation CHI-660D.