Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2014

1. **Upconversion luminescent logic gates and turn-on sensing of glutathione based on two-photon excited quantum dots conjugated with dopamine**

Rijun Gui, Hui Jin, Xifeng Liu, Zonghua Wang, Feifei Zhang, Jianfei Xia, Min Yang and Sai Bi

Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory,

Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemical Science and Engineering, Qingdao University, Qingdao 266071, P.R. China. E-mail address: wangzonghua@qdu.edu.cn (Z. Wang); Tel./fax: +86 532 85950873.

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.

College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China

Part S1. Preparation procedures of MPA-CdTe QDs and QDs-MPA-DA

1. **Preparation of NaHTe precursor**

Typically, 0.5 mmol Te and 2 mmol NaBH₄ were loaded in a three-necked flask. The air was pumped off and replaced with N₂. Then, 10 mL of ultrapure water was added with a syringe and reaction mixture was heated at 80 °C for 30 min to obtain a deep-red and clear solution. The as-prepared NaHTe solution was immediately used or stored for further use under the ambience of N₂.

2. **Preparation of MPA-CdTe QDs**

MPA-capped CdTe QDs were prepared as below; 0.25 mmol Cd²⁺ and 0.45 mmol MPA were placed into a three-necked flask to form 50 mL of homogeneous aqueous solution, adjusting pH of the solution to 12.0 by dropwise addition of 1.0 M NaOH. Under the protection of N₂, freshly prepared 0.025 mmol of NaHTe was swiftly injected into this solution at room temperature. Afterward, this solution was heated to reflux with a condenser attached at 100 °C. Aliquots of reaction solution were taken out at different time intervals to record temporal evolution of UV-vis and PL spectra. When the reaction time reached 6 h, the expected PL wavelength was observed. Following operation was to remove the heating source and cool this solution to room temperature. After that, the as-prepared CdTe QDs was concentrated by circumrotate evaporation, precipitated with 2-propanol and collected by centrifugation. Colloidal precipitates were dried in vacuum at 60 °C, and re-dispersed in aqueous solution for subsequent experiments.

3. **Preparation of QDs-MPA-DA**

The as-prepared MPA-CdTe QDs were modified by coupling DA on the surface of QDs directly. Briefly, under the action of ultrasonic, 1.0 mg mL⁻¹ of QDs dispersed in PBS (10 mM, pH 9.0) was treated with 1.0 mg mL⁻¹ of DA for 10 min. Then, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) hydrochloride was added (10 mM). The resulting mixture solution was sonicated for another 1 h, followed by the addition of EDC (40 mM) and N-hydroxysuccinimide (NHS, 20 mM), stirring for 24 h. The reaction was terminated by adding mercaptoethanol. Final reaction solution was further purified by centrifugation (12 000 rpm) for
1 h. The supernatant was collected to obtain products, which were diluted with PBS to prepare the surface modified CdTe QDs (QDs-MPA-DA_b) aqueous suspension for following experiments.

The as-prepared MPA-CdTe QDs were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis absorption and PL emission spectra. As exhibited in Fig. S1a, these QDs were quasi-spherical particles, with a uniform and average diameter of ~4.8 nm. XRD patterns (in Fig. S1b) indicated that the lattice parameters of QDs fitted well to zinc-blende (ZB) structure of bulk CdTe crystal. Fig. S1c showed that the first excitation absorption weak appeared at ~530 nm, and the maximum emission wavelength occurred at ~585 nm (excited at 530 nm).
Fig. S2 PL spectrum (excited at 530 nm) and UCL spectrum upon the excitation with an 800 nm fs laser (6 mW) of the as-prepared CdTe QDs.

Fig. S3 The ln-ln plot of the integral intensity from UCL (excited with an 800 nm fs laser) of QDs vs. the pump power of the fs laser.

Fig. S4 Relative UCL intensity of the QDs-MPA-DA logic-gate system in FBS and human urine samples (with 100-fold dilution) under different input conditions (as indicated in the inserted table).