Electronic Supplementary Information

The Influence of the Enantiomeric Ratio of an Organic Ligand on the Structure and Chirality of Metal-Organic Frameworks

Iván Burneo,^a Kyriakos C. Stylianou,^a Inhar Imaz^a and Daniel Maspoch^{a,b*}

^aICN2 – Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona),

Spain

^bInstitució Catalana de Recerca i Estudis Avançats (ICREA), 08100 Barcelona, Spain

SI 1. Experimental section.

<u>Materials.</u> The following reagents were purchased from Sigma-Aldrich: 1,3,5-benzenetricarbonyl trichloride; L-aspartic acid dimethyl ester hydrochloride; triethylamine; lithium hydroxide monohydrate; and copper nitrate pentahydrate. D-aspartic acid dimethyl ester hydrochloride was purchased from Bachem S. and used as received. DMSO-*d* and chloroform-*d* for ¹H-NMR spectroscopy were purchased from Euriso-top® Cambridge Isotope Laboratories and used as received.

Synthesis of 1,3,5-benzene tricarbonyl tri-(S-(L-) or R-(D-)aspartic acid; S- or R-BTAsp).

Synthesis and characterisation of (1S,3S,5S)-1,3,5-benzenetricarbonyl tri-(S-(L-)-aspartic dimethyl ester) S-BTAsp-OMe and (1R,3R,5R)-1,3,5-benzenetricarbonyl tri-(R-(D-)-aspartic dimethyl ester) R-BTAsp-OMe.

Both (1S,3S,5S)-1,3,5-benzenetricarbonyl tri-(S-(L-)aspartic dimethyl ester) and (1R,3R,5R)-1,3,5benzenetricarbonyl tri-(R-(D-)aspartic dimethyl ester) were synthesised as previously reported.¹ <u>*Preparation*</u>: Dry triethylamine (4.24 mL, 30.13 mmol) was added to a cool solution (0 °C) of *S*-(L-) or *R*-(D-) aspartic acid dimethyl ester hydrochloride (2.71 g, 13.29 mmol) in dry CH₂Cl₂ (40 mL), and the resulting mixture was stirred for 20 min at 0 °C. Then, a solution of 1,3,5-benzenetricarbonyl trichloride

(1.0 g, 3.69 mmol) in 30 mL of dry CH₂Cl₂ was added dropwise, and the reaction was stirred overnight. The reaction mixture was treated with CH₂Cl₂ (50 mL) and washed with aq. 2N H₂SO₄, followed by aq. NaHCO₃ and water. The organic layer was dried with anhydrous Na₂SO₄ and concentrated *in vacuo* to give 2.04 g of (1*S*,3*S*,5*S*)-1,3,5-benzenetricarbonyl tri-(*S*-(*L*-)aspartic dimethyl ester) (yield: 86%) or 2.01 g of (1*R*,3*R*,5*R*)-1,3,5-benzenetricarbonyl tri-(*R*-(*D*-)aspartic dimethyl ester) (yield: 85%). ¹H-NMR (CDCl₃, 250 MHz): 2.98-3.16(m, 6H), 3.71(s, 9H), 3.80 (s, 9H), 5.07-5.14(m, 3H), 7.65-7.68 (d, *J*=8.0 Hz, 3H), 8.22 (s, 3H). ¹³C-NMR (CDCl₃, 62.9 MHz): 36.21, 49.80, 52.60, 53.42, 129.29, 134.87, 165.86, 171.75, 171.77. FT-IR (ATR, cm⁻¹): \tilde{v} =3369.4, 3238.3, 2931.6, 2628.8, 2526.6, 1703, 1635.5, 1544.9, 1413.7, 1300, 1186, 921.9, 628.8, 574.7.

Saponification of (1S,3S,5S)-1,3,5-benzenetricarbonyl tri-(S-(L-)aspartic dimethyl ester) and (1R,3R,5R)-1,3,5-benzenetricarbonyl tri-(R-(D-)aspartic dimethyl ester) to give *S*-BTAsp or *R*-BTAsp.

LiOH·H₂O (22.42 mmol) was added to a solution of (1S,3S,5S)-1,3,5-benzenetricarbonyl tri-(*S*-(*L*-)aspartic dimethyl ester) or (1R,3R,5R)-1,3,5-benzenetricarbonyl tri-(*R*-(*D*-)aspartic dimethyl ester) (3.20 mmol) in THF (20 mL) and H₂O (5 mL) at ~0 °C. The reaction mixture was stirred overnight at room temperature, and then acidified to pH ~3 with HCl (1.0 M). The mixture was washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to give 1.55 g (yield: 87%) of *S*-BTAsp or 1.56 g of *R*-BTAsp (yield: 87%).

¹H-NMR (D₂O, 250 MHz): 2.58-2.68 (m, 3H), 2.75-2.83 (m, 3H), 4.59-4.65(m, 3H), 8.34(s, 3H). ¹³C-NMR (D₂O, 62.9 MHz): 39.91, 54.33, 129.69, 134.96, 168.74, 178.86, 179.41. FT-IR (ATR, cm⁻¹): $\tilde{v} =$ 3352, 1633.6, 1541, 1402.2, 1280.7, 1188. Elemental analysis for [C₂₁H₂₁N₃O₁₅·4H₂O] (*S*-BTAsp) calculated (%): C: 40.20, H: 4.65, N: 6.70; found: C: 39.9, H: 4.7, N: 6.5 and [C₂₁H₂₁N₃O₁₅·4H₂O] (*R*-BTAsp) calculated (%):C: 40.20, H: 4.65, N: 6.70; found: C: 38.6, H: 4.2, N: 6.1.

Synthesis of $[Cu_3(S - \text{ or } R - BTAsp)(H_2O)_3]$.12.75H₂O - S and R.

To an aqueous solution (4 mL) of enantiopure *S*-BTAsp or *R*-BTAsp (10 mg, 0.02 mmol) was added $Cu(NO_3)_2 \cdot 2.5H_2O$ (100 mg, 0.43 mmol). The mixture was brought to pH 6 using NaOH (1M) and became slightly cloudy. After 24 h at room temperature, greenish-blue octahedral crystals of *S* or *R* were obtained, and then filtered and air-dried to give 12.6 mg of *S* (yield: 67%, based on *S*-BTAsp) or 12.4 mg of *R* (yield: 70%, based on *R*-BTAsp). Elemental analysis for *S* - $[Cu_3(C_{21}H_{15}N_3O_{15})(H_2O)_3].(H_2O)_{12.75}$, calculated (%): C: 24.7, H: 4.6, N: 4.1; found: C: 26.3, H: 4.2, N: 4.1; and for *R* - $[Cu_3(C_{21}H_{15}N_3O_{15})(H_2O)_3].(H_2O)_{12.75}$, calculated (%): C: 24.7, H: 4.6, N: 4.1; found: C: 26.0, H: 4.0, N: 4.5.

Synthesis of $[Cu_3(RS-BTAsp)(H_2O)_4]$.7.5H₂O - **RS**.

To an aqueous solution (4 mL) of an equimolar mixture of *S*-BTAsp (5 mg, 0.01 mmol) and *R*-BTAsp (5 mg, 0.01 mmol) at pH 3.8 was added Cu(NO₃)₂·2.5H₂O (100 mg, 0.43 mmol). The mixture was brought to pH 6 using NaOH (1M) and became slightly cloudy. After 15 to 17 days at room temperature, 5.8 mg of *RS* (yield: 35%, based on *S*-BTAsp) was obtained as greenish-blue, intergrown needle-type crystals. Elemental analysis for *RS* - [Cu₃(C₂₁H₁₅N₃O₁₅)(H₂O)₄].(H₂O)_{7.5}, calculated (%): C: 26.6, H: 4.0, N: 4.4; found: C: 27.4, H: 4.6, N: 3.8.

SI 2. Characterisation.

Solution ¹**H NMR** spectra were obtained at the *Servei de Ressonància Magnètica Nucler at the Universitat Autònoma de Barcelona*. Routine ¹H and ¹³C spectra were recorded on a Bruker AC250 (250 MHz for ¹H).

Elemental analyses were performed using a CHNS-O Elemental Analyzer 3011 (Eurovector). The ligands and MOFs were combusted at 1200 $^{\circ}$ C in O₂ atmosphere, and the resulting samples were quantified by gas chromatography.

Single-crystal X-ray Diffraction (XRD) for *S* was collected on a Bruker AXS SMART Apex diffractometer with a CCD detector. The X-rays were generated using graphite monochromated Mo K*a* radiation from a molybdenum X-ray tube operating at 40 kV and 30 mA. The octahedral crystal was mounted on a fibre loop attached to the goniometer. Data were collected at 293 K. Single-crystal diffraction data for *R* and *RS* were collected at 150 K at beamline I19 at Diamond Light Source (DLS), at a wavelength of 0.6889 Å, using the Rigaku CrystalLogic Kappa goniometer at the zirconium absorption edge. Crystals were isolated in Fomblin-Y oil, and then mounted on MiTeGen loops. Both structures were resolved by direct methods and subsequently refined by correction of F^2 against all reflections, using SIR97, SHELXL97 and WinGX. Note: the H atoms of the guest H₂O molecules are omitted.

Crystal data	S	RS	R
Empirical formula	$C_{21}H_{15}Cu_3N_3O_{30.75}$	$C_{42}H_{30}Cu_6N_6O_{53}$	$C_{21}H_{15}Cu_3N_3O_{30.75}$
Formula weight	991.99	1848.02	991.99
Temperature / K	293(2)	150	150
Crystal system	cubic	orthorhombic	cubic
Space group	F23	Pcnn	F23
a / Å	34.172(5)	17.530(3)	34.182(3)
b/Å	34.172(5)	20.037(3)	34.182(3)
c / Å	34.172(5)	21.050(3)	34.182(3)

Table S1: Crystallographic data for *S*, *RS* and *R*.

α / °	90	90	90
β/°	90	90	90
γ / °	90	90	90
Volume / Å ³	39904(18)	7394(2)	39939(11)
Z	32	8	32
$\rho_{calc} / mg mm^{-3}$	1.321	1.660	1.320
μ/mm^{-1}	1.351	1.808	1.351
F(000)	4520.0	3374.0	4520.0
Crystal size / mm ³	$0.61 \times 0.32 \times 0.32$	$0.56 \times 0.34 \times 0.22$	$0.38 \times 0.2 \times 0.2$
Crystal colour and shape	Green-blue octahedra	Green-blue needles	Green-blue octahedra
Theta range for data collection	4.128 to 52.734°	4.95 to 52.74°	4.128 to 52.734°
Index ranges	$\begin{array}{l} -42 \leq h \leq 42, -42 \leq k \\ \leq 42, -42 \leq l \leq 42 \end{array}$	$\begin{array}{l} -17 \leq h \leq 21, \ -24 \leq k \\ \leq 23, \ -26 \leq l \leq 24 \end{array}$	$\begin{array}{l} -42 \leq h \leq 18, \ -42 \leq k \\ \leq 36, \ -39 \leq l \leq 37 \end{array}$
Reflections collected	140953	19582	30141
Independent reflections	6832	7428	6736
R(int) =	0.0711	0.0241	0.0485
Data/restraints/parameters	6832/0/360	7428/0/473	6736/0/360
Goodness-of-fit on F^2	1.323	1.048	1.196
Final R indices $[I > 2\sigma (I)]$	$R_1 = 0.0828, wR_2 = 0.2770$	$R_1 = 0.0659, wR_2 = 0.2013$	$R_1 = 0.0836, wR_2 = 0.2670$
Final R indices [all data]	$R_1 = 0.0920, wR_2 = 0.2926$	$R_1 = 0.0716, wR_2 = 0.2084$	$R_1 = 0.0897, wR_2 = 0.2775$
Largest diff. peak/hole (e \AA^{-3})	2.27/-0.72	1.68/-0.80	1.98/-0.73
Flack parameter	0.022(7)		0.073(8)

Powder X-ray Diffraction (PXRD) and *in-situ* **Variable Temperature Powder X-ray Diffraction** (**VT-PXRD**) patterns were recorded at room temperature on an X'Pert PRO MPD θ/θ powder diffractometer (PanAnalytical; configuration: convergent beam; radius: 240 mm) equipped with a

focalizing mirror and a transmission geometry with a spinner glass capillary sample holder, for Cu K_{α} radiation ($\lambda = 1.5418$ Å). For the VT-PXRD experiments, *S* and *RS* were packed and sealed inside a glass capillary tube (internal diameter: 0.3 mm).

Thermogravimetric Analysis (TGA): All analyses were performed in air, on an STA 449 F1 Jupiter– Simultaneous TGA-DSC from (NETZSCH; heating rate: 5 °C/min; temperature range: 25 °C to 500 °C).

Field-Emission Scanning Electron Microscopy (FE-SEM): images were collected using a Quanta 650F Environmental Scanning Electron Microscopy (Field Emission Inc, USA). The samples were metallised with 10 nm of platinum in an EM ACE600 High-Vacuum Coater (Leica, Germany).

Electronic Circular Dichroism (ECD) spectra were measured using a J-715 CD spectrophotometer (JASCO) at room temperature (*ca.* 25 °C). ECD experiments were performed in solution according to the following procedure: **a.** for ligands: 10 mg of *R*-BTAsp, *S*-BTAsp or an equimolar mixture of the two isomers were dissolved in 3.8 mL of water and HCl (200 μ L, 0.5 M), and the resulting solutions were diluted in water to a final concentration of 0.05 mg/mL; **b.** for the MOFs: 10 mg of MOF (*R*, *S* or *RS*) were first disassembled in 3.8 mL of water and HCl (200 μ L, 0.5M), and the resulting solutions were diluted in water to a final concentration of 0.05 mg/mL; **b.** for the MOFs: 10 mg of MOF (*R*, *S* or *RS*) were first disassembled in 3.8 mL of water and HCl (200 μ L, 0.5M), and the resulting solutions were diluted in water to a final concentration of 0.05 mg/mL. The spectra (obtained at 0.5 nm intervals) were smoothed using Savitsky-Golay algorithm with polynomial order 3 and a smoothing window of 30 points. **UV/Vis spectra** for *S*, *R* and *RS* were collected on a Cary 4000 UV/Vis spectrophotometer (Varian) equipped with a diffuse-reflectance accessory.

Fourier Transform Infra-Red (FT-IR) spectra were recorded on a Bruker Tensor 27FTIR spectrometer equipped with a Golden Gate diamond Attenuated Total Reflection (ATR) cell. The spectra were recorded in absorption mode at room temperature.

Vibrational Circular Dichroism (VCD) spectra were performed in a Bruker Tensor 27 FT-IR coupled to a PMA50 accessory, using an MIR long wavepass filter (1800 cm⁻¹ to 600 cm⁻¹). Solid-phase samples were prepared using KBr pellets for IR and VCD (1 mg MOF in 100 mg KBr; 1% w/w). The crystalline material was mixed with dry KBr, finely ground, and then pressed at 10 tons for 5 min to make the pellet (diameter: 13 mm). **Gas sorption** (CO₂/195 K, 273 K and 298 K; and N₂/77 K) measurements for *S*, *R* and *RS* were performed using an AutosorbIQ. Samples were activated either by lyophilisation (-50 $^{\circ}$ C and 0.07 mbar) or by solvent exchange with CHCl₃ for 3 days, followed by outgassing at 40 $^{\circ}$ C under vacuum overnight.

Figure S1: ¹H NMR spectra (CDCl₃) and corresponding FT-IR spectra of *S*-BTAsp-OMe (a) and *S*-BTAsp (b).

Figure S2: ECD spectra of aqueous solutions of free enantiopure *R*-BTAsp, free enantiopure *S*-BTAsp and an equimolar mixture of the two ligands.

Figure S3: SEM images of (a-c) *R*, (d-f) *S* and (g-i) *RS*. The images reveal the octahedral morphology of the *R* and *S* crystals, and the intergrown, needle-shaped crystals of *RS*, and confirm that all the MOFs are homogeneous. Scale bars: a) 400 μ m; b) 30 μ m; c) 20 μ m; d) 400 μ m; e) 10 μ m; f) 30 μ m; g) 1 mm; h) 50 μ m; and i) 500 μ m.

SI 3. The BTAsp ligand within *S*, *RS* and *R*.

Figure S4: Representation of BTAsp within (a) S, (b) RS and (c) R. The dihedral side-chain angles of a single BTAsp ligand within S and R are equivalent (-66.65° and 65.11°, respectively), which confirms their opposite configuration and that the ligand is symmetric (*i.e.* the aspartate groups fold in the same manner). In contrast, the dihedral side-chain angles of the BTAsp ligand within RS are not equivalent: each aspartate residue folds in a different way, which highlights the flexibility of the ligand.

Side-chain dihedral angle (χ ₁)	S	RS	R
	-66.65°	73.47°	65.11°
	-66.65°	-71.74°	65.11°
	-66.65°	-60.42°	65.11°

Table S2: Side-chain dihedral angles (χ_1) for *S*, *RS* and *R*.

Figure S5: Illustration of the BTAsp ligand within (a) S, (b) RS and (c) R. The blue represents the plane (through the benzene ring) and confirms that the ligand is equivalent within S and R and symmetric, but within RS it is not so.

SI 4. Structure description of *S* and *R*.

Figure S6: (a) Representation of the cavities formed in *S* (diameter: 7.01 Å). (b-c) 3D view of one unit cell, showing the organisation of the large isolated cages (yellow) and the cavities (purple); the latter are interconnected in 3D by pore openings (dimensions: 7.0 Å x 3.5 Å).

Figure S7: (a) Representation of one large isolated cage in S. (b) Representation showing that each cage comprises eight BTAsp ligands and eighteen Cu-paddlewheels, twelve of which are shared with twelve neighbouring cages. The C atoms of the shared paddlewheels are coloured in green.

Atom-to-atom distance	<u>Colour</u>	Bond distances (Å) (including
		<u>van der Waals radii)</u>
NH···OC	blue	1.4
NH···HOH	orange	2.0
НОН…ОС	green	3.4
СН…НСН	grey	0.5
НСН…ОС	purple	0.3
НСН…ОС	black	0.2

Figure S8: Representation of the bond distances within the isolated cages in *S*, confirming the absence of any significant opening.

SI 5. Powder X-ray Diffraction.

Figure S9: Comparison of the experimental PXRD patterns of (a) R and S, and of (b) RS, with their corresponding simulated PXRD pattern derived from the single-crystal XRD data. The excellent match indicates that all three MOFs were isolated as pure phases.

SI 6. ECD of R, S and RS.

Figure S10: ECD spectra of the BTAsp ligand present within *R*, *S* and *RS* after disassembly of each MOF at pH 2. The profiles are consistent with the corresponding ECD profiles of free *R*-BTAsp, free *S*-BTAsp and the equimolar mixture of the two ligands (see Figure S2).

SI 7. Structural characterisation of RS.

Figure S11: Illustration showing that the coordination of the aspartate groups within *RS* generates a 2D-Cu(II)-based layer running along the *b*-axis.

Figure S12: Illustration showing the organisation of the BTAsp ligand around the 2D-Cu(II)-based layer that produces the 3D *RS*, in which the ligands are arranged in columns (as observed along the *b*-axis).

Figure S13: Packing of *RS* along the *b*-axis and the *a*-axis, showing that the 1D pores are filled with H_2O molecules and revealing the columnar arrangement of the BTAsp ligand (along the *b*-axis), respectively.

SI 8. ECD of RS made using R-BTAsp/S-BTAsp ratios of 7:3 or 6:4 (and vice versa).

Figure S14: ECD spectra of the BTAsp ligand present in the *RS* crystals obtained when using *R*-BTAsp /S-BTAsp ratios of 7:3 or 6:4 (and *vice versa*), after their disassembly at pH 2. These profiles are consistent with the ECD profile of the equimolar mixture of *R*- and *S*-BTAsp and therefore, with the formation of *RS* (see Figure S10).

SI 9. Assessment of enantiomeric excess (ee).

The anisotropy factor (*g-factor*) is a concentration-independent parameter defined here as the ratio of ellipticity of the BTAsp ligand derived from circular dichroism, to its absorbance. It is also a function of the enantiomeric composition of the chiral ligand.^{2,3} The g-factor is given by the following expression:

$$g = \frac{\Theta}{A} = \frac{\Delta \varepsilon \times c \times l}{\varepsilon \times c \times l} = \frac{\Delta \varepsilon}{\varepsilon}$$

where Θ is the ellipticity; $\Delta \varepsilon$ is the molar ellipticity; and ε is the molar extinction. The ellipticity values for each concentration and each ratio of *R*-BTAsp/*S*-*R*-BTAsp (free, or within the resulting MOFs) were collected by measuring the average of 60 points at $\lambda = 231.5$ nm.

Figure S15: (a) Absorbance and ellipticity of enantiopure *R*-BTAsp or *S*-BTAsp ligand as a function of concentration. (b) The derived g-factor values plotted against the concentration of the pure ligand (*R*-BTAsp or *S*-BTAsp). Note that the g-factor values remain constant over the working concentration.

SI 10. Thermogravimetric Analysis (TGA) profiles of R, S and RS.

Figure S16: TGA curves for *R*, *S*, *RS* and activated *S* (heating rate: 5 °C/min; temperature range: 25 to 400 °C), showing that the profiles of *R* and *S* are very similar (continuous loss up to 200 °C, corresponding to the loss of the guest H₂O molecules). Above this temperature, the framework collapses stepwise. In contrast, *RS* shows a weight loss of 9.8% from 30 °C to 100 °C, which corresponds to the loss of guest H₂O molecules; is stable up to 200 °C; and then decomposes stepwise above 200 °C. The TGA curve of the activated *S* shows no loss from 30 °C to 100 °C, which confirms that *S* is free of any guest molecules; this is followed by a weight loss of 7.1% that occurs before decomposition. The weight loss of 7.1 % may be due to the removal of H₂O molecules located either into the large cages and/or to the ones coordinated to Cu(II) centres within the amorphous solid.

SI 11. In-situ variable temperature PXRD of S and RS.

Figure S17: (a) *In-situ* variable temperature PXRD patterns of *S* sealed in a capillary tube, from 25 °C to 150 °C. As observed, *S* maintains its structural integrity up to 100 °C. Above this temperature, *S* gradually collapses, which is consistent with the TGA data. (b) *In-situ* variable temperature PXRD patterns of *RS* sealed in a capillary tube, showing that it is thermally stable up to 175 °C (*i.e.* at a much higher temperature than is *S*). The loss of crystallinity observed from 175 °C to 200 °C reveals that *RS* collapses rapidly, presumably due to the loss of the coordinated H₂O molecules to Cu(II). This observation is in excellent agreement with the TGA profile of *RS*.

SI 12. Stability of RS and S.

Figure S18: PXRD spectra revealing that upon activation-lyophilisation, *S* becomes irreversibly amorphous.

Figure S19: PXRD spectra showing that *RS* is stable after its immersion in various organic solvents (methanol, chloroform or hexane) for at least 3 days.

SI 13. Sorption study of S, RS and R

Figure S20: (a) N₂ isotherms on *S*, *R* and *RS* collected at 77 K up to 1 bar and (b) CO_2 isotherms collected on *RS* at 195, 273 and 295 K up to 0.85 bar.

SI 14. Isosteric heat of adsorption

Isosteric heats of adsorption (Q_{st}): The carbon dioxide affinity of *S* can be quantitatively reflected by the isosteric heat of adsorption *Qst*, which is calculated utilizing the virial-type expression, using the adsorption branches measured at 273 K and 298 K.⁴

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$

Where :

P: pressure of the adsorption at $T_1 = 273$ K and $T_2 = 298$ K

N: amount adsorbed

T: temperature

 a_1 and b_1 : virial coefficients

m and *n*: represent the number of coefficients required to describe the isotherm.

The values of the virial coefficients a_0 through a_m were then used to calculate the isosteric heat of adsorption using the following expression:

$$Qst = -R\sum_{i=0}^{m} a_i N_i$$

Where :

Qst: Isosteric heat of adsorption

R: gas constant

Figure S21: Isosteric heat of adsorption (Q_{st}) calculated using the virial-type equation and the adsorption branches of the CO₂ isotherms (collected at 273 K and 298 K).

SI 15. Supplementary references

(1) Haridas, V.; Sharma, Y. K.; Naik, S. European Journal of Organic Chemistry 2009, 2009, 1570.

(2) Guerrero-Martínez, A.; Auguié, B.; Alonso-Gómez, J. L.; Džolić, Z.; Gómez-Graña, S.; Žinić, M.; Cid, M. M.; Liz-Marzán, L. M. Angewandte Chemie International Edition **2011**, *50*, 5499.

- (3) Berova, N.; Bari, L. D.; Pescitelli, G. Chemical Society Reviews 2007, 36, 914.
 - (4) Al-Muhtaseb, S. A.; Ritter, J. A. Industrial & Engineering Chemistry Research 1998, 37, 684.