## Supporting Information

# Rational Design of Coumarin-based Supramolecular Hydrogelators for Cell

#### Imaging

Wei Ji, <sup>a</sup> Guofeng Liu, <sup>a</sup> Mingxin Xu, <sup>b</sup> Xiaoqiu Dou, <sup>a</sup> and Chuanliang Feng\*<sup>a</sup>

<sup>a</sup>School of Materials Science and Engineering, State Key Lab of Metal Matrix Composites, and <sup>b</sup>School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

### **Table of Contents**

| 1. General Information                                                                                 | S2  |
|--------------------------------------------------------------------------------------------------------|-----|
| 2. Experimental Procedures                                                                             | S2  |
| 3. Additional Experimental Data and Figures                                                            | S4  |
| <b>3.1</b> Gel tests of G <sub>1</sub> -G <sub>6</sub>                                                 | S5  |
| <b>3.2</b> Additional SEM, TEM and Fluorescent image                                                   | S7  |
| <b>3.3</b> Crystal and experimental data of G <sub>1</sub>                                             | S8  |
| <b>3.4</b> Concentration-dependent <sup>1</sup> H NMR of <b>G</b> <sub>1</sub>                         | S11 |
| <b>3.5</b> UV-Vis absorption spectra of $G_1$                                                          |     |
| 4. Synthesis and characterizations                                                                     | S12 |
| 5. <sup>1</sup> H and <sup>13</sup> C NMR and HRMS spectra of compounds G <sub>1</sub> -G <sub>6</sub> | S14 |

#### **1. General Information**

Chemical reagents and solvents were purchased from Aladdin and used without further purification. <sup>1</sup>H NMR and <sup>13</sup>C NMR were obtained on a Bruker Advance III 400 Instrument operating at 400 MHz. HRMS were recorded on a Water Q-Tof Mass Instrument.

#### 2. Experimental Procedures

*Gel test for*  $G_1$ - $G_6$ : Aqueous solution of  $G_1$ - $G_6$  was prepared in a glass vial by heating. The solution was left to cool to room temperature. Gel formation was judged by the "invert-vial" method.

*Tgs (gel-to-sol transition temperature):* The gel-to-sol transition temperatures (Tgs) were determined by using "dropping ball" method. A plastic ball (150 mg, 5mm in diameter) was placed on top of 1 ml hydrogels  $G_1$ - $G_6$  prepared in a glass vial. The vials were subsequently immersed in a thermostated oil bath. The temperature of the heating block was increased by 5 °C per minute and the Tgs was defined as the temperature at which the plastic ball reached the bottom of the vial. The experiments were repeated five times and took the average.

*Rheology measurements*: The rheological properties of hydrogels  $G_1$ - $G_6$  were measured with a Rotary Rheometer (Gemini HRnano). The dynamic frequency sweep measurements were performed using a sinusoidal shear strain of constant peak amplitude (1%) over a range of frequencies (0.01-10Hz) at 25°C. The dynamic time sweep measurements were performed using a sinusoidal shear strain of constant peak

amplitude (0.01%) and constant frequency (1Hz) at  $25^{\circ}$ C over 60 minutes.

SEM: Samples were prepared by depositing dilute solutions (approximately 0.4 mg/ml) of  $G_1$ - $G_6$  on silicon wafer, freeze dried overnight, and sprayed with a thin gold layer. SEM images were taken on a FEI QUANTA 250 microscope.

*TEM*: Samples were prepared by placing three drops of dilute solution (approximately 0.4 mg/ml) of  $G_1$ - $G_6$  onto the copper omentum and dried overnight in the air. TEM images were taken on an analytical transmission electron microscope (JEM-2010).

*Fluorescence microscope:* Samples were prepared by placing the flocculent hydrogels of  $G_1$ - $G_6$  on a glass slide, washed with deionized water three times, and then freeze dried overnight. Fluorescence images were taken on a Olympus IX73 microscope and a two photon microscope (A1RMP, Nikon, Tokyo, Japan).

*UV-Vis absorption*: The solution  $(1 \times 10^{-5} \text{ mol/L})$  and hydrogel state  $(4 \times 10^{-2} \text{ mol/L})$  of G<sub>1</sub> were tested using instrument of Lambda 20 from Perkin Elmer, Inc., USA, respectively.

*Fluorescence spectra:* The solution  $(1 \times 10^{-5} \text{ mol/L})$  and hydrogel state  $(4 \times 10^{-2} \text{ mol/L})$  of G<sub>1</sub> were tested using LS 50B from Perkin Elmer, Inc., USA, respectively.

Single crystal X-ray diffraction: Crystal G<sub>1</sub> suitable for X-ray diffraction was obtained by slow evaporation of methanol/chloroform (v/v 1:1) solution at room temperature. Single-crystal data were collected on a Bruker SMART Apex II CCD-based X-ray diffractometer with Mo-Karadiation ( $\lambda = 0.71073$  Å) at 293 K. The empirical absorption correction was applied by using the SADABS program (G. M. Sheldrick, SADABS, program for empirical absorption correction of area detector data; University of Göttingen, Göttingen, Germany, 1996). The structure was solved using direct method, and refined by full-matrix least-squares on  $F^2$  (G. M. Sheldrick, SHELXTL97, program for crystal structure refinement, University of Göttingen, Germany, 1997).

*X-ray powder diffraction (XRD)*: Xerogel and crystal of G<sub>1</sub> were tested using a D8 Advance instrument from Bruker-AXS Company.

2D Cell culture: 100µl of flocculent hydrogels were added into one well of 24 well plates. The plates were dried in a vacuum oven under  $37^{\circ}$ C. Then Mouse NIH/3T3 fibroblasts were seeded to one well of 24 well plate coated with nanofibrous xerogels. Cells were cultured in DMEM containing 10% fetal bovine serum and 1% penicillin/streptomycin. All cells were maintained in 5% CO<sub>2</sub>-95% air at 37°C.

*Cell viability*: 100µl of flocculent hydrogels from  $G_1$ - $G_6$  were added into a well of 96 well plates, respectively. The plates were dried in a vacuum oven under 37°C. Cells in 200µl culture medium were seeded in a 96 well plate. After cells adhered to the fibers, cells were further cultured for 24 h. 20µl of cell counting kit-8 (CCK-8) was added to each well. The plated cells were incubated at dark for 2 h and the absorbance at 450 nm was then determined. Three parallel replicates were prepared and the entire process was repeated three times.

### 3. Additional Experimental Data and Figures

### **3.1** Gel tests of G<sub>1</sub>-G<sub>6</sub>



Fig.S1 Photographs of the assembled hydrogels from (a)  $G_1$ ; (b)  $G_2$ ; (c)  $G_3$ ; (d)  $G_5$ ; (e)  $G_6$  before UV irradiation and (f)  $G_1$ ; (g)  $G_2$ ; (h)  $G_3$ ; (i)  $G_5$ ; (j)  $G_6$  after UV irradiation.

**Table S1** Gel-to-sol transition temperature (**Tgs**) and critical gelator concentration (**CGC**) of hydrogels  $G_1$ - $G_6$ .

|                | G <sub>1</sub> | G <sub>2</sub> | G <sub>3</sub> | G <sub>4</sub> | G <sub>5</sub> | G <sub>6</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| <b>Tgs</b> (℃) | 82             | 85             | 92             | 87             | 95             | 93             |
| CGC(mg/ml)     | 9.5            | 3.6            | 10.4           | 2.8            | 12.5           | 4.7            |



Fig.S2 Rheological measurement of frequency sweep at a strain of 1% for hydrogels assembled from  $G_1$ - $G_6$ .



**Fig.S3** Rheological measurement of time sweep at a frequency 1 rads<sup>-1</sup> and a strain 0.01% for hydrogels assembled from  $G_1$ - $G_6$ .



**Fig.S4** Photographic images of the free-standing hydrogel  $G_1$  in PBS before (a) and 0 min (b), 1 hour (c), and 7 days (d) after the addition of an equal volume of DMEM on top of the hydrogel. The lifetime of hydrogels  $G_2$ - $G_6$  was also tested by using the same methods and was also at least 7 days.

#### 3.2 Additional SEM, TEM and Fluorescent images



**Fig.S5** Fluorescent images of xerogels assembled from: (a)  $G_1$ , (b)  $G_2$ , (c)  $G_3$ , (d)  $G_5$ , (e)  $G_6$ , respectively. Scale bar = 100  $\mu$ m. SEM images of xerogels from: (f)  $G_1$ , (g)  $G_2$ , (h)  $G_3$ , (i)  $G_5$ , (j)  $G_6$ , respectively. Scale bar = 5  $\mu$ m. TEM images of xerogels from: (k)  $G_1$ , (l)  $G_2$ , (m)  $G_3$ , (n)  $G_5$ , (o)  $G_6$ , respectively. Scale bar = 200 nm.

### 3.3 Crystal and experimental data of $G_{1}$



Fig.S6 Molecular structure of  $G_1$  in the crystal.

| Empirical formula                 | C <sub>15</sub> H <sub>9</sub> N O <sub>4</sub>      |
|-----------------------------------|------------------------------------------------------|
| Formula weight                    | 267.23                                               |
| Temperature                       | 293(2) K                                             |
| Wavelength                        | 0.71073 Å                                            |
| Crystal system, space group       | Orthorhombic, $Pna2_1$                               |
| Unit cell dimensions              | $a = 11.595(4) \text{ Å} \qquad \alpha = 90^{\circ}$ |
|                                   | $b = 3.8440(14) \text{ Å} \qquad \beta = 90^{\circ}$ |
|                                   | $c = 26.917(8) \text{ Å} \qquad \gamma = 90^{\circ}$ |
| Volume                            | 1199.7(7) Å <sup>3</sup>                             |
| Z, Calculated density             | 4, $1.480 \text{ Mg/m}^3$                            |
| Absorption coefficient            | $0.109 \text{ mm}^{-1}$                              |
| F(000)                            | 552                                                  |
| Theta range for data collection   | 3.027 to 30.121°                                     |
| Limiting indices                  | -14<=h<=16, -5<=k<=5, -23<=l<=37                     |
| Reflections collected / unique    | 7992 / 2716 [R(int) = 0.0703]                        |
| Completeness to theta $= 26.000$  | 99.7 %                                               |
| Absorption correction             | None                                                 |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup>          |
| Data / restraints / parameters    | 2716 / 1 / 181                                       |
| Goodness-of-fit on F <sup>2</sup> | 0.848                                                |
| Final R indices [I>2sigma(I)]     | R1 = 0.0460, wR2 = 0.1143                            |
| R indices (all data)              | R1 = 0.1180, wR2 = 0.1623                            |
| Absolute structure parameter      | -0.1(10)                                             |
| Extinction coefficient            | n/a                                                  |
| Largest diff. peak and hole       | 0.180 and -0.212 e. $Å^{-3}$                         |

Table S2A Crystal data and structure refinement for  $G_1$ .

| Table S2B Bond lengths [Å | ] and angles [deg] for $G_1$ . |
|---------------------------|--------------------------------|
|---------------------------|--------------------------------|

-

| $\begin{array}{c} O(3) - O(1) \\ O(3) - O(10) \\ O(5) - O(2) \\ O(5) - O$ | O(3)-C(7)    | 1 394(5) |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|--|
| C(5) - O(2) 1 379(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O(3) - C(10) | 1.360(5) |  |
| C(3) O(2) = 1.377(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(5)-O(2)    | 1.379(6) |  |

| C(5)-C(6)         | 1.375(6) |  |
|-------------------|----------|--|
| C(5)-C(4)         | 1.387(7) |  |
| O(2)-C(1)         | 1.384(6) |  |
| C(7)-C(6)         | 1.378(6) |  |
| C(7)-C(8)         | 1.378(6) |  |
| C(4)-C(3)         | 1.437(7) |  |
| C(4)-C(9)         | 1.396(7) |  |
| C(8)-C(9)         | 1.370(7) |  |
| N(8)-C(11)        | 1.332(6) |  |
| N(8)-C(15)        | 1.336(6) |  |
| C(3)-C(2)         | 1.336(8) |  |
| C(12)-C(11)       | 1.384(7) |  |
| C(12)-C(13)       | 1.377(8) |  |
| O(4)-C(10)        | 1.189(5) |  |
| C(10)-C(11)       | 1.483(7) |  |
| C(1)-C(2)         | 1.438(8) |  |
| C(1)-O(1)         | 1.204(7) |  |
| C(15)-C(14)       | 1.378(8) |  |
| C(13)-C(14)       | 1.364(8) |  |
| C(10)-O(3)-C(7)   | 117.7(3) |  |
| O(2)-C(5)-C(4)    | 121.3(4) |  |
| C(6)-C(5)-O(2)    | 116.2(4) |  |
| C(6)-C(5)-C(4)    | 122.5(4) |  |
| C(5)-O(2)-C(1)    | 122.0(4) |  |
| C(6)-C(7)-O(3)    | 120.9(4) |  |
| C(6)-C(7)-C(8)    | 122.1(4) |  |
| C(8)-C(7)-O(3)    | 116.9(4) |  |
| C(5)-C(6)-C(7)    | 117.6(4) |  |
| C(5)-C(4)-C(3)    | 117.5(4) |  |
| C(5)-C(4)-C(9)    | 117.7(4) |  |
| C(9)-C(4)-C(3)    | 124.7(4) |  |
| C(9)-C(8)-C(7)    | 119.1(4) |  |
| C(11)-N(8)-C(15)  | 116.7(4) |  |
| C(2)-C(3)-C(4)    | 120.4(5) |  |
| C(13)-C(12)-C(11) | 118.1(5) |  |
| C(8)-C(9)-C(4)    | 121.0(4) |  |
| O(3)-C(10)-C(11)  | 112.6(4) |  |
| O(4)-C(10)-O(3)   | 122.8(4) |  |
| O(4)-C(10)-C(11)  | 124.5(4) |  |
| N(8)-C(11)-C(12)  | 123.5(5) |  |
| N(8)-C(11)-C(10)  | 118.8(4) |  |
| C(12)-C(11)-C(10) | 117.7(4) |  |
| O(2)-C(1)-C(2)    | 116.3(5) |  |
| O(1)-C(1)-O(2)    | 116.6(5) |  |

| O(1)-C(1)-C(2)    | 127.2(5) |
|-------------------|----------|
| C(3)-C(2)-C(1)    | 122.4(5) |
| N(8)-C(15)-C(14)  | 123.8(5) |
| C(14)-C(13)-C(12) | 119.6(5) |
| C(13)-C(14)-C(15) | 118.3(5) |
|                   |          |

Table S2C Geometrical parameters of hydrogen bonds in crystal G1.

| D-H <sup></sup> A | D-H(Å) | H <sup></sup> A(Å) | D <sup></sup> A(Å) | D-H <sup></sup> A(deg) | Symmetry-for-A     |
|-------------------|--------|--------------------|--------------------|------------------------|--------------------|
| C8-H8O4           | 0.930  | 2.349              | 3.163              | 146.11                 | x+1/2, -y+5/2, z   |
| C14-H14O1         | 0.930  | 2.550              | 3.273              | 134.89                 | -x+1/2,y-1/2,z+1/2 |

Table S2D Short Ring-Interactions with Cg-Cg Distances in crystal G1.

| Analys | Analysis of Short Ring-Interactions with Cg-Cg Distances < 6.0 Angstrom |                    |  |  |  |
|--------|-------------------------------------------------------------------------|--------------------|--|--|--|
| Cg(I)  | = Plane number I                                                        |                    |  |  |  |
| Cg-Cg  | = Distance between rin                                                  | g Centroids (Ang.) |  |  |  |
| Cg(I)  |                                                                         | Cg-Cg              |  |  |  |
| Cg(1)  | $[1] \rightarrow Cg(1)$                                                 | 3.844(3)           |  |  |  |
| Cg(1)  | [1] -> Cg(3)                                                            | 4.523(3)           |  |  |  |
| Cg(2)  | $[1] \rightarrow Cg(1)$                                                 | 5.929(4)           |  |  |  |
| Cg(2)  | $[1] \rightarrow Cg(2)$                                                 | 3.844(3)           |  |  |  |
| Cg(3)  | $[1] \rightarrow Cg(1)$                                                 | 4.546(3)           |  |  |  |
| Cg(3)  | [ 1] -> Cg(3)                                                           | 3.844(3)           |  |  |  |



**Fig.S7** Photographs of the reversible gel-sol transition of hydrogel  $G_1$  triggered by temperature.



**Fig.S8** Rheological measurement of reversible gel-sol transition of hydrogel  $G_1$  triggered by temperature three times at a frequency 6 rads<sup>-1</sup> and a strain 5%. (a), (b)

and (c): Heating after gel formation for the first time, second time and third time, respectively.



**3.4** Concentration-dependent <sup>1</sup>H NMR of G<sub>1</sub>

**Fig. S9** Concentration-dependent <sup>1</sup>H NMR of  $G_1$  in CH<sub>3</sub>OD at 25 °C.

**3.5** UV absorption spectra of G<sub>1</sub>



Fig. S10 UV absorption spectra of  $G_1$  in the solution (1×10<sup>-5</sup> mol/L) and hydrogel state (4×10<sup>-2</sup> mol/L),  $\lambda_{max} = 322$ nm.

#### 4. Synthesis and Characterizations

Scheme S1. Synthetic route to G<sub>1</sub>



**Synthesis of G<sub>1</sub>:** To a solution of 7-hydroxycoumarin (1.62 g, 10 mmol), 2-Picolinic Acid (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) was added EDCI (2.10 g, 11 mmol). The mixture was stirred for 2 hours at room temperature. The resulting solution was washed three times with water (5 ml), saturated NaHCO<sub>3</sub> solution (5 ml). Then the organic layer was collected and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed under vacuum to give the product **G**<sub>1</sub> as white powder (2.45 g, 91.76%). <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>)  $\delta$ =8.87(d, J=4.0Hz, 1H), 8.29(d, J=7.6Hz, 1H), 7.95(t, J=8.0Hz, 1H), 7.72(d, J=9.6Hz, 1H), 7.60(t, J=4.0Hz, 1H), 7.55(d, J=8.4Hz, 1H), 7.3(s, 1H), 7.23(d, J=8.0Hz, 1H), 6.43(d, J=9.6Hz, 1H). <sup>13</sup>C NMR (400MHz, CDCl<sub>3</sub>)  $\delta$ =163.4, 160.4, 154.8, 153.5, 150.4, 146.9, 143.0, 137.6, 128.9, 128.0, 126.3, 118.7, 117.1, 116.4, 110.8. HRMS (ESI) calcd for C<sub>15</sub>H<sub>10</sub>NO<sub>4</sub> 268.0610 [M+H]<sup>+</sup>; found 268.0609.

 $G_2$ - $G_6$  were synthesized using the same procedure for  $G_1$ .

**G**<sub>2</sub>:4-Methylumbelliferone (1.76 g, 10 mmol), 2-Picolinic Acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) yielded **G**<sub>2</sub> as white powder (2.44 g, 85.01%). <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>)  $\delta$ =8.87(d, J=4.0Hz, 1H), 8.30(d, J=8.0Hz, 1H), 7.95(t, J=2.0Hz, 1H), 7.68(d, J=8.0Hz, 1H), 7.60(t, J=4.0Hz, 1H), 7.30(d, J=2.0Hz, 1H), 7.25(s, 1H), 6.30(s, 1H), 2.46(d, J=1.2Hz, 3H). <sup>13</sup>C NMR (400MHz, CDCl<sub>3</sub>)  $\delta$ =163.4, 160.7, 154.3, 153.4, 152.2, 150.4, 146.9, 137.6, 128.0, 126.3, 125.7, 118.4, 114.8, 110.9, 18.9. HRMS (ESI) calcd for C<sub>16</sub>H<sub>12</sub>NO<sub>4</sub> 282.0766 [M+H]<sup>+</sup>; found 282.0771.

 $G_{3:7}$ -hydroxycoumarin (1.62 g, 10 mmol), Nicotinic acid(1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) yielded  $G_{3}$  as

white powder (2.35 g, 88.01%). <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>)  $\delta$ =9.40(d, J=1.6Hz, 1H), 8.89(dd, J1=4.8Hz J2=1.6Hz, 1H), 8.49(dt, J1=8.0Hz J2=1.6Hz, 1H), 7.73(d, J=9.6Hz, 1H), 7.57(d, J=8.4Hz, 1H), 7.51-7.54(m, 1H), 7.27(d, J=2.4Hz, 1H), 7.20(dd, J1=8.4Hz J2=2.4Hz, 1H), 6.44(d, J=9.6Hz, 1H). <sup>13</sup>C NMR (400MHz, CDCl<sub>3</sub>)  $\delta$ =163.5, 160.4, 154.9, 154.6, 153.1, 151.6, 143.0, 137.9, 129.0, 125.1, 123.8, 118.5, 117.2, 116.5, 110.7. HRMS (ESI) calcd for C<sub>15</sub>H<sub>10</sub>NO<sub>4</sub> 268.0610 [M+H]<sup>+</sup>; found 268.0610.

**G**<sub>4</sub>: 4-Methylumbelliferone (1.76 g, 10 mmol), Nicotinic acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) yielded **G**<sub>4</sub> as white powder (2.51 g, 89.32%). <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>)  $\delta$ =9.4(s, 1H), 8.89(dd, J<sub>1</sub>=4.8Hz J<sub>2</sub>=1.6Hz, 1H), 8.46(d, J=8.0Hz, 1H), 7.68(d, J=8.8Hz, 1H), 7.48-7.51(m, 1H), 7.27(d, J=2.0Hz, 1H), 7.22(dd, J<sub>1</sub>=8.8Hz J<sub>2</sub>=2.4Hz, 1H), 6.31(d, J=1.2Hz, 1H), 2.47(d, J=1.2Hz, 3H). <sup>13</sup>C NMR (400MHz, CDCl<sub>3</sub>)  $\delta$ =163.5, 160.5, 154.6, 154.4, 153.0, 152.0, 151.6, 137.9, 125.8, 125.1, 123.7, 118.4, 118.2, 115.0, 110.7, 18.9. HRMS (ESI) calcd for C<sub>16</sub>H<sub>12</sub>NO<sub>4</sub> 282.0766 [M+H]<sup>+</sup>; found 282.0755.

**G**<sub>5</sub>: 7-hydroxycoumarin (1.62 g, 10 mmol), Isonicotinic acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) yielded **G**<sub>5</sub> as white powder (2.28 g, 85.39%). <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) δ=8.89(d, J=6.0Hz, 2H), 8.01(d, J=6.0Hz, 2H), 7.73(d, J=9.6Hz, 1H), 7.57(d, J=8.4Hz, 1H), 7.27(d, J=2.4Hz, 1H), 7.20(dd, J<sub>1</sub>=8.4Hz J<sub>2</sub>=2.4Hz, 1H), 6.44(d, J=9.6Hz, 1H). <sup>13</sup>C NMR (400MHz, CDCl<sub>3</sub>) δ=163.4, 160.4, 154.9, 153.0, 151.2, 143.0, 136.2, 129.0, 123.4, 118.4, 117.3, 116.7, 110.7. HRMS (ESI) calcd for C<sub>15</sub>H<sub>10</sub>NO<sub>4</sub> 268.0610 [M+H]<sup>+</sup>; found 268.0607.

**G**<sub>6</sub>: 4-Methylumbelliferone (1.76 g, 10 mmol), Isonicotinic acid (1.23 g, 10 mmol), EDCI (1.23 g, 10 mmol) and DMAP (60 mg, 0.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 ml) yielded **G**<sub>6</sub> as white powder (2.60 g, 90.59%). <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>) δ=8.89(d, J=6.0Hz, 2H), 8.01(d, J=6.0Hz, 2H), 7.68(d, J=8.8Hz, 1H), 7.26(d, J=2.4Hz, 1H), 7.20(dd, J<sub>1</sub>=8.8Hz J<sub>2</sub>=2.4Hz, 1H), 6.31(d, J=1.2Hz, 1H), 2.47(d, J=1.2Hz, 3H). <sup>13</sup>C NMR (400MHz, CDCl<sub>3</sub>) δ=163.4, 160.5, 154.4, 152.9, 152.0, 151.2, 136.2, 125.9, 123.4, 118.5, 118.0, 115.0, 110.6, 18.9. HRMS (ESI) calcd for C<sub>16</sub>H<sub>12</sub>NO<sub>4</sub> 282.0766 [M+H]<sup>+</sup>; found 282.0764.

# 5. <sup>1</sup>H and <sup>13</sup>C NMR and HRMS spectra of compounds G<sub>1</sub>-G<sub>6</sub>



























 $^1\text{H}$  and  $^{13}\text{C}$  NMR and HRMS Spectra of  $G_6$ 





S22