Supplementary Information-2

Copies of 1H-NMR, 13C-NMR spectra and chiral HPLC chromatograms

Stereoselective Synthesis of 4-Substituted-Cyclic Sulfamidate-5-Carboxylates By Asymmetric Transfer Hydrogenation Accompanying Dynamic Kinetic Resolution and Its Use in Concise Stereoselective Synthesis of (-)-\textit{epi}-Cytoxazone and Taxotere Side-Chain.

Jin-ah Kim,a Yeon Ji Seo,a,b Soyeong Kang,a,b Juae Hana,b and Hyeon-Kyu Leea,b,*

a Korea Chemical Bank, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, KOREA; b Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 113 Gwahango, Yuseong, Daejeon 305-333, KOREA.

Tel: +82-42-860-7016; Fax: +82-42-860-7096
e-mail: leehk@kRICT.re.kr
Table of Contents

1. 1H-NMR and 13C-NMR spectra ... 3
 1-1. α-Hydroxy-\(\beta\)-keto esters ... 4
 1-2. Cyclic imine-5-carboxylates, 6a-6t .. 37
 1-3. Cyclic sulfamidate-5-carboxylates, 7a-7t .. 77
 1-4. Methyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, N-Boc-7a ... 117
 1-5. Isopropyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, N-Boc-7b ... 121
 1-6. Benzyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, N-Boc-7c .. 123
 1-7. Methyl N-Boc-4-(\(\alpha\)-propyl)-cyclic sulfamidate-5-carboxylate, N-Boc-7r 125
 1-8. Methyl N-Boc-4-cyclohexyl-cyclic sulfamidate-5-carboxylate, N-Boc-7t 127
 1-9. Methyl 3-phenyl-3-(N-Boc-amino)-2-benzoyloxy-propanoate, 8a .. 129
 1-10. Methyl 3-(N-Boc-amino)-2-benzoyloxy-hexanoate, 8r ... 131
 1-11. Methyl 3-cyclohexyl-3-(N-Boc-amino)-2-benzoyloxy-propanoate, 8t .. 133
 1-12. Methyl 3-phenyl-3-(N-Boc-amino)-2-hydroxy-propanoate, 9a ... 135
 1-13. 3-Phenyl-3-(N-Boc-amino)-2-hydroxy-propanoic acid (Taxotere side-chain), 10 137
 1-14. N-Boc-4-(4-Methoxy-phenyl)-5-methoxycarbonyl-cyclic sulfamidate, N-Boc-7j 139
 1-15. Methyl 3-(4-methoxy-phenyl)-3-(N-Boc-amino)-2-benzoyloxy-propanoate, 8j 141
 1-16. Methyl 3-(4-methoxy-phenyl)-3-(N-Boc-amino)-2-hydroxy-propanoate, 9j 143
 1-17. 3-(4-Methoxy-phenyl)-3-(N-Boc-amino)-propan-1,2-diol, 11 ... 145
 1-18. (+)-epi-Cytoxazone, 12 ... 147

2. Chiral HPLC Chromatograms .. 149
 2-1. Cyclic sulfamidate-5-carboxylates, 7a, 7d-7q, 7s ... 150
 2-2. Methyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, (S,S)-N-Boc-7a 152
 2-4. Isopropyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, (S,S)-N-Boc-7b 154
 2-5. Benzyl N-Boc-4-phenyl-cyclic sulfamidate-5-carboxylate, (S,S)-N-Boc-7c 155
 2-6. Methyl 3-(N-Boc-amino)-2-benzoyloxy-hexanoate, (2R,3S)-8r ... 172
 2-7. Methyl 3-cyclohexyl-3-(N-Boc-amino)-2-benzoyloxy-propanoate, (2R,3S)-8t 173
1H-NMR and 13C-NMR spectra
H NMR (500 MHz, CDCl3)

\[
\begin{align*}
\text{OH} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O}
\end{align*}
\]
1H NMR (500 MHz, CDCl$_3$)

KSY prop OH
HIAJπimine
The image contains a spectrum graph with chemical shift values ranging from -0.1 to 10 ppm. There is a molecule structure labeled as 61 with chemical formulas and annotations indicating the presence of S, N, O, and other elements. The spectrum appears to be for a compound labeled LHK 120305 ACI dimine in DCM. The text on the page includes technical details and notations related to the experiment and measurement conditions.
1H NMR (500 MHz, CDCl$_3$)
1H NMR (500MHz, CDCl3)

6k

LHK-4 F Imine
69
1H NMR (500 MHz, CDCl3)

KIA-4-Ome-car
1H NMR (500MHz, CDCl3)
N-Boc-(5S,5R)-71

\[
\text{H NMR (500 MHz, CDCl}_3)\n\]

LR-158-Boc
\[(2R,3S)-8a\]

\[
\begin{align*}
\text{OCH} & \\
\text{OCH} & \\
\text{OCH} & \\
\text{OCH} & \\
\end{align*}
\]

H NMR (500 MHz, CDCl₃)
(2R,3S)-8R

Boehn

\text{NMR}(500\text{MHz}, \text{CDCl}_3)
(2R,3S)-9a

Benzo C12

3J NMR(500MHz, CDCl3)

Kra ph carbonate Boc OH 0401
^{1}H NMR (500 MHz, CDCl₃)
^{1}H NMR (500MHz, CDCl$_3$)

$^{2}A_{35.8}$
^{1}H NMR (500 MHz, CDCl$_3$)

$\text{KIA-4-O-Me-Carbop-N-BOC-OH}$

(2R,3S)-9
Chiral HPLC Chromatograms
Chiral HPLC Chromatograms of ATH-DKR products

- **Sample name:** (S,S)-7a

- **Analysis condition:** Chiralpak IB, 20% EtOH/n-hexane, 1.0 ml/min, 215nm

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>width [sec]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.7000</td>
<td>550.3280</td>
<td>FP</td>
<td>40.0000</td>
<td>1.4940</td>
</tr>
<tr>
<td>2</td>
<td>12.8867</td>
<td>38285.7819</td>
<td>FP</td>
<td>114.0000</td>
<td>98.5080</td>
</tr>
<tr>
<td>합계</td>
<td></td>
<td>38836.1094</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=97%
Sample name: (R,R)-7a

Analysis condition: Chiralpak IB, 20% EtOH/n-hexane, 1.0 ml/min, 215nm

<table>
<thead>
<tr>
<th>N</th>
<th>RT[min]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.7667</td>
<td>50.4826</td>
</tr>
<tr>
<td>2</td>
<td>12.9167</td>
<td>49.5174</td>
</tr>
</tbody>
</table>

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time[min]</th>
<th>Area[mV*s]</th>
<th>BL</th>
<th>width [arc]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.8500</td>
<td>22018.3878</td>
<td>FF</td>
<td>109.0000</td>
<td>99.0859</td>
</tr>
<tr>
<td>2</td>
<td>13.7000</td>
<td>200.8943</td>
<td>FF</td>
<td>42.0000</td>
<td>0.9041</td>
</tr>
<tr>
<td>합계</td>
<td></td>
<td>22220.2832</td>
<td></td>
<td></td>
<td>ee=98%</td>
</tr>
</tbody>
</table>

ee=98%
Sample name: (S,S)-N-Boc-7a

Analysis condition: Chiralpak AD-H, 10% iPrOH/n-hexane, 1.0 ml/min, 215nm

<table>
<thead>
<tr>
<th>N</th>
<th>RT[min]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.1500</td>
<td>50.0648</td>
</tr>
<tr>
<td>2</td>
<td>13.4000</td>
<td>49.9352</td>
</tr>
</tbody>
</table>

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>Width [sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.2333</td>
<td>347.1843</td>
<td>FF</td>
<td>32.0000</td>
<td>1.0986</td>
</tr>
<tr>
<td>2</td>
<td>13.4187</td>
<td>31252.2745</td>
<td>BB</td>
<td>98.0000</td>
<td>98.9014</td>
</tr>
<tr>
<td>Total</td>
<td>31599.4395</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=98%
Sample name: \((R,R)\)-N-Boc-7a

Analysis condition: Chiralpak AD-H, 10% iPrOH/n-hexane, 1.0 ml/min, 215nm

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time[min]</th>
<th>Area[mV*s]</th>
<th>BL</th>
<th>Width[sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.2833</td>
<td>2362.1982</td>
<td>EB</td>
<td>62.0000</td>
<td>98.8747</td>
</tr>
<tr>
<td>2</td>
<td>13.8333</td>
<td>28.8841</td>
<td>FF</td>
<td>43.0000</td>
<td>1.1253</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.9999</td>
</tr>
</tbody>
</table>

\[\text{ee} = 98\% \]
Sample name: (S,S)-N-Boc-7b

Analysis condition: Chiralpak AD-H, 10% iPrOH/n-hexane, 1.0 ml/min, 215nm

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>Width [sec]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.7000</td>
<td>351.3224</td>
<td>BB</td>
<td>43.0000</td>
<td>1.0484</td>
</tr>
<tr>
<td>2</td>
<td>14.2833</td>
<td>32805.7090</td>
<td>BB</td>
<td>116.0000</td>
<td>97.8995</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>33510.9453</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{ee} = 97.2\% \]
Sample name: (S,S)-N-Boc-7c

Analysis condition: Chiralpak AD-H, 10% iPrOH/n-hexane, 1.0 ml/min, 215nm

\[
\begin{array}{c}
\text{Racemic-}N\text{-Boc-7c} \\
\end{array}
\]

\[
\begin{array}{c}
\text{N-Boc- (S,S)-7c} \\
\end{array}
\]

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>Width [sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.5667</td>
<td>387.5644</td>
<td>BB</td>
<td>66.0000</td>
<td>1.0268</td>
</tr>
<tr>
<td>2</td>
<td>22.1667</td>
<td>370.403068</td>
<td>BB</td>
<td>168.0000</td>
<td>98.1286</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>37746.6836</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ee=97.9\%\]
Sample name: (S,S)-7d
Analysis condition: Chiralpak AD-H, 5% iPrOH/n-hexane, 1.0 ml/min, 215nm

Racemic-7d

(S,S)-7d

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time[sec]</th>
<th>Area[mV*s]</th>
<th>BL</th>
<th>width[sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.2667</td>
<td>28.7343</td>
<td>BB</td>
<td>42.0000</td>
<td>0.0730</td>
</tr>
<tr>
<td>2</td>
<td>36.2500</td>
<td>39153.5218</td>
<td>BB</td>
<td>206.0000</td>
<td>99.9294</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>39182.2561</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee => 99%
Sample name: \((S,S)-7e\)

Analysis condition: Chiralpak AD-H, 20% iPrOH/n-hexane, 1.0 ml/min, 215nm

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>Width [sec]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.4333</td>
<td>15569.3232</td>
<td>EE</td>
<td>63.0000</td>
<td>96.0886</td>
</tr>
<tr>
<td>2</td>
<td>10.1000</td>
<td>637.4800</td>
<td>FF</td>
<td>40.0000</td>
<td>3.9334</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>16206.8037</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{ee}=92.1\%\)
Sample name: (S,S)-7f

Analysis condition: Chiralpak AD-H, 10% iPrOH/n-hexane, 1.3 ml/min, 215 nm

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>width [sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.9867</td>
<td>196.3357</td>
<td>FF</td>
<td>43.0000</td>
<td>0.6009</td>
</tr>
<tr>
<td>2</td>
<td>17.0000</td>
<td>32478.0723</td>
<td>FF</td>
<td>93.0000</td>
<td>99.3981</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>32672.4082</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=98.7%
Sample name: (S,S) -7g

Analysis condition: Chiralpak AD-H, 20% iPrOH/n-hexane, 1.0 ml/min, 215nm

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>width [sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.1667</td>
<td>4504.8323</td>
<td>FF</td>
<td>67.0000</td>
<td>99.5676</td>
</tr>
<tr>
<td>2</td>
<td>12.1833</td>
<td>18.6503</td>
<td>FF</td>
<td>27.0000</td>
<td>0.4124</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4523.4888</td>
<td></td>
<td></td>
<td>ee=99.2%</td>
</tr>
</tbody>
</table>

Result Report
Sample name: \((S,S)\)-7h

Analysis condition: Chiralpak AD-H, 10% iPrOH/n-hexane, 1.2 ml/min, 215nm

<table>
<thead>
<tr>
<th>N</th>
<th>RT [min]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.9000</td>
<td>49.3177</td>
</tr>
<tr>
<td>2</td>
<td>15.1667</td>
<td>50.6823</td>
</tr>
</tbody>
</table>

\[
\text{ee}=96.7\%
\]
Sample name: (S,S)-7i

Analysis condition: Chiralpak AD-H, 10% EtOH/n-hexane, 1.5 ml/min, 215nm

<table>
<thead>
<tr>
<th>N</th>
<th>RT [min]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.1333</td>
<td>49.8309</td>
</tr>
<tr>
<td>2</td>
<td>14.0667</td>
<td>50.1691</td>
</tr>
</tbody>
</table>

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>width [sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.2687</td>
<td>110.6849</td>
<td>FF</td>
<td>33.0000</td>
<td>1.3545</td>
</tr>
<tr>
<td>2</td>
<td>14.0687</td>
<td>8073.8913</td>
<td>FF</td>
<td>85.0000</td>
<td>98.6455</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8184.7563</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$ee = 97.3\%$
- **Sample name:** (S,S)-7j

- **Analysis condition:** Chiralpak AD-H, 20% iPrOH/n-hexane, 1.0 ml/min, 215nm

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>Bl.</th>
<th>Width [sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.0000</td>
<td>2420.8569</td>
<td>FF</td>
<td>92.0000</td>
<td>100.0000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.0000</td>
</tr>
</tbody>
</table>

\[ee = >99\% \]
Sample name: \((S,S)-7k\)

Analysis condition: Chiralpak IA, 20% EtOH/n-hexane, 1.0 ml/min, 215nm

<table>
<thead>
<tr>
<th>N</th>
<th>RT[min]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.4500</td>
<td>50.2209</td>
</tr>
<tr>
<td>2</td>
<td>16.4333</td>
<td>49.7791</td>
</tr>
</tbody>
</table>

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time[min]</th>
<th>Area[mV*s]</th>
<th>BL</th>
<th>width[sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.5333</td>
<td>402.7184</td>
<td>FF</td>
<td>41.0000</td>
<td>1.3427</td>
</tr>
<tr>
<td>2</td>
<td>16.1500</td>
<td>23969.0409</td>
<td>FF</td>
<td>100.0000</td>
<td>98.6573</td>
</tr>
<tr>
<td>Total</td>
<td>29992.7598</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(ee=97.3\%\)
Sample name: (S,S)-7l

Analysis condition: Chiralpak IA, 20% EtOH/n-hexane, 1.5 ml/min, 215nm

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>width [sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.5000</td>
<td>16.5963</td>
<td>FF</td>
<td>24.0000</td>
<td>0.2520</td>
</tr>
<tr>
<td>2</td>
<td>10.8333</td>
<td>6565.2855</td>
<td>FF</td>
<td>74.0000</td>
<td>99.7480</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6565.9821</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=98.5%
Sample name: (S,S)-7m

Analysis condition: Chiralpak IA, 30% EtOH/n-hexane, 1.3 ml/min, 215nm

<table>
<thead>
<tr>
<th>N</th>
<th>RT[min]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.3833</td>
<td>50.0070</td>
</tr>
<tr>
<td>2</td>
<td>14.7167</td>
<td>49.9930</td>
</tr>
</tbody>
</table>

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time[min]</th>
<th>Area[mV·s]</th>
<th>BL</th>
<th>width[sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.2187</td>
<td>351.4940</td>
<td>FF</td>
<td>48.0000</td>
<td>1.8410</td>
</tr>
<tr>
<td>2</td>
<td>13.7887</td>
<td>18740.8828</td>
<td>FF</td>
<td>81.0000</td>
<td>98.1590</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>19092.1758</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=96.3%
Sample name: (S,S)-7n

Analysis condition: Chiralpak IA, 20% EtOH/n-hexane, 1.5 ml/min, 215nm

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*sec]</th>
<th>BL</th>
<th>Width [sec]</th>
<th>Area [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.0000</td>
<td>129.7953</td>
<td>FF</td>
<td>41.0000</td>
<td>1.8847</td>
</tr>
<tr>
<td>2</td>
<td>13.9833</td>
<td>7888.9291</td>
<td>EB</td>
<td>97.0000</td>
<td>98.3353</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7796.7246</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$ee = 96.7\%$
Sample name: (S,S) - 7o

Analysis condition: Chiralpak AD-H, 20% iprOH/n-hexane, 1.0 ml/min, 215nm

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>width [sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.1500</td>
<td>49.9947</td>
<td>FF</td>
<td>69.0000</td>
<td>96.3557</td>
</tr>
<tr>
<td>2</td>
<td>13.0000</td>
<td>50.0053</td>
<td>FF</td>
<td>41.0000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>24804.5996</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=96.7%
Sample name: (S,S)-7p
Analysis condition: Chiralpak IA, 20% EtOH/n-hexane, 1.5 ml/min, 215nm

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>RT[min]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.7167</td>
<td>50.9298</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14.4500</td>
<td>49.0702</td>
<td></td>
</tr>
</tbody>
</table>

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time[min]</th>
<th>Area[mV*s]</th>
<th>BL</th>
<th>width[sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.6833</td>
<td>1230.3090</td>
<td>RF</td>
<td>60.0000</td>
<td>97.4679</td>
</tr>
<tr>
<td>2</td>
<td>14.3333</td>
<td>31.9625</td>
<td>RF</td>
<td>48.0000</td>
<td>2.5321</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1262.2714</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=94.9%
Sample name: (R,R)-7p

Analysis condition: Chiralpak IA, 20% EtOH/n-hexane, 1.5 ml/min, 215nm

<table>
<thead>
<tr>
<th>N</th>
<th>RT[min]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.7167</td>
<td>50.9298</td>
</tr>
<tr>
<td>2</td>
<td>14.4500</td>
<td>49.0702</td>
</tr>
</tbody>
</table>

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time[min]</th>
<th>Area[mV*s]</th>
<th>BL</th>
<th>width[sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.6167</td>
<td>213.4351</td>
<td>FF</td>
<td>39.0000</td>
<td>2.3101</td>
</tr>
<tr>
<td>2</td>
<td>14.2833</td>
<td>9025.6053</td>
<td>BB</td>
<td>99.0000</td>
<td>97.6899</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9239.0400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=95.3%
Sample name: \((S,S)-7q\)

Analysis condition: Chiralpak IA, 20% EtOH/n-hexane, 1.5 ml/min, 215nm

<table>
<thead>
<tr>
<th>N</th>
<th>RT [min]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.4667</td>
<td>50.8235</td>
</tr>
<tr>
<td>2</td>
<td>14.5667</td>
<td>49.1765</td>
</tr>
</tbody>
</table>

Result Report

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>Width [sec]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.5000</td>
<td>47.0973</td>
<td>FF</td>
<td>38.0000</td>
<td>0.8703</td>
</tr>
<tr>
<td>2</td>
<td>14.2167</td>
<td>6979.5148</td>
<td>FF</td>
<td>100.0000</td>
<td>99.3297</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7028.6118</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{ee}=98.7\%\)
Sample name: (S,S)-7s

Analysis condition: Chiralpak IA, 20% EtOH/n-hexane, 1.5 ml/min, 215nm

<table>
<thead>
<tr>
<th>Peak</th>
<th>Time[min]</th>
<th>Area[mV*s]</th>
<th>BL</th>
<th>width[sec]</th>
<th>Area%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.0000</td>
<td>302.5704</td>
<td>FF</td>
<td>25.0000</td>
<td>11.9138</td>
</tr>
<tr>
<td>2</td>
<td>7.9667</td>
<td>2237.1001</td>
<td>FF</td>
<td>43.0000</td>
<td>88.0862</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2539.6707</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=76.1%
Sample name: (2R,3S)-8r

Analysis condition: Chiralpak IC, 10% iPrOH/n-hexane, 0.7 ml/min, 254nm
Sample name: (2R,3S)-8t

Analysis condition: Chiralpak IC, 10% iPrOH/n-hexane, 0.7 ml/min, 254nm

<table>
<thead>
<tr>
<th>Peak #</th>
<th>Time [min]</th>
<th>Area [mV*s]</th>
<th>BL</th>
<th>Width [sec]</th>
<th>Area %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.3500</td>
<td>832.8883</td>
<td>BB</td>
<td>45.0000</td>
<td>28.2840</td>
</tr>
<tr>
<td>2</td>
<td>9.5500</td>
<td>2335.9153</td>
<td>BB</td>
<td>68.0000</td>
<td>73.7160</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3168.8036</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ee=47.4%