Supporting Information

Synthesis of Cyclic Carbonates from CO₂ and Epoxides Catalyzed by Low Loadings of Benzyl Bromide/DMF at Ambient Pressure

Lin Wang, a Li Lin, a Prof. Dr. Guangyou Zhang, b Prof. Dr. Koichi Kodama, a Prof. Dr. Mikio Yasutake, a and Prof. Dr. Takuji Hirose a

a Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
b School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
*: Corresponding author. E-mail: hirose@apc.saitama-u.ac.jp
Fax: (+)81 488583522.

Tables and Experimental Section:

Tables

Table S1. Screening of Solvents

Table S2. Screening of Catalysts S2

Experimental Section

General information S3

Representative procedure for the Cyclic Carbonate Formation S4

Reaction of chiral epoxide S8

1H and 13C NMR Spectral Charts S9
Table S1. Screening of Solvents.a

\[
\text{Ph} + \text{PhCH}_2\text{Br} + \text{solvent} \xrightarrow{\text{120°C}} \text{Ph}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMF</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>DMAc</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>5-Formylpiperidine</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>N-methylpyrrolidone</td>
<td>51</td>
</tr>
<tr>
<td>5</td>
<td>5-Formylmorpholine</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>5,5,5,5-Tetramethylurea</td>
<td>71</td>
</tr>
</tbody>
</table>

a Reaction conditions: catalyst (1 mol%), epoxide (5 mmol), DMF (5 equiv.), CO\textsubscript{2} (99.999%, balloon), temperature 120 °C, total reaction time 24h. b Isolated yield.

Table S2. Screening of Catalysts.a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Yield (%)b</th>
</tr>
</thead>
</table>
| 1 | \[
\text{Br}\]
| 2 | \[
\text{Bu} + \text{Bu} + \text{Br} + \text{Br}
\]
| 3 | \[
\text{O}_2\text{N} + \text{Bu} + \text{Br}
\]
| 4 | \[
\text{Br} + \text{Bu} + \text{Br}
\]
| 5 | \[
\text{Bu} + \text{Bu} + \text{Br} + \text{Bu}
\]
| 6 | \[
\text{H}_2\text{O} + \text{Br} + \text{Ph}
\]
| 7 | \[
\text{NC} + \text{Br}
\]
| 8 | \[
\text{CL}
\]
| 9 | \[
\text{SN} + \text{Br} + \text{Ph}
\]
| 10 | \[
\text{SO}_2
\]
| 11 | \[
\text{Ph} + \text{CN}
\]
| 12 | \[
\text{Ph} + \text{CN}
\]
| 13 | \[
\text{Ph} + \text{CN}
\]
| 14 | \[
\text{Ph} + \text{CN}
\]
| 15 | \[
\text{Ph} + \text{CN}
\]

a Reaction conditions: catalyst (1 mol%), epoxide (5 mmol), DMF (5 equiv.), CO\textsubscript{2} (99.999%, balloon), temperature 120 °C, total reaction time 24h. b Isolated yield.
Experimental Section

General information

All starting materials and solvents commercially available were purchased at the highest quality from Sigma-Aldrich or Wako and used as received unless otherwise indicated. Reactions were monitored by thin layer chromatography using 0.25-mm E. Merck silica gel coated on aluminum plates (60F-254) with UV light to visualize the course of the reaction. Chemical yields refer to the pure isolated substances. 1H (500 MHz) and 13C (125 MHz) NMR spectra were obtained using a Brucker AV-500 (500 MHz) spectrometer. The chemical shifts of the products were reported in ppm with reference to Me$_4$Si as the internal standard in CDCl$_3$ solution. The data were reported in the following order: chemical shift, multiplicity, coupling constants in Hz and integration. On the other hand, the spectra of the reaction system materials were taken using a coaxial dual NMR cell. The inner cell contained DMF, the DMF–BnBr mixture, and the reaction mixture, while the outer cell contained DMSO-d$_6$ as the external standard. Enantiomeric excesses of the carbonates were determined by HPLC analyses with a Daicel Chiralcel OD-3 with detection at 254 nm or 205 nm.
Representative procedure for the Cyclic Carbonate Formation

\[
\begin{array}{c}
\text{R} \\
\text{PhCH}_2\text{Br}
\end{array}
\xrightarrow{\text{CO}_2, \text{DMF} @ 120 \text{°C}}
\begin{array}{c}
\text{R} \\
\text{O}
\end{array}
\]

4-Phenyl-1,3-dioxolan-2-one (8b)

In a 20 mL two-neck flask, styrene oxide 8a (5 mmol, 0.601 g) and DMF (5 equiv., 25 mmol, 1.827 g, flushed with CO\textsubscript{2} for 10 min) were stirred at 120 °C for 4 h under an atmosphere of CO\textsubscript{2} (99.999%, balloon), and then PhCH\textsubscript{2}Br (0.05mmol, 0.0086 g) was added. The reaction mixture was stirred for 20 h at the same temperature and DMF was removed under reduced pressure. The residue was dissolved in ethyl acetate (50 mL) and washed with water (15 ml) and brine (15 mL × 2), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (hexane : ethyl acetate = 3 : 1) to afford the desired cyclic carbonate 0.705 g (yield: 86.0%).

\(^{1}\text{H NMR (500 MHz, CDCl}_3\): 7.42–7.37 (m, 2H), 7.37–7.30 (m, 3H), 5.70–5.60 (m, 1H), 4.81–4.70 (m, 1H), 4.31–4.20 (m, 1H). \(^{13}\text{C NMR (125 MHz, CDCl}_3\): 155.0, 135.9, 129.7, 129.2, 126.0, 78.0, 71.2.}

Propylene carbonate (1b)

Propylene oxide (1a, 10 mmol, 0.581g), DMF (5 equiv., 50 mmol, 3.655 g), benzyl bromide (0.1 mmol, 0.0171 g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 1 : 1) to afford the desired cyclic carbonate 0.766 g (yield: 75.0%).
1H NMR (500 MHz, CDCl$_3$): 4.92–4.80 (m, 1H), 4.62–4.51 (m, 1H), 4.10–3.95 (m, 1H), 1.55–1.40 (m, 3H). 13C NMR (125 MHz, CDCl$_3$): 155.2, 73.7, 70.7, 19.3.

4-Butyl-1,3-dioxolan-2-one (2b)

1,2-Epoxyhexane (2a, 6 mmol, 0.601 g), DMF (5 equiv., 30 mmol, 2.193 g), benzyl bromide (0.06 mmol, 0.0103 g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 2 : 1) to afford the desired cyclic carbonate 0.618 g (yield: 78.6%).

1H NMR (500 MHz, CDCl$_3$): 4.80–4.65 (m, 1H), 4.60–4.50 (m, 1H), 4.18–4.01 (m, 1H), 1.85–1.62 (m, 2H), 1.55–1.22 (m, 4H), 0.93 (t, $J = 7.0$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$): 155.2, 77.2, 69.4, 33.4, 26.4, 22.2, 13.7.

4-Hexyl-1,3-dioxolan-2-one (3b)

1,2-Epoxyoctane (3a, 5 mmol, 0.641 g), DMF (5 equiv., 25 mmol, 1.827 g), benzyl bromide (0.05 mmol, 0.0086 g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 3 : 1) to afford the desired cyclic carbonate 0.666 g (yield: 81.5%).

1H NMR (500 MHz, CDCl$_3$): 4.79–4.68 (m, 1H), 4.61–4.50 (m, 1H), 4.15–4.02 (m, 1H), 1.85–1.62 (m, 2H), 1.55–1.21 (m, 8H), 0.89 (t, $J = 6.9$ Hz, 3H). 13C NMR (125 MHz, CDCl$_3$): 155.2, 77.2, 69.4, 33.7, 31.5, 28.7, 24.3, 22.4, 13.9.
4-(Chloromethyl)-1,3-dioxolan-2-one (4b)

Epichlorohydrin (4a, 6 mmol, 0.556 g), DMF (5 equiv., 30 mmol, 2.193 g), benzyl bromide (0.06 mmol, 0.0103 g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 1 : 1) to afford the desired cyclic carbonate 0.602 g (yield: 73.5%).

1H NMR (500 MHz, CDCl$_3$): 5.12–5.01 (m, 1H), 4.69–4.55 (m, 1H), 4.48–4.35 (m, 1H), 3.89 (dd, J = 12.5, 4.0 Hz, 1H), 3.77 (dd, J = 12.5, 3.5 Hz, 1H). 13C NMR (125 MHz, CDCl$_3$): 154.8, 74.7, 67.0, 44.6.

4-(But-3-en-1-yl)-1,3-dioxolan-2-one (5b)

1,2-Epoxy-5-hexene (5a, 6 mmol, 0.589 g), DMF (5 equiv., 30 mmol, 2.193 g), benzyl bromide (0.06 mmol, 0.0103 g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 2 : 1) to afford the desired cyclic carbonate 0.490 g (yield: 57.4%).

1H NMR (500 MHz, CDCl$_3$): 5.89–5.63 (m, 1H), 5.18–4.90 (m, 2H), 4.79–4.60 (m, 1H), 4.59–4.42 (m, 1H), 4.15–3.95 (m, 1H), 2.30–2.01 (m, 2H), 1.95–1.65 (m, 2H).

13C NMR (125 MHz, CDCl$_3$): 155.1, 136.3, 116.0, 76.5, 69.4, 32.8, 28.6.

4-Allyloxymethyl-1,3-dioxolan-2-one (6b)

Allyl glycidyl ether (6a, 5 mmol, 0.571 g), DMF (5 equiv., 25 mmol, 1.827 g), benzyl
bromide (0.05 mmol, 0.0086 g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 1 : 1) to afford the desired cyclic carbonate 0.648 g (yield: 81.9%).

\[
\begin{align*}
\text{H NMR (CDCl}_3, 500 \text{ MHz)}: & \quad 5.95-5.80 (m, 1H), 5.35-5.12 (m, 2H), 4.93-4.80 (m, 1H), 4.60-4.45 (m, 1H), 4.44-4.30 (m, 1H), 4.11-3.99 (m, 2H), 3.75-3.65 (m, 1H), 3.64-3.52 (m, 1H). \\
\text{C NMR (125 MHz, CDCl}_3): & \quad 155.2, 133.9, 117.3, 75.4, 72.3, 68.9, 66.2.
\end{align*}
\]

4-(Phenoxymethyl)-1,3-dioxolan-2-one (7b)

1,2-Epoxy-3-phenoxy propane (7a, 5 mmol, 0.750 g), DMF (5 equiv., 25 mmol, 1.827 g), benzyl bromide (0.05 mmol, 0.0086 g) were combined in a 20 mL two-neck flask according to the representative procedure. The crude product was purified by column chromatography (hexane : ethyl acetate = 2 : 1) to afford the desired cyclic carbonate 0.870 g (yield: 89.6%).

\[
\begin{align*}
\text{H NMR (500 MHz, CDCl}_3): & \quad 7.36-7.22 (m, 2H), 7.06-6.92 (m, 1H), 6.91-6.85 (m, 2H), 5.06-4.95 (m, 1H), 4.65-4.56 (m, 1H), 4.55-4.46 (m, 1H), 4.22 (dd, J = 10.5, 4.0 Hz, 1H), 4.12 (dd, J = 10.5, 3.5 Hz, 1H). \\
\text{C NMR (125 MHz, CDCl}_3): & \quad 157.8, 154.8, 129.7, 122.0, 114.7, 74.2, 66.9, 66.2.
\end{align*}
\]
Reaction of chiral epoxide

(R)-4-Phenyl-1,3-dioxolan-2-one ((R)-8b)

Reaction of (R)-styrene oxide was conducted according to the representative procedure, and the ee of the product was determined by chiral HPLC measurement using Chiralcel OD-3, 10% IPA/hexanes, 1 mL/min, \(t_R=25.83 \text{ min} \), \(t_S=34.15 \text{ min} \), 254 nm. Partial racemization of the product relative to the starting material was observed (68.6% ee). The DMF solution of the isolated product was kept for 24 h at 120 °C and negligible change of optical purity was observed (66.6 %ee).

<table>
<thead>
<tr>
<th>No.</th>
<th>Rt</th>
<th>Area</th>
<th>Area (%)</th>
<th>Height</th>
<th>NTP</th>
<th>Tf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.83</td>
<td>1411603</td>
<td>84.2972</td>
<td>35080</td>
<td>8358.1</td>
<td>2.348</td>
</tr>
<tr>
<td>2</td>
<td>34.15</td>
<td>262952.4</td>
<td>15.7029</td>
<td>6639</td>
<td>16073</td>
<td>1.343</td>
</tr>
</tbody>
</table>
1H and 13C NMR Spectra:
13C with 1H decoupling

$1b$
13C with 1H decoupling

$2b$
13C with 1H decoupling
13C with 1H decoupling

![Chemical Structure](image)

$6b$