SUPPORTING INFORMATION

Mo(CO)6 Catalysed Chemoselective Hydrosilylation of α,β-Unsaturated Amides for the Formation of Allylamines

Alexey Volkov, a Fredrik Tinnis,* a Tove Slagbrand, a Ida Pershagen a and Hans Adolfsson a

a Department of Organic Chemistry,
Stockholm University, the Arrhenius Laboratory, SE-106 91 Stockholm, Sweden
Table of content

Instrumentation .. 2
Material .. 2
General ... 2
Substrate scope investigation ... 3
Synthesis of Naftifine (14)... 3
Compound characterization. .. 5
Spectroscopic data. .. 9

Instrumentation

Characterizations were made by 1H and 13C NMR spectroscopy. NMR spectra were recorded at Bruker 400, 500 MHz (1H) and 100, 125 MHz (13C), and were referenced internally with CDCl$_3$ (δH 7.26, δC 77.16 ppm) (CD$_3$)$_2$SO (δH 2.50, δC 39.52 ppm). High temperature experiments were performed at Bruker 500 MHz (1H) and 125 MHz (13C). HRMS was performed on Bruker micrOTOF/ESI.

Material

Unless otherwise noted, materials were purchased from commercial suppliers and were used without purification. Mo(CO)$_6$, sublimed 99.9+% was purchased from Sigma-Aldrich and used as received. THF was purchased from Fischer Scientific, and dispersed from a solvent drying system.

General

The 1 mmol scale catalytic reduction of amides was performed in microwave tubes 2-5 mL from Biotage, with a Teflon-coated magnetic stirring bar. The tubes were fitted with a cap containing a septum and the reactions were run under nitrogen atmosphere.
Substrate scope investigation

General procedure for catalytic reduction of amides.

Amide (1.0 mmol) and Mo(CO)$_6$ (0.0132 g, 0.05 mmol) were added to an oven dried 10 mL microwave tube equipped with a magnetic stirring bar. To the sealed tube, dry THF (2 mL) and TMDS (0.265 mL, 1.5 mmol) were added and the reaction mixture was stirred at 65 °C for 24 h. The reaction was quenched with NaOH (Aq. 2M, 10 mL) and the stirring was continued at r.t for 8 h. The mixture was extracted with DCM (3 x 20 mL), dried with Na$_2$SO$_4$ and evaporated under reduced pressure. The crude products were purified by column chromatography.

Evaluation of β,γ-unsaturated amide 7

Amide 7 (1.0 mmol) and Mo(CO)$_6$ (0.0132 g, 0.05 mmol) were added to an oven dried 10 mL microwave tube equipped with a magnetic stirring bar. To the sealed tube, dry THF (2 mL) and TMDS (0.265 mL, 1.5 mmol) were added and the reaction mixture was stirred at 65 °C for 24 h. The solvent was evaporated and 1,3,5-trimethoxybenzene (0.056 g, 0.33 mmol) was added as internal standard. The mixture was dissolved in CDCl$_3$ (3 mL) where after the 1H NMR spectrum was immediately recorded.

Synthesis of Naftifine (14)

Synthesis of N-(naphthalen-1-ylmethyl)cinnamamide (12)

Dry THF (17 mL) was added to the carboxylic acid 10 (0.741 g, 5.0 mmol), activated molecular sieves 4Å (2.5 g) and zirconium(IV)chloride (0.118 g, 10 mol%) under nitrogen atmosphere and the mixture was heated under stirring to 100°C in a capped microwave vial. The amine 11 (0.943 g, 6.0 mmol) was added dropwise and the reaction was stirred at the same temperature for 24 h and then cooled to r.t. The mixture was filtered through a plug of silica (4 x 3.5 cm) with 150 mL of an EtOAc:Et$_3$N (200:1) eluent. The solvent was removed under reduced pressure affording analytically pure compound 12 (1.306 g, 91%).
Synthesis of N-methyl-N-(naphthalen-1-ylmethyl)cinnamamide (13)
In 25 mL round-bottom flask to a suspension of NaH (0.12 g, 5.0 mmol) in 10 mL of dry DMF 1 g (3.5 mmol) of amide (12) was added drop wise as a solution in 2 mL of DMF at 0 °C and the reaction mixture was stirred for 2 h. 0.36 mL (5.9 mmol) of methyl iodide was thereafter added drop wise and the temperature was raised to r.t and the mixture was left stirring for 10 h. The reaction was quenched with 2 mL of 95% ethanol followed by water (40 mL). The reaction was then extracted with EtOAc (3x40 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed by rotary evaporation. Crude product was purified by column chromatography using pentane/ethyl acetate (4:1) as an eluent yielding 0.976 g (93 %) of the target compound (13).

Synthesis of (E)-N-methyl-N-(naphthalen-1-ylmethyl)-3-phenylprop-2-en-1-amine (Naftifine) (14)
Amide 13 was reduced following general procedure for catalytic reduction of amides.
Compound characterization.

1-cinnamylpiperidine 2a

0.176 g, 87 % yield; \(^1^H\)NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.39 – 7.36\) (m, 2H), 7.32 – 7.28 (m, 2H), 7.24 – 7.19 (m, 1H), 6.50 (d, \(J = 15.8\) Hz, 1H), 6. 30 (dt, \(J_1 = 6.7\) Hz, \(J_2 = 15.8\) Hz, 1H), 3.12 (dd, \(J_1 = 1.2\) Hz, \(J_2 = 6.7\) Hz, 2H), 2.44 (bs, 4H), 1.65 – 1.57 (m, 4H), 1.49 – 1.40 (m, 2H); \(^1^C\)NMR (100 MHz, CDCl\(_3\)): \(\delta = 137.2, 132.8, 128.7, 127.5, 127.3, 126.4, 62.0, 54.7, 26.1, 24.5\); HRMS (ESI, m/z) calcd. for C\(_{14}\)H\(_{20}\)N [M + H]\(^+\) 202.1590, found 202.1585.

1-cinnamylpyrrolidine 2b

0.167 g, 89 % yield; \(^1^H\)NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.39 – 7.36\) (m, 2H), 7.33 – 7.28 (m, 2H), 7.24 – 7.19 (m, 1H), 6.53 (d, \(J = 15.9\) Hz, 1H), 6. 34 (dt, \(J_1 = 6.7\) Hz, \(J_2 = 15.9\) Hz, 1H), 3.26 (dd, \(J_1 = 1.3\) Hz, \(J_2 = 6.7\) Hz, 2H), 2.59 – 2.53 (m, 4H), 1.83 – 1.77 (m, 4H); \(^1^C\)NMR (100 MHz, CDCl\(_3\)): \(\delta = 137.3, 131.9, 128.7, 127.9, 127.5, 126.4, 58.6, 54.2, 23.6\); HRMS (ESI, m/z) calcd. for C\(_{13}\)H\(_{18}\)N [M + H]\(^+\) 188.1434, found 188.1433.

4-cinnamylmorpholine 2c

0.180 g, 89 % yield; \(^1^H\)NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.39 – 7.36\) (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.21 (m, 1H), 6.54 (d, \(J = 15.9\) Hz, 1H), 6. 26 (dt, \(J_1 = 6.7\) Hz, \(J_2 = 15.9\) Hz, 1H), 3.77 – 3.72 (m, 4H), 3.16 (dd, 2H, \(J_1 = 1.32\) Hz, \(J_2 = 6.8\) Hz), 2.53 – 2.48 (m, 4H); \(^1^C\)NMR (100 MHz, CDCl\(_3\)): \(\delta = 136.9, 133.5, 128.7, 127.7, 126.5, 126.2, 67.1, 61.6, 53.8\); HRMS (ESI, m/z) calcd. for C\(_{13}\)H\(_{18}\)NO [M + H]\(^+\) 204.1383, found 204.1379.

\((E)\)-N,N-dimethyl-3-phenylprop-2-en-1-amine 2d

0.117 g, 73 % yield; \(^1^H\)NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.40 – 7.36\) (m, 2H), 7.33 – 7.28 (m, 2H), 7.25 – 7.20 (m, 1H), 6.52 (d, \(J = 15.7\) Hz, 1H), 6.27 (dt, \(J_1 = 6.6\) Hz, \(J_2 = 15.7\) Hz, 1H), 3.08 (dd, \(J_1 = 1.3\) Hz, \(J_2 = 6.7\) Hz, 2H), 2.28 (s, 6H); \(^1^C\)NMR (100 MHz, CDCl\(_3\)): \(\delta = 137.2, 132.6, 128.7, 127.6, 127.5, 126.4, 62.2, 45.4\); HRMS (ESI, m/z) calcd. for C\(_{11}\)H\(_{16}\)N [M + H]\(^+\) 162.1277, found 162.1276.
(E)-N,N-dibenzyl-3-phenylprop-2-en-1-amine 2e

\[
\begin{align*}
0.16 \text{g, 51 \% yield;} \quad & ^1\text{H-NMR (400 MHz, CDCl}_3\text{): } \delta = 7.42 - 7.19 \text{ (m, 15H), 6.54 (d, } J = 15.8 \text{ Hz, 1H), 6.31 (dt, } J_1 = 6.5 \\
& \text{Hz, } J_2 = 15.8 \text{ Hz, 1H), 3.64 (s, 4H), 3.23 (dd, } J_1 = 1.2 \text{ Hz, } J_2 = 6.5 \text{ Hz, 2H); } ^{13}\text{C-NMR (100 MHz, CDCl}_3\text{): } \delta = 139.8, \quad 137.4, \quad 132.6, \quad 128.9, \quad 128.7, \quad 128.4, \quad 127.9, \quad 127.4, \quad 127.0, \\
& \quad 126.4, \quad 58.1, \quad 55.9; \quad \text{HRMS (ESI, m/z) calcd. for C}_{23}\text{H}_{24}\text{N [M + H]}^+ \quad 314.1903, \quad \text{found 314.1911.}
\end{align*}
\]

(E)-N,N-dimethyl-4-(3-(piperidin-1-yl)prop-1-en-1-yl)aniline 4a

\[
\begin{align*}
0.210 \text{g, 82 \% yield;} \quad & ^1\text{H-NMR (400 MHz, CDCl}_3\text{): } \delta = 7.29 - 7.25 \text{ (m, 2H), 6.69 - 6.66 \text{ (m, 2H), 6.40 (d, } J = \\
& 15.7 \text{ Hz, 1H), 6.09 (dt, } J_1 = 7.0 \text{ Hz, } J_2 = 15.7 \text{ Hz, 1H), 3.09 (dd, } J_1 = 1.1 \text{ Hz, } J_2 = 7.0 \text{ Hz, 2H), 2.94 (s, 6H), 2.42 (bs, 4H), 1.64 - 1.56 \text{ (m, 4H), 1.48 - 1.42 \text{ (m, 2H); } ^{13}\text{C-NMR (100 MHz, CDCl}_3\text{): } \delta = 150.0, \quad 132.7, \quad 127.2, \\
& \quad 125.8, \quad 122.7, \quad 112.5, \quad 62.1, \quad 54.5, \quad 40.5, \quad 26.0, \quad 24.4; \quad \text{HRMS (ESI, m/z) calcd. for C}_{16}\text{H}_{24}\text{Na}_2 [M + 2Na]^2+ \quad 145.0862, \quad \text{found 145.0863.}
\end{align*}
\]

(E)-1-(3-(4-bromophenyl)allyl)piperidine 4b

\[
\begin{align*}
0.256 \text{g, 91 \% yield;} \quad & ^1\text{H-NMR (400 MHz, CDCl}_3\text{): } \delta = 7.41 - 7.37 \text{ (m, 2H), 7.22 - 7.19 \text{ (m, 2H), 6.40 (d, } J = \\
& 15.9 \text{ Hz, 1H), 6.27 (dt, } J_1 = 6.6 \text{ Hz, } J_2 = 15.8 \text{ Hz, 1H), 3.07 (dd, } J_1 = 1.0 \text{ Hz, } J_2 = 6.6 \text{ Hz,} \\
& \text{2H), 2.40 (bs, 4H), 1.63 - 1.55 \text{ (m, 4H), 1.45 - 1.41 \text{ (m, 2H); } ^{13}\text{C-NMR (100 MHz, CDCl}_3\text{): } \delta = 136.1, \quad 131.7, \quad 131.4, \quad 128.3, \quad 127.9, \quad 121.1, \quad 61.8, \quad 54.7, \quad 26.0, \quad 24.4; \quad \text{HRMS (ESI, m/z) calcd. for C}_{14}\text{H}_{19}\text{BrN [M + H]}^+: \quad 280.0695, \quad \text{found 280.0685.}
\end{align*}
\]

(E)-4-(3-(piperidin-1-yl)prop-1-en-1-yl)phenol 4c

\[
\begin{align*}
0.196 \text{g, 90 \% yield;} \quad & ^1\text{H-NMR (400 MHz, CDCl}_3\text{): } \delta = 8.87 \text{ (bs, 1H), 7.11 - 7.04 \text{ (m, 2H), 6.75 - 6.64 \text{ (m, 2H), 6.39 (d, } J = 16.0 \text{ Hz, 1H), 5.98 (dt, } J_1 = 7.1 \text{ Hz, } J_2 = 15.9 \text{ Hz, 1H), 3.12 (d, } J_2 = 7.0 \text{ Hz, 2H), 2.57 (bs, 4H), 1.73 - 1.62 \text{ (m, 4H), 1.53 - 1.42 \text{ (m, 2H); } ^{13}\text{C-NMR (100 MHz, CDCl}_3\text{): } \delta = 157.0, \quad 134.3, \quad 128.3, \quad 127.9, \quad 122.0, \quad 116.4, \quad 61.7, \quad 54.4, \quad 25.2, \quad 24.1; \quad \text{HRMS (ESI, m/z) calcd. for C}_{14}\text{H}_{20}\text{NO [M + H]}^+: \quad 218.1539, \quad \text{found 218.1544.}
\end{align*}
\]
(E)-1-(3-(furan-2-yl)allyl)piperidine 4d

0.170 g, 89 % yield; \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.34 – 7.30\) (m, 1H), 6.37 – 6.28 (m, 2H), 6.26–6.16 (m, 2H), 3.09 – 3.06 (m, 2H), 2.41 (bs, 4H), 1.65 – 1.53 (m, 4H), 1.49 – 1.39 (m, 2H); \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 152.9, 141.9, 126.2, 121.2, 111.3, 107.2, 61.7, 54.7, 26.1, 24.5\); HRMS (ESI, m/z) calcd. for C\(_{12}\)H\(_{18}\)NO [M + H]\(^+\) 192.1383, found 192.1375.

(E)-1-(3-(thiophen-2-yl)allyl)piperidine 4e

0.190 g, 92 % yield; \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.14 – 7.10\) (m, 1H), 6.97 – 6.88 (m, 2H), 6.13 (dt, 1H, \(J_1 = 6.9\) Hz, \(J_2 = 15.7\) Hz) 3.07 (dd, 2H, \(J_1 = 1.3\) Hz, \(J_2 = 6.9\) Hz), 2.42 (bs, 4H), 1.67–1.53 (m, 4H), 1.51 – 1.38 (m, 2H); \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 142.5, 127.4, 127.3, 125.8, 125.2, 124.0, 61.7, 54.7, 26.1, 24.5\); HRMS (ESI, m/z) calcd. for C\(_{12}\)H\(_{18}\)NS [M + H]\(^+\) 208.1154, found 208.1158.

1-(2-methyl-3-phenylallyl)piperidine 6

0.191 g, 88 % yield; \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.40 – 7.19\) (m, 5H, minor and major), 6.52 (s, 1H, minor), 6.48 (s, 1H, major), 3.12 – 3.10 (m, 2H, minor), 3.04 – 3.01 (m, 2H, major), 2.42 (bs, 4H, major), 2.32 (bs, 4H, minor), 2.02 – 2.00 (m, 3H, minor), 1.98 – 1.96 (m, 3H, major), 1.69 – 1.56 (m, 4H, major and minor), 1.55 – 1.40 (m, 2H, major and minor); \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 138.2, 136.5, 128.9, 128.1, 127.1, 126.2, 68.8, 54.7, 26.1, 24.6, 16.9\) (major); 138.2, 137.3, 129.2, 128.6, 127.9, 126.1, 59.8, 54.5, 26.1, 24.5, 23.2 (minor); HRMS (ESI, m/z) calcd. for C\(_{15}\)H\(_{22}\)N [M + H]\(^+\): 216.1747; found: 216.1737.

(E)-N-benzyl-3-phenylprop-2-en-1-amine 9

0.159 g, 71 % yield; \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.46 – 7.24\) (m, 10H), 6.59 (d, \(J = 15.9\) Hz, 1H), 6.38 (dt, \(J = 6.3\) Hz, 15.9 Hz, 1H), 3.90 (s, 2H), 3.49 (d, \(J = 5.5\) Hz, 2H), 2.66 (s, 1H); \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 139.6, 137.0, 131.8, 128.5, 128.3, 127.8, 127.4, 127.1, 126.3, 53.0, 50.1\); HRMS (ESI, m/z) calcd. for C\(_{16}\)H\(_{18}\)N [M + H]\(^+\): 224.1434; found: 224.1444.
N-(naphthalen-1-ylmethyl)cinnamamide 12

1.306 g, 91 % yield; \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.08 – 8.04 \text{ (m, 1H)}, 7.90 – 7.80 \text{ (m, 2H)}, 7.69 \text{ (d, } J = 15.6 \text{ Hz, 1H)}, 7.59 – 7.42 \text{ (m, 6H)}, 7.36 – 7.31 \text{ (m, 3H)}, 6.36 \text{ (d, } J = 15.6 \text{ Hz, 1H)}, 5.91 \text{ (bs, 1H)}, 5.03 – 5.00 \text{ (m, 2H)}; \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 165.6, 141.6, 134.9, 134.1, 133.6, 131.6, 129.9, 128.9, 128.9, 127.9, 127.1, 126.9, 126.2, 125.6, 123.7, 120.4, 42.2; \)HRMS (ESI, m/z) calcd. for C\(_{21}\)H\(_{19}\)NNaO [M + Na\(^+\)]: 324.1359; found: 324.1345.

N-methyl-N-(naphthalen-1-ylmethyl)cinnamamide 13

0.976 g, 93 % yield; \(^1\)H-NMR (500 MHz, (CD\(_3\))\(_2\)SO): \(\delta = 7.66 – 7.62 \text{ (m, 1H)}, 7.45 – 7.42 \text{ (m, 1H)}, 7.14 – 6.94 \text{ (m, 6H)}, 6.89 – 6.81 \text{ (m, 4H)}, 6.68 – 6.62 \text{ (m, 1H)}, 4.68 \text{ (s, 2H)}, 2.55 \text{ (s, 3H)}; \(^{13}\)C-NMR (125 MHz, (CD\(_3\))\(_2\)SO): \(\delta = 165.6, 140.9, 134.8, 133.1, 132.6, 130.7, 128.8, 128.1, 128.0, 127.3, 127.2, 125.7, 125.2, 124.8, 122.8, 118.5, 48.5, 33.8; \)HRMS (ESI, m/z) calcd. for C\(_{20}\)H\(_{17}\)NNaO [M + Na\(^+\)]: 310.1202; found: 310.1208.

(E)-N-methyl-N-(naphthalen-1-ylmethyl)-3-phenylprop-2-en-1-amine 14

0.263 g, 92 % yield; \(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.40 – 8.36 \text{ (m, 1H)}, 7.93 – 7.88 \text{ (m, 1H)}, 7.87 – 7.81 \text{ (m, 1H)}, 7.63 – 7.51 \text{ (m, 3H)}, 7.50 – 7.44 \text{ (m, 3H)}, 7.41 – 7.35 \text{ (m, 2H)}, 7.32 – 7.26 \text{ (m, 1H)}, 6.65 \text{ (d, } J = 16.0 \text{ Hz, 1H)}, 6.45 \text{ (dt, } J = 6.6, 16.0 \text{ Hz, 1H}), 4.02 \text{ (s, 2H)}, 3.35 \text{ (dd, } J = 1.2, 6.6 \text{ Hz, 2H}), 2.35 \text{ (s, 3H)}; \(^{13}\)C-NMR (100 MHz, CDCl\(_3\)): \(\delta = 137.3, 135.0, 134.0, 132.8, 132.6, 128.7, 128.6, 128.0, 127.7, 127.6, 127.5, 126.4, 126.0, 125.7, 125.2, 124.8, 60.5, 60.2, 42.6; \)HRMS (ESI, m/z) calcd. for C\(_{21}\)H\(_{22}\)N [M + H\(^+\)]: 288.1747; found: 288.1747.
Spectroscopic data.
CDCl₃
400 MHz

[Diagram of a 1H NMR spectrum with peak assignments at various ppm values.]

[Chemical structure of the compound with signals at ppm values.]
CDC$_3$

400 MHz
CDC13
100 MHz
CDCl₃
100 MHz

[Chemical structure image]
CDCl₃
100 MHz
CDCl₃
400 MHz

![NMR Spectrum](image)
CDCl₃
100 MHz

Br

1H NMR spectrum of an aromatic compound with a bromine substituent on the phenyl ring.
CDCl$_3$

100 MHz

N

O
CDCl₃
400 MHz

![NMR Spectrum Image]
CDC13
100 MHz
CDCl$_3$
400 MHz

silane

THF

silane

THF
CDCl₃
400 MHz

N

H

![NMR Spectrogram](image)
DMSO-d6, 125 MHz
95C d1=10
CDCl$_3$
400 MHz