Supplementary Information

An unexpected highly selective ratiometric fluorescent probe for ATP and its application in cell imaging

Jia-Liang Tang, Chun-Yan Li,* Yong-Fei Li and Chun-Xiang Zou

a Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
b College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China.

E-mail: lichunyan79@sina.com
Table of contents

1. General experimental procedures ---S3
2. Synthesis and characteristic data --S7
3. Selectivity --- S12
4. Effect of pH --- S14
5. Job’s plot -- S15
6. Mass spectrum for NR-ATP -- S16
7. Photostability --- S17
8. Comparison of ATP probes --- S18
9. Binding mechanism --- S19
10. NMR studies for NR -- S20
11. Fluorescence spectra of control compounds 2 and 3 ------------------------ S21
12. NMR studies for compound 3 -- S22
13. Mass spectrum for compound 3 and 3-ATP----------------------------------- S23
14. DFT calculated interactions between NR and GTP --------------------------- S24
15. Cell viability --- S25
16. Cell images --- S26
1. General experimental procedures

Reagents: Adenosine 5’-triphosphate disodium salt (ATP), adenosine 5’-diphosphate disodium salt (ADP), adenosine 5’-monophosphate monohydrate (AMP), cytidine 5’-triphosphate disodium salt (CTP), guanosine 5’-triphosphate disodium salt (GTP), uridine 5’-triphosphate trisodium salt (UTP), thymidine 5’-triphosphate sodium salt (TTP) were purchased from Sigma-Aldrich and their chemical structures were shown in Fig. S1. And all other chemicals were of analytical reagent grade, purchased from Shanghai Chemical Reagent Corporation (Shanghai, China), and used without further purification.

Apparatus: UV-vis absorption spectra were collected on a Perkin Elmer Lambda 25 spectrophotometer (USA). All fluorescence measurements were recorded with a Perkin Elmer LS-55 fluorescence spectrometer (USA). The pH measurements were obtained using a Mettler-Toledo Delta 320 pH meter (Switzerland). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance II spectrometer (Germany). 1H NMR and 13C NMR were operated at 400 and 100 MHz (TMS as internal standard), respectively. MS spectrometry was performed on a Bruker Autoflex MALDI-TOF MS spectrometer (Germany). Element analysis was conducted on Perkin Elmer 2400 elemental analyzer (USA).

Fluorescence measurements: The fluorescence emission spectra were recorded at excitation wavelength of 420.0 nm with emission wavelength range from 460.0 to 670.0 nm with excitation slit set at 10.0 nm and emission at 10.0 nm. A 1.0×10^{-4} M stock solution of NR was prepared by dissolving NR in H$_2$O/EtOH (10:1, v/v) solution. A stock standard solution of ATP (1.0×10^{-2} M) was prepared by dissolving an appropriate amount
of ATP in water and adjusting the volume to 500 mL in a volumetric flask. These solutions were further diluted to \(1.0 \times 10^{-3}-1.0 \times 10^{-7}\) M stepwise. The solution of NR-ATP was prepared by adding 1.0 mL stock solution of NR and 1.0 mL stock solution of ATP in a 10 mL volumetric flask. Then the mixtures were diluted to 10 mL with HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid) buffer solution (pH= 7.2). In the solutions thus obtained, the concentrations of NR were \(1.0 \times 10^{-5}\) M and ATP were \(1.0 \times 10^{-3}-1.0 \times 10^{-8}\) M (H\(_2\)O/EtOH: 99:1, v/v).

Calculation of association constants: The association constant \((K_a)\) of the ATP-NR complex was determined by the Eq. (1)\(^{S1}\):

\[
\frac{R - R_0}{R_{im} - R} = \frac{a_2}{b_2} K_s[M]
\]

(1)

Here \(R_0\) is the fluorescence intensity ratio \((I_{580}/I_{530})\) of NR in the blank solution and \(R_{im}\) represents the fluorescence intensity ratio of NR in the solution when NR is completely coordinated with ATP. \(R\) is the fluorescence intensity ratio of NR measured when in contact with ATP solutions of a given concentration. And \(a_2/b_2\) represents the ratio of the fluorescent intensities of the free ligand (NR) and the complex (ATP-NR) at \(\lambda_2\) (530 nm). Eq. (1) can be used for the determination of \(K_s\) only if the concentration in free ATP \([M]\) can be approximated to the total concentration \(c_M\). \[
\frac{R - R_0}{R_{im} - R} = \frac{a_2}{b_2}
\]

as a function of \(c_M\) and the plot should be linear and the slope yields \(K_s\). The association constant \((K_a)\) between NR and ATP was determined to be \(1.2 \times 10^6\) \(M^{-1}\).

Cell incubation and imaging: The living HeLa cells were provided by XiangYa School of Medicine, Central South University (China). HeLa cells were cultured in Dulbecco’s modified eagle’s medium (DMEM) and supplemented with 10% fetal bovine
serum (FBS) at 37 °C and 5% CO₂. Two groups of cells were plated on glass-bottomed dishes and allowed to adhere for 24 h. One group of cells was treated with apyrase in phosphate buffered saline (PBS) for 60 min, and another group was not treated. Then the two groups of cells were exposed to 10 μM of NR for 30 min at 37 °C and washed with PBS solution three times and imaged. Fluorescence imaging experiments were carried out in living cells on an OLYMPUS FV1000 fluorescence microscope (Japan). The excitation wavelength of laser was 458 nm and the emissions were centered at both red (580 ± 10 nm) and green (520 ± 10 nm) channels.
Fig. S1 The chemical structures of organic phosphate anions.
2. Synthesis and characteristic data

Compound 1: 1-[2-(2-Hydroxyethoxy)ethyl]piperazine (0.87 g, 5.0 mmol) and 4-bromo-1, 8-naphthalic anhydride (1.4 g, 5.0 mmol) were dissolved in ethylene glycol monomethylether (50 mL). The reaction mixture was stirred and refluxed for 6 h. After the solvent was evaporated under reduced pressure, the crude product was purified by silica gel column chromatography using CH$_2$Cl$_2$/C$_2$H$_5$OH (8:1, v/v) as eluent to afford a yellow solid product. Yield: 1.1 g (59%). 1H NMR (400 MHz, CDCl$_3$): δ 8.50 (d, $J = 8.0$ Hz, 1H), 8.43 (d, $J = 8.0$ Hz, 1H), 8.38 (d, $J = 8.0$ Hz, 1H), 7.68 (t, $J = 8.0$ Hz, 1H), 7.21 (d, $J = 8.0$ Hz, 1H), 3.81 (t, $J = 4.0$ Hz, 2H), 3.72 (d, $J = 4.0$ Hz, 2H), 3.65 (d, $J = 4.0$ Hz, 2H), 3.44 (s, 4H), 3.07 (s, 4H), 2.91 (t, $J = 4.8$ Hz, 2H). MS (TOF) m/z 371.2.

Compound 2: Compound 1 (0.53 g, 1.0 mmol) and diethylenetriamine (0.54 mL, 5 mmol) were dissolved in ethanol (30 mL). The reaction mixture was stirred and refluxed for 8 h. After the solvent was evaporated under reduced pressure, the crude product was purified by silica gel column chromatography using CH$_2$Cl$_2$/C$_2$H$_5$OH (4:1, v/v) as eluent to afford a yellow solid product. Yield: 0.13 g (28 %). 1H NMR (400 MHz, CDCl$_3$): δ 8.49 (d, $J = 8.0$ Hz, 1H), 8.41 (d, $J = 8.0$ Hz, 1H), 8.38 (d, $J = 8.0$ Hz, 1H), 7.67 (t, $J = 8.0$ Hz, 1H), 7.20 (d, $J = 8.0$ Hz, 1H), 3.79 (t, $J = 4.0$ Hz, 2H), 3.70 (d, $J = 4.0$ Hz, 2H), 3.64 (d, $J = 4.0$ Hz, 2H), 3.41 (s, 4H), 3.20 (t, $J = 8.0$ Hz, 2H), 3.05 (s, 4H), 2.90 (t, $J = 4.8$ Hz, 2H), 2.68 (t, $J = 8.0$ Hz, 2H), 2.50 (t, $J = 8.0$ Hz, 2H), 2.17 (t, $J = 8.0$ Hz, 2H). MS (TOF) m/z 456.3.

Compound 3: Rhodamine B (2.0 g, 4.2 mmol) and diethylenetriamine (10 mL, 92 mmol) were dissolved in ethanol (50 mL). The reaction mixture was stirred and refluxed for 24 h. After the solvent was evaporated under reduced pressure, the crude product was
purified by silica gel column chromatography using CH$_2$Cl$_2$/C$_2$H$_5$OH (10:1, v/v) as eluent to afford a pink solid product. Yield: 0.15 g (6.4 %). 1H NMR (400 MHz, CDCl$_3$) δ 7.88 (d, J = 8.0 Hz, 1H), 7.42 (m, 2H), 7.08 (m, 1H), 6.42 (d, J = 8.0 Hz, 2H), 6.36 (s, 2H), 6.26 (d, J = 8.0 Hz, 2H), 3.35-3.18 (m, 10H), 2.71 (d, J = 8.0 Hz, 2H), 2.55 (t, J = 8.0 Hz, 2H), 2.20 (t, J = 8.0 Hz, 2H), 1.16 (t, J = 8.0 Hz, 12H). MS (TOF) m/z 528.3.

Compound NR: Compound 1 (0.37 g, 1.0 mmol) and compound 3 (0.53 g, 1.0 mmol) were dissolved in ethanol (30 mL). The reaction mixture was stirred and refluxed for 16 h. After the solvent was evaporated under reduced pressure, the crude product was purified by silica gel column chromatography using CH$_2$Cl$_2$/C$_2$H$_5$OH (6:1, v/v) as eluent to afford a yellow solid product. Yield: 0.41 g (47 %). 1H NMR (400 MHz, CDCl$_3$): δ 8.52 (d, J = 8.0 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 8.37 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 4.0 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.40 (t, J = 4.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 1H), 7.05 (d, J = 4.0 Hz, 1H), 6.43-6.35 (m, 4H), 6.25 (d, J = 8.0 Hz, 2H), 4.16 (t, J = 6.0 Hz, 2H), 3.73 (d, J = 4.0 Hz, 4H), 3.66 (d, J = 6.0 Hz, 2H), 3.48 (s, 1H), 2.87 (s, 4H), 2.76 (d, J = 8.0 Hz, 4H), 2.43 (t, J = 6.0 Hz, 2H), 1.14 (t, J = 6.0 Hz, 12H). 13C NMR (100 MHz, CDCl$_3$): δ 168.5, 164.5, 164.0, 155.6, 153.7, 153.3, 148.9, 132.5, 132.2, 131.0, 130.0, 128.7, 127.8, 125.6, 123.7, 123.4, 122.7, 115.0, 108.2, 105.7, 97.9, 72.4, 67.8, 62.0, 57.9, 53.4, 52.7, 47.6, 47.2, 44.3, 39.9, 39.7, 12.6. MS (TOF) m/z 880.5. Anal. calcd. for C$_{52}$H$_{61}$N$_7$O$_6$ (NR): C, 70.97; H, 6.99; N, 11.14; O, 10.91. Found: C, 70.90; H, 7.03; N, 11.13; O, 10.94.
Fig. S2 Synthetic route of compound NR.
Fig. S3 1H NMR spectra of compound NR in CDCl$_3$.

Fig. S4 13C NMR spectra of compound NR in CDCl$_3$.

S10
Fig. S5 Mass spectra of compound NR.
3. Selectivity

Fig. S6 Absorption spectra of NR (10 µM) upon the addition of ATP (10 µM) and other anions (1 mM) in HEPES buffer solution (pH= 7.2).

Fig. S7 Fluorescence spectra of NR (10 µM) upon the addition of ATP (10 µM) and other anions (1 mM) in HEPES buffer solution (pH= 7.2).
Fig. S8 The fluorescence intensity ratio of NR (10 µM) with ATP (10 µM) upon the addition of other organic phosphate anions such as ADP, AMP, CTP, GTP, UTP, TTP (1 mM) in HEPES buffer solution (pH= 7.2).

Fig. S9 Fluorescence spectra of NR (10 µM) upon the addition of ATP (10 µM) and other cations (1 mM) in HEPES buffer solution (pH= 7.2).
4. Effect of pH

Fig. S10 Effect of pH on the fluorescence intensity ratio (I_{580}/I_{530}) of NR (solid line) and NR + ATP (dashed line).
5. Job’s plot

![Graph showing fluorescence intensity vs. [NR] / ([NR]+[ATP])](image)

Fig. S11 The Job Plot of NR and ATP using fluorescent intensity at 580 nm in HEPES buffer solution (pH=7.2) with an excitation at 520 nm. The total concentration of [NR] and [ATP] is 10 µM.
6. Mass spectrum of NR-ATP

Fig. S12 Mass spectra of NR-ATP.
7. Photostability

Fig. S13 The Kinetics of the fluorescence of NR (10 µM) upon the addition of ATP (10 µM). (a) Fluorescence intensity is recorded at 580 nm. (b) Fluorescence intensity is recorded at 530 nm. Excitation wavelength is fixed at 420 nm.
8. Comparison of ATP probes

Table S1 A comparison of the performance of this probe with previously reported ATP probes.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Receptor</th>
<th>Change of signal</th>
<th>Absorption wavelength (nm)</th>
<th>Emission wavelength (nm)</th>
<th>Operating range (µM)</th>
<th>Interferents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. 3a</td>
<td>Zinc complex</td>
<td>Fluorescence</td>
<td>450</td>
<td>535</td>
<td>0 – 10</td>
<td>ADP</td>
</tr>
<tr>
<td>Ref. 3b</td>
<td>Zinc complex</td>
<td>Fluorescence</td>
<td>509</td>
<td>523</td>
<td>—</td>
<td>ADP, GTP, CTP, P$_2$O$_7^{4+}$</td>
</tr>
<tr>
<td>Ref. 3c</td>
<td>Zinc complex</td>
<td>Fluorescence</td>
<td>500</td>
<td>559</td>
<td>0 – 10</td>
<td>CTP</td>
</tr>
<tr>
<td>Ref. 3d</td>
<td>Zinc complex</td>
<td>Fluorescence</td>
<td>670</td>
<td>723</td>
<td>0 – 350</td>
<td>ADP</td>
</tr>
<tr>
<td>Ref. 3e</td>
<td>Zinc complex</td>
<td>Color</td>
<td>463</td>
<td>—</td>
<td>—</td>
<td>CTP</td>
</tr>
<tr>
<td>Ref. 3f</td>
<td>Zinc complex</td>
<td>Fluorescence</td>
<td>—</td>
<td>383</td>
<td>—</td>
<td>UTP, ADP</td>
</tr>
<tr>
<td>Ref. 3g</td>
<td>Zinc complex</td>
<td>Color</td>
<td>463</td>
<td>—</td>
<td>2 – 260</td>
<td>ADP</td>
</tr>
<tr>
<td>Ref. 3h</td>
<td>Zinc complex</td>
<td>Fluorescence</td>
<td>410</td>
<td>560</td>
<td>0 – 20</td>
<td>ADP, P$_2$O$_7^{4+}$</td>
</tr>
<tr>
<td>Ref. 3i</td>
<td>Zinc complex</td>
<td>Fluorescence</td>
<td>—</td>
<td>434</td>
<td>0 – 5</td>
<td>ADP</td>
</tr>
<tr>
<td>Ref. 3j</td>
<td>Lanthanide complex</td>
<td>Fluorescence</td>
<td>—</td>
<td>615</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>Ref. 3k</td>
<td>Polymer</td>
<td>Color</td>
<td>600</td>
<td>—</td>
<td>0 – 1500</td>
<td>CTP</td>
</tr>
<tr>
<td>Ref. 3l</td>
<td>Quaternary ammonium</td>
<td>Fluorescence</td>
<td>—</td>
<td>415</td>
<td>0 – 300</td>
<td>GTP</td>
</tr>
<tr>
<td>Ref. 3m</td>
<td>Zinc complex</td>
<td>Fluorescence</td>
<td>341, 513</td>
<td>454, 525</td>
<td>0 – 5</td>
<td>ADP, GTP, CTP, P$_2$O$_7^{4+}$</td>
</tr>
<tr>
<td>Ref. 3n</td>
<td>Imidazolium</td>
<td>Fluorescence</td>
<td>—</td>
<td>375, 478</td>
<td>0 – 200</td>
<td>ADP</td>
</tr>
<tr>
<td>This probe</td>
<td>Rhodamine</td>
<td>Fluorescence</td>
<td>400, 560</td>
<td>530, 580</td>
<td>0.1 – 10</td>
<td>ADP, CTP</td>
</tr>
</tbody>
</table>
9. Binding mechanism

Fig. S14 Proposed binding mechanism of the probe.
10. NMR studies for NR

Fig. S15 31P NMR spectra of ATP and NR+ATP. NMR solvent: 10% D$_2$O in d$_6$-DMSO.

Fig. S16 Partial 1H NMR spectra of ATP, NR and NR+ATP. NMR solvent: 10% D$_2$O in d$_6$-DMSO.
11. Fluorescence spectra of control compounds 2 and 3

Fig. S17 Fluorescence spectra of compound 2 (10 µM) upon the addition of ATP (10 µM) in HEPES buffer solution (pH= 7.2).

Fig. S18 The fluorescence emission spectra of compound 3 (10 µM) in the presence of different concentrations of ATP (0, 0.1, 0.2, 0.5, 2.0, 5.0, 10 µM) in HEPES buffer solution (pH = 7.2).
12. NMR studies for compound 3

Fig. S19 Partial 1H NMR spectra of ATP, 3 and 3+ATP. NMR solvent: 10% D$_2$O in d$_6$-DMSO.
13. Mass spectrum for compound 3 and 3-ATP

Fig. S20 Mass spectra of compound 3.

Fig. S21 Mass spectra of 3-ATP.
14. DFT calculated interactions between NR and GTP

Fig. S22 Plot views of DFT calculated interactions between NR and GTP. Green dashed lines demonstrate the hydrogen bonds interactions.
15. Cell viability

Fig. S23 Cell viability values (%) estimated by MTT proliferation test versus incubation concentrations of NR. HeLa cells were cultured in the presence of 0-10 µM NR.
16. Cell images

Fig. S24 Images of Hela cells treated with apyrase from 0 to 60 min and then incubated with NR (10 µM) for further 30 min at 37 °C.

References