Electronic Supplementary Information

Controlled Entry to a Heterometallic N-Heterocyclic Carbene Helicate

Qiaoqiao Teng, Han Vinh Huynh *

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
Email: chmhhv@nus.edu.sg

Table of Contents

Experimental section S2
Discussion of Monogold(III) dicarbene complexes $4_{Bn,Me}$ S13
Molecular structure of ligand precursor B_{Bn} S14
Molecular structure of complex 2_{Me} S15
1H NMR spectrum of complex 5 S15
Molecular structure of complex 5 S16
Selected X-ray crystallographic data S17
Experimental Section

General Considerations. Unless otherwise noted, all operations were performed without taking precautions to exclude air and moisture, and all solvents and chemicals were used as received. 1H and 13C1H NMR spectra were recorded at 298 K on a Bruker ACF 300 spectrometer or AMX 500 spectrophotometer, and the chemical shifts (δ) were internally referenced to the residual solvent signals relative to tetramethylsilane. ESI mass spectra were measured using a Finnigan MAT LCQ spectrometer. Elemental analyses were performed on an ElementarVario Micro Cube elemental analyzer at the Department of Chemistry, National University of Singapore.

Compound I. A mixture of 2-chloropropylamine hydrochloride (780 mg, 6.00 mmol) and NEt$_3$ (1.35 mL) in dry CH$_2$Cl$_2$ (30 mL) was stirred for 1 h to give the free amine. Pyridine-2,6-dicarboxylic acid chloride (600 mg, 2.90 mmol) was added to this solution, and the reaction mixture was stirred at ambient temperature for 8 h. The solvent was evaporated before H$_2$O was added. The aqueous layer was extracted with CHCl$_3$ (3 × 50 mL), and the combined organic phases were dried over anhydrous Na$_2$SO$_4$. Filtration and removal of the solvent from the filtrate gave a crude solid, which was purified by column chromatography (SiO$_2$, hexane/ethyl acetate: 1/1) to give I as a white solid (590 mg, 1.90 mmol, 64%). 1H NMR (500 MHz, CDCl$_3$): δ 8.36–8.34 (2 H, m, Py–H), 8.17 (2 H, br–s, CONH), 8.06–8.01 (1 H, m, Py–H), 3.67–3.66 (8 H, m, NHCH$_2$ and CH$_2$Cl), 2.19–2.12 (4 H,
m, CH₂). 13C{1H} NMR (125.77 MHz, CDCl₃): δ 164.5 (CO), 149.3, 139.8, 125.7 (Py–C), 43.7 (CH₂Cl), 38.1 (NHCH₂), 32.6 (CH₂). Anal. Calcd for C₁₃H₁₇Cl₂N₃O₂: C, 49.07; H, 5.39; N, 13.21. Found: C, 49.31; H, 5.29; N, 12.98. MS (ESI): m/z 318 [M]$^+$.

Salt AₙBₙ. To a solution of compound I (159 mg, 0.50 mmol) in CH₃CN (30 mL), 1-benzylbenzimidazole (260 mg, 1.25 mmol) and NaI (750 mg, 5.00 mmol) was added. After the mixture was heated under microwave irradiation for 3 h at 150 °C, the solvent was removed under reduced pressure and CH₂Cl₂ (100 mL) was added. The resulting suspension was filtered through Celite. Solvent of the filtrate was dried off in vacuo. Ethyl acetate (3 × 20 mL) was added to wash the residue, giving the product as a pale yellow powder (450 mg, 0.49 mmol, 98%). 1H NMR (500 MHz, DMSO-d₆): δ 9.99 (2 H, s, NCHN), 9.40 (2 H, t, 3J(H,H) = 6.1 Hz, NH), 8.19 (3 H, ps–s, Py–H), 8.11 (2 H, d, 3J(H,H) = 8.2 Hz, Ar–H), 7.92 (2 H, d, 3J(H,H) = 7.6 Hz, Ar–H), 7.67–7.60 (4 H, m, Ar–H), 7.52 (4 H, ps–d, Ar–H), 7.43–7.36 (6 H, m, Ar–H), 5.76 (4 H, s, NCH₂Ph), 4.62 (4 H, t, 3J(H,H) = 7.0 Hz, NCH₂), 3.51 (4 H, m, 3J(H,H) = 6.4 Hz, NHCH₂), 2.31 (4 H, m, 3J(H,H) = 6.9 Hz, CH₂CH₂CH₂). 13C{1H} NMR (125.77 MHz, DMSO-d₆): δ 163.4 (CO), 148.4 (C/2/6), 142.6 (NCHN), 139.5 (C4), 133.9, 131.2, 130.9, 129.0, 128.7, 128.3, 126.7, 126.6 (Ar–C), 124.3 (C3/5), 113.9, 113.8 (Ar–C), 49.9 (NCH₂Ph), 45.0 (NCH₂), 35.9 (NHCH₂), 28.9 (CH₂CH₂CH₂). Anal. Calcd for C₄₁H₄₁I₂N₇O₂: C, 53.67; H, 4.50; N,

Salt A_{Me}. This salt was prepared in analogy to A_{Bn} from 0.50 mmol of compound I with 1-methylbenzimidazole (165 mg, 1.25 mmol) and NaI (750 mg, 5.00 mmol). Yield: 341 mg, 0.45 mmol, 89%. 1H NMR (500 MHz, DMSO-d_6): δ 9.77 (2 H, s, NCHN), 9.29 (2 H, t, 3J(H,H) = 5.9 Hz, NH), 8.17 (3 H, br–s, Py–H), 8.10–8.18 (2 H, m, Ar–H), 8.00–7.96 (2 H, m, Ar–H), 7.67–7.65 (4 H, m, Ar–H), 4.60 (4 H, t, 3J(H,H) = 6.5 Hz, NCH$_2$), 4.06 (6 H, s, NCH$_3$), 3.50 (4 H, m, 3J(H,H) = 6.0 Hz, NHCH$_2$), 2.28 (4 H, br–s, CH$_2$CH$_2$CH$_2$)$_2$. 13C{1H} NMR (125.77 MHz, DMSO-d_6): δ 163.3 (CO), 148.3 (C2/6), 142.8 (NCHN), 139.5 (C4), 131.8, 130.8, 126.4 (Ar–C, two are coincident), 124.2 (C3/5), 113.53, 113.47 (Ar–C), 44.8 (NCH$_2$), 36.0 (NCH$_3$), 33.2 (NHCH$_2$), 28.8 (CH$_2$CH$_2$CH$_2$)$_2$. Anal. Calcd for C$_{29}$H$_{33}$I$_2$N$_7$O$_2$: C, 45.51; H, 4.35; N, 12.81. Found: C, 45.82; H, 4.37; N, 12.45. MS (ESI): m/z 256 [M – 2 I]^{2+}, 638 [M – I]^+.

Salt B_{Bn}. Salt A_{Bn} (890 mg, 0.97 mmol) was mixed with AgBF$_4$ (380 mg, 1.95 mmol) in CH$_3$CN and stirred for 3 h. The precipitation was removed by filtering through Celite. The filtrate was dried in vacuo to afford the product as white powders (747 mg, 0.89 mmol, 92%). 1H NMR (300 MHz, CD$_3$CN): δ 9.35 (2 H, s, NCHN), 8.75 (2 H, t, 3J(H,H) = 5.9 Hz, NH), 8.20 (2 H, ps–d, C(3/5)H), 8.08 (1 H, ps–t, (C4)H), 7.90 (2 H, d, 3J(H,H) = 8.2 Hz, Ar–H), 7.69–7.53 (6 H, m, Ar–H), 7.46–7.39 (10 H, m, Ar–H), 5.60 (4 H, s, NCH$_2$Ph), 4.54 (4 H, t, 3J(H,H) = 6.8 Hz, NCH$_2$), 3.56 (4 H, m, 3J(H,H) = 6.3 Hz, NHCH$_2$), 2.36 (4 H, m, 3J(H,H) = 6.5 Hz, CH$_2$CH$_2$CH$_2$).
13C{1H} NMR (75.48 MHz, CD3CN): δ 164.9 (CO), 149.7 (C2/6), 142.7 (NCHN), 140.2 (C4), 140.0, 132.7, 132.4, 130.2, 130.1, 129.5, 128.0 (Ar–C, two are coincident), 125.4 (C3/5), 114.7, 114.6 (Ar–C), 51.7 (NCH2Ph), 46.3 (NCH2), 36.8 (NHCH2), 29.4 (CH2CH2CH2). 19F NMR (282.38 MHz, CD3CN): δ -74.82, -74.87 (s, BF4). Anal. Calcd for C41H41B2F8N7O2: C, 58.80; H, 4.94; N, 11.71. Found: C, 58.36; H, 4.64; N, 11.68. MS (ESI): m/z 332 [M – 2 BF4]+, 750 [M – BF4]+.

Salt BMe. This salt was prepared in analogy to BMe from AMe (742 mg, 0.97 mmol) and AgBF4 (380 mg, 1.95 mmol). Yield: 645 mg, 0.94 mmol, 97%. 1H NMR (500 MHz, CD3CN): 9.14 (2 H, s, NCHN), 8.54 (2 H, t, 3J(H,H) = 5.6 Hz, NH), 8.16 (2 H, ps–d, C(3/5)H), 8.05 (1 H, t, 3J(H,H) = 7.5 Hz, C(4)H), 7.87–7.85 (2 H, m, Ar–H), 7.74–7.73 (2 H, m, Ar–H), 7.61–7.58 (4 H, m, Ar–H), 4.52 (4 H, t, 3J(H,H) = 6.8 Hz, NCH2), 4.00 (6 H, s, NCH3), 3.54 (4 H, m, 3J(H,H) = 6.3 Hz, NHCH2), 2.33 (4 H, m, 3J(H,H) = 6.5 Hz, CH2CH2CH2). 13C{1H} NMR (125.77 MHz, CD3CN): δ 164.8 (CO), 149.5 (C2/6), 142.9 (NCHN), 140.3 (C4), 133.2, 132.2, 127.83, 127.79 (Ar–C), 125.4 (C3/5), 114.3, 114.1 (Ar–C), 46.2 (NCH2), 37.0 (NCH3), 34.1 (NHCH2), 29.4 (CH2CH2CH2). 19F NMR (282.38 MHz, CD3CN): δ -74.87, -74.93 (s, BF4). Anal. Calcd for C29H33B2F8N7O2: C, 50.83; H, 4.85; N, 14.31. Found: C, 50.97; H, 4.78; N, 14.28. MS (ESI): m/z 256 [M – 2 BF4]+, 598 [M – BF4]+.

Silver(I) dicarbene complex 1Bn. A mixture of salt BMe (84 mg, 0.10 mmol) was dissolved in CH3CN (20 mL) before Ag2O (28 mg, 0.12 mmol) was added. The mixture was heated at 60 °C with stirring for 5 h. The
resulting suspension was dried in vacuo before CH₂Cl₂ (100 mL) was added and filtered. The filtrate was consequently extracted with water (5 × 100 mL) and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the product was obtained as a white solid (86 mg, 0.10 mmol, 99%). ¹H NMR (500 MHz, CD₃CN): δ 8.57 (2 H, br–s, NH), 7.73 (2 H, br–s, C(3/5)H), 7.60 (3 H, br–s, (C4)H and Ar–H), 7.40 (4 H, br–s, Ar–H), 7.34 (2 H, t, J(H,H) = 7.6 Hz, Ar–H), 7.22–7.19 (6 H, m, Ar–H), 7.16–7.15 (4 H, m, Ar–H), 5.30 (4 H, br–s, NCH₂Ph), 4.45 (4 H, br–s, NCH₂), 3.47 (4 H, br–s, NHCH₂), 2.20 (correct integration is not obtained due to overlapping with H₂O signal, m, CH₂CH₂CH₂). ¹³C{¹H} NMR (75.48 MHz, CD₃CN): δ 164.4 (CO), 149.5 (C2/6), 139.8 (C4), 136.9, 134.7, 134.5, 129.9, 129.2, 128.4, 125.29, 125.26 (Ar–C), 124.8 (C3/5), 113.0 (Ar–C, two are coincident), 53.0 (NCH₂Ph), 48.6 (NCH₂), 37.7 (NHCH₂), 30.3 (br–s, CH₂CH₂CH₂), the carbene signal was not obtained despite prolonged measuring. ¹⁹F NMR (282.38 MHz, CD₃CN): δ -74.83, -74.89 (s, BF₄⁻). Anal. Calcd for C₄₁H₃₉AgBF₄N₇O₂: C, 57.50; H, 4.59; N, 11.45. Found: C, 57.67; H, 4.35; N, 11.38. MS (ESI): m/z 768 [M – BF₄⁻]⁺.

Silver(I) dicarbene complex 1Me. This complex was obtained in analogy to 1Bn from B₇Me (69 mg, 0.10 mmol) and Ag₂O (28 mg, 0.12 mmol). Yield: 67 mg, 0.10 mmol, 95%. ¹H NMR (500 MHz, DMSO-d₆): δ 9.02 (2 H, br–s, NH), 8.04 (1 H, t, J(H,H) = 7.5 Hz, (C4)H), 7.90 (2 H, d, J(H,H) = 8.2 Hz, (C3/5)H), 7.83 (2 H, d, J(H,H) = 7.6 Hz, Ar–H), 7.53 (2 H, d, J(H,H) = 7.6 Hz, Ar–H), 7.48–7.41 (4 H, m, Ar–H), 4.75 (4 H, br–s, NCH₂), 3.71 (6 H, s, NCH₃), 3.44 (4 H, br–s, NHCH₂), 2.47 (4 H, br–s, CH₂CH₂CH₂). ¹³C{¹H} NMR (125.77 MHz, DMSO-d₆): δ 162.3 (CO),
148.0 (C2/6), 139.3 (C4), 133.8, 133.2, 123.95, 123.92 (Ar–C), 123.4 (C3/5), 112.3, 111.6 (Ar–C), 47.2 (NCH2), 36.8 (NCH3), 35.1 (NHCH2), 27.3 (CH2CH2CH2), the carbene signal was not obtained despite prolonged measuring. 19F NMR (282.38 MHz, DMSO-_{d6}): δ -72.25, -72.30 (s, BF4). Anal. Calcd for C₂₉H₃₁AgBF₄N₇O₂: C, 49.46; H, 4.44; N, 13.92. Found: C, 49.32; H, 4.48; N, 13.98. MS (ESI): m/z 618 [M – BF₄]⁺.

Monogold(I) dicarbene complex 2_{Bn}. A solution of [AuCl(tht)] (40 mg, 0.12 mmol) in CH₂Cl₂ (10 mL) was slowly added to the solution of complex 1_{Bn} (106 mg, 0.12 mmol) in CH₂Cl₂ (20 mL). The mixture was kept stirring for 4 h before the precipitation was removed by centrifuging. The liquid was concentrated to 3 mL and subjected to column chromatography (SiO₂, CH₃CN/CHCl₃, 2:7). Yield of mononuclear complex 2_{Bn}: 42 mg, 0.04 mmol, 36%. 1H NMR (500 MHz, CDCl₃): δ 8.89 (2 H, t, 3^J(H,H) = 5.2 Hz, NH), 7.99 (2 H, ps–d, C(3/5)H), 7.90 (2 H, t, 3^J(H,H) = 7.6 Hz, (C4)H), 7.60 (2 H, d, 3^J(H,H) = 8.2 Hz, Ar–H), 7.43 (2 H, t, 3^J(H,H) = 7.8 Hz, Ar–H), 7.31 (2 H, t, 3^J(H,H) = 7.8 Hz, Ar–H), 7.22–7.21 (6 H, m, Ar–H), 7.12–7.10 (6 H, m, Ar–H), 5.24 (4 H, s, NCH₂Ph), 4.74 (4 H, t, 3^J(H,H) = 6.6 Hz, NCH₂), 3.69 (4 H, br–s, NHCH₂), 2.63 (4 H, m, 3^J(H,H) = 5.1 Hz, CH₂CH₂CH₂). 13C{1H} NMR (125.77 MHz, CDCl₃): δ 191.7 (C carbene), 164.0 (CO), 149.4 (C2/6), 139.1 (C4), 135.5, 134.2, 133.9, 129.7, 129.1, 127.5, 125.7 (Ar–C, two are coincident), 124.5 (C3/5), 113.0, 112.5 (Ar–C), 52.6 (NCH₂Ph), 48.2 (NCH₂), 37.6 (NHCH₂), 28.1 (CH₂CH₂CH₂). 19F NMR (282.38 MHz, CDCl₃): δ -74.50, -74.56 (s, BF₄). Anal. Calcd for C₄₁H₃₉AuBF₄N₇O₂: C, 52.08;
Digold(I) tetracarbene complex

3_Bn. This complex was isolated in the yield of 46 mg, 0.02 mmol, 39%. 1H NMR (500 MHz, CDCl3): δ 9.34 (4 H, br–s, NH), 7.80 (4 H, d, 3\(J(H,H) = 7.6\) Hz, (C3/5)H), 7.34–7.29 (10 H, m, Ar–H), 7.23–7.22 (12 H, m, Ar–H), 7.15 (8 H, br–s, Ar–H), 5.49 (8 H, s, NCH2Ph), 4.63 (8 H, t, 3\(J(H,H) = 7.1\) Hz, NCH2), 3.65 (8 H, m, 3\(J(H,H) = 5.6\) Hz, NHCH2), 2.34 (8 H, m, 3\(J(H,H) = 6.2\) Hz, CH2CH2CH2). 13C\(_{1H}\) NMR (125.77 MHz, CDCl3): δ 191.1 (C carbene), 164.9 (CO), 149.3 (C2/6), 138.3 (C4), 135.6, 133.9, 133.7, 129.7, 129.1, 127.5, 125.8, 125.7 (Ar–C), 124.5 (C3/5), 112.7, 112.6 (Ar–C), 52.7 (NCH2Ph), 47.8 (NCH2), 37.7 (NHCH2), 30.5 (CH2CH2CH2). 19F NMR (282.38 MHz, CDCl3): δ -74.96, -74.98 (s, BF4). Anal. Calcd for C\(_{82}H_{78}Au_2B_2F_8N_{14}O_4\): C, 52.08; H, 4.16; N, 10.37. Found: C, 52.24; H, 4.25; N, 10.55. MS (ESI): m/z 858 [M – 2 BF4]+.

Monogold(I) dicarbene complexes 2_Me. Complexes 2_Me and 3_Me were synthesized in analogy to the previous complexes, but purified by column chromatography (SiO\(_2\), CH\(_2\)Cl\(_2\)/MeOH, 30:1). They were further separated by washing with CH\(_3\)CN. Complex 2_Me was collected from the CH\(_3\)CN phase and isolated as a white powder upon removal of the solvent (35 mg, 0.04 mmol, 35%). 1H
NMR (500 MHz, CD$_3$CN): δ 8.20 (2 H, t, 3J(H,H) = 5.4 Hz, NH), 7.95 (1 H, t, 3J(H,H) = 7.6 Hz, (C4)H), 7.82 (2 H, d, 3J(H,H) = 7.6 Hz, (C3/5)H), 7.71 (2 H, d, 3J(H,H) = 7.6 Hz, Ar–H), 7.47–7.41 (4 H, m, Ar–H), 7.38 (2 H, ps–d, Ar–H), 4.75 (4 H, t, 3J(H,H) = 6.2 Hz, NCH$_2$), 3.65 (6 H, s, NCH$_3$), 3.39 (4 H, m, 3J(H,H) = 5.5 Hz, NHCH$_2$), 2.54 (4 H, m, 3J(H,H) = 5.8 Hz, CH$_2$CH$_2$CH$_2$).

13C{1H} NMR (125.77 MHz, CD$_3$CN): δ 191.9 (C carbene), 163.5 (CO), 149.2 (C2/6), 140.4 (C4), 134.9, 134.1, 125.71, 125.68 (Ar–C), 124.7 (C3/5), 113.3, 112.7 (Ar–C), 48.1 (NCH$_2$), 37.9 (NCH$_3$), 35.4 (NHCH$_2$), 27.4 (CH$_2$CH$_2$CH$_2$).

19F NMR (282.38 MHz, CD$_3$CN): δ -75.40, -75.41 (BF$_4$). Anal. Calcd for C$_{29}$H$_{31}$AuBF$_4$N$_7$O$_2$: C, 43.90; H, 3.94; N, 12.36. Found: C, 44.02; H, 3.84; N, 12.53. MS (ESI): m/z 706 [M – BF$_4$]$^+$.

Digold(I) tetracarbene complex 3$_{Me}$. This dinuclear complex was collected from the solid phase as a white powder (49 mg, 0.03 mmol, 50%). 1H NMR (500 MHz, CD$_2$Cl$_2$): δ 9.02 (4 H, br–s, NH), 7.79 (4 H, d, 3J(H,H) = 7.8 Hz, (C3/5)H), 7.47–7.44 (14 H, m, (C4)H and Ar–H), 7.37 (4 H, t, 3J(H,H) = 7.5 Hz, Ar–H), 4.57 (8 H, t, 3J(H,H) = 7.6 Hz, NCH$_2$), 4.02 (12 H, s, NCH$_3$), 3.57 (8 H, m, 3J(H,H) = 6.1 Hz, NHCH$_2$), 2.27 (8 H, m, 3J(H,H) = 6.9 Hz, CH$_2$CH$_2$CH$_2$).

13C{1H} NMR (125.77 MHz, CD$_2$Cl$_2$): δ 190.8 (C carbene), 164.2 (CO), 148.9 (C2/6), 138.3 (C4), 134.2, 133.2, 125.25, 125.22 (Ar–C), 124.2 (C3/5), 111.9, 111.8 (Ar–C), 47.0 (NCH$_2$), 37.3 (NCH$_3$), 35.3 (NHCH$_2$), 30.3 (CH$_2$CH$_2$CH$_2$).

19F NMR (282.38 MHz, CD$_2$Cl$_2$): δ -75.34, -75.40 (BF$_4$). Anal. Calcd for C$_{58}$H$_{62}$Au$_2$B$_2$F$_8$N$_{14}$O$_4$: C, 43.90; H, 3.94; N, 12.36. Found: C, 44.24; H, 4.25; N, 12.55. MS (ESI): m/z 706 [M – 2 BF$_4$]$^{2+}$.

s9
Monogold(III) dicarbene complexes 4_{Bu}. Complex 2_{Bu} (95 mg 0.10 mmol) and PhICl$_2$ (33 mg, 0.12 mmol) were dissolved in CH$_2$Cl$_2$ (10 mL) and stirred for 24 h shielded from light. The solvent was then removed under vacuum, and the residue was washed with diethyl ether to give the product as a pale yellow solid (90 mg, 0.09 mmol, 89%). 1H NMR (300 MHz, CDCl$_3$): δ 9.35 (2 H, br–s, NH), 8.25 (2 H, d, 3J(H,H) = 7.6 Hz, (C3/5)H), 7.96 (1 H, t, 3J(H,H) = 7.6 Hz, (C4)H), 7.72 (2 H, d, 3J(H,H) = 7.9 Hz, Ar–H), 7.49 (2 H, br–s, Ar–H), 7.35 (2 H, br–s, Ar–H), 7.25–7.20 (8 H, m, Ar–H), 6.93 (4 H, ps–d, Ar–H), 5.46 (4 H, s, NCH$_2$Ph), 4.99 (4 H, br–s, NCH$_2$), 3.92 (4 H, br–s, NHCH$_2$), 2.64 (4 H, br–s, CH$_2$CH$_2$CH$_2$). 13C{1H} NMR (75.48 MHz, CDCl$_3$): δ 165.4 (CO), 163.4 (C$_{\text{carbene}}$), 149.6 (C2/6), 139.2 (C4), 134.8, 134.3, 133.4, 129.9, 129.4, 126.9, 126.7 (Ar–C, two are coincident), 125.1 (C3/5), 114.1, 113.4 (Ar–C), 52.0 (NCH$_2$Ph), 49.1 (NCH$_2$), 37.0 (NHCH$_2$), 28.8 (CH$_2$CH$_2$CH$_2$). 19F NMR (282.38 MHz, CDCl$_3$): δ -73.58, -73.63 (BF$_4$). Anal. Calcd for C$_{41}$H$_{39}$AuBCl$_2$F$_4$N$_7$O$_2$: C, 48.45; H, 3.87; N, 9.65. Found: C, 48.22; H, 3.84; N, 10.03. MS (ESI): m/z 928 [M – BF$_4$]$^+$.

Monogold(III) dicarbene complexes 4_{Me}. This complex was prepared in analogy to complex 4_{Bu} from complex 2_{Me} (79 mg, 0.10 mmol) and PhICl$_2$ (33 mg, 0.12 mmol). Yield: 67 mg, 0.08 mmol, 78%. 1H NMR (500 MHz, CDCl$_3$ with several drops of CD$_3$OD): δ 10.4 (the integral was not correct due to fast exchange with the CD$_3$OD solvent, br–s, NH), 8.21 (2 H, ps–d, (C3/5)H), 7.94 (1 H, t, 3J(H,H) = 7.6 Hz,
(C4)H), 7.74 (2 H, d, \(J(H,H) = 7.6 \) Hz, Ar–H), 7.59 (1 H, br–s, Ar–H), 7.54–7.53 (5 H, m, Ar–H), 4.96 (4 H, br–s, NCH2), 4.22 (6 H, s, NCH3), 3.85 (4 H, br–s, NHCH2), 2.61 (4 H, br–s, CH2CH2CH2). \(^{13}\)C\:\{\(^1\)H\} NMR (125.77 MHz, CDCl3 and several drops of CD3OD): \(\delta \) 165.8 (CO), 162.4 (C carbene), 149.6 (C2/6), 139.2 (C4), 135.3, 133.9, 126.6 (Ar–C, two are coincident), 125.2 (C3/5), 113.8, 112.3 (Ar–C), 49.1 (NCH2), 37.3 (NCH3), 35.0 (NHCH2), 28.8 (CH2CH2CH2). \(^{19}\)F NMR (282.38 MHz, CDCl3 several drops of CD3OD): \(\delta \) -74.67, -74.73 (BF4). Anal. Calcd for C29H31AuBCl2F4N7O2: C, 40.30; H, 3.62; N, 11.34. Found: C, 40.12; H, 3.84; N, 11.43. MS (ESI): \(m/z \) 776 [M – BF4]+.

\[
\text{Au}^{1}\text{Co}^{\text{III}} \text{Helicate 5.}
\]

CoCl2·6H2O (71 mg, 0.30 mmol) and 30 equivalents of NaH (360 mg, 9.00 mmol, 60% dispersion in mineral oil) were stirred in dry THF for 0.5 h. A solution of complex \(3_{\text{Me}} \) (567 mg, 0.30 mmol) in dry CH2Cl2 was then added. After stirring the reaction mixture for 3 h under N2, the mixture was stirred in air for 0.5 h. The volatiles were removed in vacuo and CH2Cl2 was added to dissolve the product. The CH2Cl2 phase was extracted with H2O (5 \(\times \) 10 mL) and dried over Na2SO4 to give the crude product, which was washed with hexane (5 \(\times \) 10 mL). The residue was dissolved in CH2Cl2 and toluene and slow evaporation afforded the crystalline product as yellow solids (474 mg, 0.25 mmol, 85%). \(^1\)H NMR (500 MHz, CDCl3, 298K) spectrum is shown in Figure SIII. \(^{13}\)C\:\{\(^1\)H\}
NMR (100.82 MHz, CDCl₃): δ 190.1 (C\textsubscript{carbene}), 169.5 (CO), 157.2 (C2/6), 138.5 (C4), 135.5, 133.9, 133.7, 129.8, 129.7, 128.9, 127.9, 126.0 (Ar−C), 123.2 (C3/5), 113.4, 112.2 (Ar−C), 52.9 (NCH₂Ph), 49.3 (NCH₂), 43.4 (CONCH₂), 31.7 (CH₂CH₂CH₂).

19F NMR (282.38 MHz, CDCl₃): δ -74.89, -74.95 (s, BF₄). Anal. Calcd for C₈₂H₇₄Au₂BCoF₄N₁₄O₄: C, 52.97; H, 4.01; N, 10.55. Found: C, 52.67; H, 4.34; N, 10.39. HRMS (ESI): m/z 1771.4702 (calcd for [M − BF₄]$^+$ 1771.4675).

Magnetic susceptibility measurements. Powders of complex 5 were packed into a sample tube (sample weight: 0.0843 g; height: 1.70 cm) and evaluated using a Johnson Matthey magnetic susceptibility balance. The mass susceptibility measures 0 cm3.g$^{-1}$ indicating a diamagnetic compound. Complex 5 (11 mg, 6.00 mmol) was added into an NMR tube and dissolved in 0.6 mL of CD₂Cl₂ [with 1% (volume) MeOH as reference]. A sealed melting point capillary tube filled with 50 μL of CD₂Cl₂ (with 1% MeOH) was slowly placed on the bottom of the NMR tube. The NMR sample was measured and showed only one signal corresponding to the CH₃ of MeOH.1

X-ray Diffraction Studies. Single crystals of B₁⁻(CH₃)$_2$CO, 2Me, 3Bn·0.5H₂O and 5·0.25CH₂Cl₂ were obtained by slow evaporation of a concentrated solution in CHCl₃ (B₁⁻) or CH₂Cl₂/toluene (5·0.25CH₂Cl₂), or diffusion of diethyl ether into a concentrated solution in CH₃CN (2Me, 3Bn·0.5H₂O). X-ray data for them were collected with a Bruker AXS SMART APEX diffractometer, using Mo- or Cu-Kα
radiation with the SMART suite of Programs.2 Data were processed and corrected for Lorentz and polarization effects with SAINT,3 and for absorption effect with SADABS.4 Structural solution and refinement were carried out with the SHELXTL suite of programs.5 The structure was solved by direct methods to locate the heavy atoms, followed by difference maps for the light, non-hydrogen atoms. All non-hydrogen atoms were generally given anisotropic displacement parameters in the final model. All H-atoms were put at calculated positions. A summary of the most important crystallographic data is given in Table S1.

Discussion of Monogold(III) dicarbene complexes $4_{\text{Bn,Me}}$

In comparison to the parent complexes, the solubilities of the Au(III) complexes $4_{\text{Bn,Me}}$ in common organic solvents are significantly decreased. Their 1H NMR spectra show even broader signals for the amide and propylene protons at room temperature, which do not sharpen at different temperatures (223–373 K). The ylidene resonances at \sim163 ppm are shifted to much higher field in line with the more Lewis acidic AuIII centers.6 Base peaks at m/z 928 and 776 in their ESI mass spectra further corroborate the coordination of two additional chlorido ligands.
Figure S1. Molecular structure and perspective view of B_{Bn} showing 50% probability ellipsoids; solvent molecules and most hydrogen atoms are omitted for clarity.

The amide protons (N3–H and N5–H), one of the NCHN protons (C28–H) and several aliphatic protons cooperatively form hydrogen bonds with one BF_4^- anion, embedding it inside a cationic cage-like structure (A). The molecular salts are arranged into an infinite chain via intermolecular hydrogen bonds between the BF_4^- anions and the various C–H protons (C). Besides, offset face-to-face $\pi\cdots\pi$ interactions are noted between the two perfectly coplanar pyridine rings from the neighboring molecules with a separation of 3.293 Å (B).
Molecular structure of complex 2_{Me}

Figure SII. Molecular structure of 2_{Me} showing 50% probability ellipsoids; most hydrogen atoms are omitted for clarity.

1H NMR spectrum of complex 5

Figure SIII. 1H NMR spectrum of complex 5.
Molecular structure of complex 5

Figure SIV. Molecular structures of P- and M-helicates of racemic complex 5 in ellipsoid and space filling modes; BF_4^- anion and hydrogen atoms are omitted for clarity.
<table>
<thead>
<tr>
<th></th>
<th>B_{14}(CH_3)_2CO</th>
<th>2Me</th>
<th>3B_{14}·0.5H_2O</th>
<th>5·0.25CH_2Cl_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>C_{41}H_{41}B_{2}F_{8}N_{7}O_{2}·(CH_{3})_{2}CO</td>
<td>C_{29}H_{28}AuBF_{4}N_{7}O_{2}</td>
<td>C_{82}H_{78}Au_{2}B_{2}F_{8}N_{14}O_{4}·0.5H_2O</td>
<td>C_{82}H_{78}Au_{2}BCoF_{4}N_{14}O_{4}·0.25CH_2Cl_2</td>
</tr>
<tr>
<td>fw</td>
<td>895.51</td>
<td>793.38</td>
<td>1908.14</td>
<td>1883.45</td>
</tr>
<tr>
<td>color, habit</td>
<td>colourless, block</td>
<td>colourless, plate</td>
<td>colourless, needle</td>
<td>yellow, block</td>
</tr>
<tr>
<td>temp [°K]</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>cryst size [mm]</td>
<td>0.34×0.24×0.15</td>
<td>0.36×0.26×0.10</td>
<td>0.13×0.10×0.06</td>
<td>0.36×0.26×0.10</td>
</tr>
<tr>
<td>temp [°K]</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
<td>100(2)</td>
</tr>
<tr>
<td>space group</td>
<td>P-1</td>
<td>P2(1)/n</td>
<td>P21/c</td>
<td>P-1</td>
</tr>
<tr>
<td>a [Å]</td>
<td>8.6769(11)</td>
<td>13.924(7)</td>
<td>23.2600(14)</td>
<td>15.0076(16)</td>
</tr>
<tr>
<td>b [Å]</td>
<td>15.920(2)</td>
<td>15.956(8)</td>
<td>20.2750(11)</td>
<td>16.2066(16)</td>
</tr>
<tr>
<td>c [Å]</td>
<td>17.935(3)</td>
<td>14.787(8)</td>
<td>8.2071(4)</td>
<td>17.9512(19)</td>
</tr>
<tr>
<td>α [deg]</td>
<td>115.794(4)</td>
<td>90.00</td>
<td>90.00</td>
<td>63.780(3)</td>
</tr>
<tr>
<td>β [deg]</td>
<td>103.951(3)</td>
<td>116.941(9)</td>
<td>94.156(4)</td>
<td>82.005(3)</td>
</tr>
<tr>
<td>γ [deg]</td>
<td>90.302(3)</td>
<td>90.00</td>
<td>90.00</td>
<td>79.629(3)</td>
</tr>
<tr>
<td>V [Å³]</td>
<td>2147.5(5)</td>
<td>2929(3)</td>
<td>3860.3(4)</td>
<td>3844.1(7)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D_c [g cm^{-3}]</td>
<td>1.385</td>
<td>1.799</td>
<td>1.642</td>
<td>1.627</td>
</tr>
<tr>
<td>radiation used</td>
<td>Mo Kα</td>
<td>Mo Kα</td>
<td>Cu Kα</td>
<td>Mo Kα</td>
</tr>
<tr>
<td>µ [mm^{-1}]</td>
<td>0.111</td>
<td>5.090</td>
<td>7.732</td>
<td>4.108</td>
</tr>
<tr>
<td>no. of unique data</td>
<td>28066</td>
<td>20375</td>
<td>27316</td>
<td>158525</td>
</tr>
<tr>
<td>max., min. transm</td>
<td>0.9835, 0.9631</td>
<td>0.7898, 0.5489</td>
<td>0.7528, 0.6022</td>
<td>0.7457, 0.5929</td>
</tr>
<tr>
<td>final R indices</td>
<td>R1 = 0.0720, wR2 = 0.1545</td>
<td>R1 = 0.0315, wR2 = 0.0685</td>
<td>R1 = 0.0794, wR2 = 0.1700</td>
<td>R1 = 0.0563, wR2 = 0.1493</td>
</tr>
<tr>
<td>[I>2σ(I)]</td>
<td>R1 = 0.1026, wR2 = 0.1672</td>
<td>R1 = 0.0445, wR2 = 0.0735</td>
<td>R1 = 0.1296, wR2 = 0.1936</td>
<td>R1 = 0.0767, wR2 = 0.1603</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0720, wR2 = 0.1545</td>
<td>R1 = 0.0315, wR2 = 0.0685</td>
<td>R1 = 0.0794, wR2 = 0.1700</td>
<td>R1 = 0.0563, wR2 = 0.1493</td>
</tr>
<tr>
<td>goodness-of-fit</td>
<td>1.090</td>
<td>1.027</td>
<td>1.072</td>
<td>1.071</td>
</tr>
<tr>
<td>peak/hole [e Å^{-3}]</td>
<td>0.602/–0.315</td>
<td>1.624/–0.829</td>
<td>1.785/–1.091</td>
<td>6.166/–2.353</td>
</tr>
</tbody>
</table>
References

