Electronic Supplementary Information

The Marriage of endo-Cavity and exo-Wall Complexation Provides a Facile Strategy for Supramolecular Polymerization

Shilu Wang, Yiliang Wang, Zhenxia Chen, Yuejian Lin, Linhong Weng, Kang Han, Jian Li, Xueshun Jia* and Chunju Li*

a Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China; E-mail: cjli@shu.edu.cn; xsjia@mail.shu.edu.cn.
b Department of Chemistry, Fudan University, Shanghai 200433, P. R. China. E-mail: zhxchen@fudan.edu.cn.
c State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China.

Contents

Materials and methods. S2
Copies of 1H NMR and 13C NMR spectra. S3
Job plot of 1/2 complexes. S6
X-ray crystal data and crystal structure of EtP5A2•2 complex. S7
1H NMR spectra of guest 3 in the absence and presence of P5A host 1. S9
Solution colors of the supramolecular polymer at different concentrations. S11
DLS experiments. S11
1H NMR spectra of 12•2•3 complex at various concentrations. S12
References. S12
Materials and methods.

per-Butylated pillar[5]arene (1) and N,N'-bis(n-butyl)pyromellitic diimide (2) were prepared by literature methods and recrystallized and dried under reduced pressure before use. Ditopic guest 3 was prepared according to our reported procedure. Solvents were either employed as purchased or dried according to procedures described in the literature.

1H NMR, 13C NMR, and DOSY spectra were recorded on a Bruker AV500 instrument. Viscosity measurements were carried out with Ubbelohde micro dilution viscometers (Shanghai Liangjing Glass Instrument Factory, 0.40 mm inner diameter) in chloroform. Electrospun supramolecular polymer nanofibers were obtained under the following conditions, 18 kV, 1.0 mL/h syringe flow rate, and 10 cm working distance, from a concentrated solution (~ 0.8 M) of 1$_2$.2·3 in CHCl$_3$.

Copies of 1H NMR and 13C NMR spectra.

Figure S1. 1H NMR spectrum (500 MHz) of 1 in CDCl$_3$.

Figure S2. 13C NMR spectrum (125 MHz) of 1 in CDCl$_3$.
Figure S3. 1H NMR spectrum (500 MHz) of 2 in CDCl$_3$.

Figure S4. 13C NMR spectrum (125 MHz) of 2 in CDCl$_3$.
Figure S5. 1H NMR spectrum (500 MHz) of 3 in CDCl$_3$.

Figure S6. 13C NMR spectrum (125 MHz) of 3 in CDCl$_3$.
Job plot of 1/2 complexes.

![Job plot](image)

Figure S7. Job plots showing the 2:1 stoichiometry of the complex between 1 and 2 in CHCl₃ by plotting the absorbance intensity at $\lambda = 482$ nm (the charge transfer band) against the molar fraction of 2 ([1] + [2] = 0.090 M)
X-ray crystal data and crystal structure of EtP5A\textsubscript{2}•2 complex.

X-ray crystal data for EtP5A\textsubscript{2}•2 complex.

Crystallographic data: red, C\textsubscript{64}H\textsubscript{88}NO\textsubscript{16}, \textit{FW} 1127.35, Triclinic, space group \textit{P}-1, \textit{a} = 12.306(7), \textit{b} = 12.532(7), \textit{c} = 25.592(14), \alpha = 95.097(8)°, \beta = 99.985(8)°, \gamma = 107.517(8)°, \textit{V} = 3665(4) Å3, \textit{Z} = 2, \textit{Dc} = 1.022 g cm-3, \textit{T} = 296(2)K, \mu = 0.073 mm-1, 19017 measured reflections, 12751 independent reflections, 730 parameters, 4 restraint, \textit{F}(000) = 1214, \textit{R}\textsubscript{1} = 0.2598, \textit{wR}\textsubscript{2} = 0.5059 (all data), \textit{R}\textsubscript{1} = 0.1742, \textit{wR}\textsubscript{2} = 0.4488 \textit{[I > 2σ(I)]}, max. residual density 1.401 e·Å-3, and goodness-of-fit (\textit{F}2) = 1.521. CCDC 995204.

\textbf{Figure S8.} Crystal structure of EtP5A\textsubscript{2}•2 complex. Oxygens are red, nitrogens are blue, carbons are green, and hydrogens are beige. Dashes represent C–H⋯O hydrogen bonds. H⋯O distance is 2.72 Å and C–H⋯O angle is 131 deg.
Figure S9. The packing structure of EtP5A₂•2 complex. Dashes represent C−H⋯O hydrogen bonds between two neighboring EtP5A₂•2 units. H⋯O distance is 2.99 Å and C−H⋯O angle is 129 deg.
Figure S10. 1H NMR spectra (500 MHz, CDCl$_3$, 298 K) of 3 (5.0 mM) upon complexation with 2.0 eq. of 1. (A) 3, (B) 3 + 1, and (C) 1. “C” and “U” represent complexed and uncomplexed host/guest.

Figure S10 shows the 1H NMR spectra of guest 3 in CDCl$_3$ in the absence and presence of 2.0 eq. of 1. Slow exchange on the NMR timescale was observed for this complex. The resonances of the new species are consistent with the formation of a [3]pseudorotaxane-type interpenetrated complex. From integrations of all peaks, the stoichiometry of the complex between 1 and 3 can be determined to be 2 : 1. The peaks for the butylene protons of 3 (H$_a$-d) exhibit substantial upfield shifts and broadening effects compared to the free axle ($\Delta \delta = -3.24, -3.17 \text{ and } -2.63 \text{ ppm for H}_b, H_c \text{ and } H_d$, respectively) as a consequence of inclusion-induced shielding effects, indicating that the wheels is fully threaded by the butylene moieties. 1H NMR results gave clear evidence for the formation of [3]pseudorotaxane 1$_2$•3.

To quantitatively assess the exo-wall complexation behavior between 2 and [3]pseudorotaxane 1₂•3, UV-vis dilution experiments were performed at 298 K in chloroform solution. Using a well-defined (linear fitting) method, the association constant \(K_a \) could be obtained by analyzing the sequential changes in the absorbance (Abs.) of the complex at 460 nm that occurred with changes in concentration, [C], according to the following equation:

\[
\frac{[C]}{\text{Abs.}} = \left(\frac{1}{K_a \varepsilon_l} \right)^{1/2} \left(\frac{1}{\text{Abs.}} \right)^{1/2} + \frac{1}{\varepsilon_l}
\]

A plot of \([C]/\text{Abs.}\), against \(1/(\text{Abs.})^{1/2}\) for a series of solutions of concentrations, is linear; the slope equals to \((1/K_a \varepsilon_l)^{1/2}\) and the intercept equals to \(1/\varepsilon_l\). Typical UV spectrum changes and linear fitting plots are shown in Figure S11. It should be pointed out that, since the \(K_a \) value of 5-(1H-1,2,3-triazol-1-yl)pentanenitrile (TAPN) moiety with alkylated P5A is in the magnitude of \(10^4 \text{ M}^{-1}\), the uncomplexed P5A 1 in the formation of [3]pseudorotaxane 1₂•3 is less than 5% in the present operating concentrations (\(10^{-3} - 10^{-2} \text{ M}^{-1}\)) and is ignored in the determination of the \(K_a \) value between 2 and 1₂•3.

![Figure S11](image_url). UV-vis spectra of 2 with [3]pseudorotaxane 1₂•3 at a series of concentrations (left), and the corresponding linear fitting plot (right).
Solution colors of the supramolecular polymer at different concentrations.

Figure S12. Concentration-dependent color changes of $1_2 \cdot 2 \cdot 3$ supramolecular aggregates in chloroform. (I) 35 mM; (II) 50 mM; (III) 100 mM; and (IV) 250 mM.

DLS experiments.

Figure S13. Hydrodynamic diameter distribution of supramolecular polymer $1_2 \cdot 2 \cdot 3$ (250 mM) in chloroform solution.
Figure S14. Partial 1H NMR spectra of 1–2–3 complex (CDCl$_3$, 500 MHz, 298 K) at various concentrations: (A) 250 mM; (B) 100 mM; (C) 35 mM; (D) 10 mM; (E) 2.5 mM.

References.

