Ditopic CMPO-pillar[5]arenes as unique receptors for efficient separation of americium(III) and europium(III)

Yuyu Fang, a Xiangyang Yuan, a Lei Wu, a Zhiyong Peng, a Wen Feng,* a
Ning Liu, a Dingguo Xu, a Shoujian Li, a Arijit Sengupta, b Prasanta K.
Mohapatra b and Lihua Yuan* a

a Institute of Nuclear Science and Technology, Key Laboratory for Radiation Physics and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China. Fax: +86-28-85418755; Tel: +86-28-85412890; E-mail: wfeng9510@scu.edu.cn; lhyuan@scu.edu.cn
b Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

Supporting Information
Contents

1. General information .. S3
2. Synthesis and characterization ... S4
3. NMR and ESI-HRMS spectra .. S8
4. ESI-HRMS for complexes ... S18
5. NMR titration of 1 with La$^{3+}$... S21
6. Fluorescence titration of Eu$^{3+}$ with 1 S24
7. Job’s plot of 1 and Eu$^{3+}$.. S26
8. UV-vis spectrophotometric titration of 1 with Eu$^{3+}$ S27
9. FT-IR spectra of free and Eu$^{3+}$-loaded 1 S29
10. Extraction properties of Am(III) and Eu(III) S31
11. Fluorescence studies ... S33
12. References ... S36
1. General information

The 1H NMR and 13C NMR spectra were recorded on Bruker AVANCE AV II-400 MHz (1H: 400 MHz; 13C: 100 MHz; 31P: 163 MHz). Chemical shifts are reported in δ values in ppm using tetramethylsilane (TMS) and coupling constants (J) are denoted in Hz. Multiplicities are denoted as follows: s = singlet, d = doublet, t = triplet, dd = double doublet and m = multiplet. High resolution mass (HRMS) data were obtained by WATERS Q-TOF Premier. Solvents for extraction and chromatography were reagent grade. CH$_2$Cl$_2$ was distilled from CaH$_2$. CDCl$_3$ and DMSO-d_6 were from Cambridge Isotope Laboratories (CIL)
2. Synthesis and characterization

Synthetic route

Scheme S1 Synthesis of CMPO-functionalized pillar[5]arenes 1a-c. Reagents: (1) (CH₂O)ₙ, BF₃•OEt₂, CH₂Cl₂, r.t.; (2) NaN₃, DMF, 90 °C; (3) H₂, Pd/C, CH₃OH, 48 h, 50 °C; (4) 6, CHCl₃, NEt₃, 48 h, reflux.

Synthesis of compound 3
The general procedure for compounds 3b-c was exemplified by the synthesis of 3a:
To a solution of 2a (3.03 g, 9.34 mmol) in dry dichloromethane (80 mL) was added paraformaldehyde (291 mg, 9.34 mmol) under nitrogen atmosphere. Then boron trifluoride diethyl etherate (1.32 g, 11.5 mmol) was added to the solution and the mixture was stirred at room temperature for 2 h. Water (100 mL) was added to quench the reaction. The organic layer was washed twice with H₂O (2 × 100 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure. The obtained solid was purified by column chromatography on silica gel with petroleum ether/dichloromethane (1:1, v/v) as the eluent to afford a white powder.

3a[S1]: Yield 41%. ¹H NMR (400 MHz, CDCl₃) δ 6.92 (s, 10 H), 4.23 (t, J = 5.5 Hz, 20 H), 3.84 (s, 10 H), 3.64 (t, J = 5.5 Hz, 20 H).

3b[S2]: Yield 40%. ¹H NMR (400 MHz, CDCl₃) δ 6.74 (s, 10 H), 3.99 (t, J = 5.7 Hz, 20 H), 3.76 (s, 10 H), 3.52 (t, J = 6.4 Hz, 20 H), 2.23 (m, 20 H).

3c[S3]: Yield 36%. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (s, 10 H), 3.93 (t, J = 5.8 Hz, 20 H), 3.75 (s, 10 H), 3.43 (t, J = 6.5 Hz, 20 H), 2.05 (m, 20 H), 1.92 (m, 20 H).

Synthesis of compound 4
The general procedure for compounds 4b-c was exemplified by the synthesis of 4a:

To a solution of 3a (3.03 g, 1.80 mmol) in dry DMF (80 mL) was added sodium azide (1.41 g, 21.6 mmol) under nitrogen atmosphere. The mixture was stirred at 90 °C for 12 h and cooled to room temperature. After slow addition of ice water to the solution, the precipitate was collected by filtration, and washed with water (2 × 100 mL) and methanol (2 × 100 mL) to afford a white solid.

4a[S4]: Yield 97%. 1H NMR (400 MHz, CDCl$_3$) δ 6.83 (s, 10 H), 4.01 (t, $J = 4.8$ Hz, 20 H), 3.84 (s, 10 H), 3.55 (t, $J = 4.7$ Hz, 20 H).

4b: Yield 98%. 1H NMR (400 MHz, CDCl$_3$) δ 6.72 (s, 10 H), 3.91 (t, $J = 5.9$ Hz, 20 H), 3.75 (s, 10 H), 3.43 (t, $J = 6.7$ Hz, 20 H), 1.97 (m, 20 H). 13C NMR (100 MHz, CDCl$_3$) δ 149.8, 128.6, 115.3, 65.5, 48.4, 29.8, 29.1. ESI-HRMS (m/z) calcd. for C$_{65}$H$_{80}$N$_{30}$O$_{10}$[M+Na]$^+$ 1463.6571; found [M+Na]$^+$ 1463.6572.

4c: Yield 98%. 1H NMR (400 MHz, CDCl$_3$) δ 6.81 (s, 10 H), 3.90 (t, $J = 4.7$ Hz, 20 H), 3.75 (s, 10 H), 3.34 (t, $J = 6.3$ Hz, 20 H), 1.82 (m, 40 H). 13C NMR (100 MHz, CDCl$_3$) δ 149.8, 128.4, 115.1, 67.9, 51.3, 29.6, 27.1, 26.0. ESI-HRMS (m/z) calcd. for C$_{75}$H$_{100}$N$_{30}$O$_{10}$ [M+Na]$^+$ 1063.8136; found [M+Na]$^+$ 1063.8134.

Synthesis of compound 1
The general procedure for compounds 1b-c was exemplified by the synthesis of 1a:
A mixture of 4a (2.00 g, 1.54 mmol) and Pd/C (400 mg, 20% w.t.) in methanol was
stirred at 50 °C under hydrogen atmosphere (0.4 MPa) for 48 h. After removal of the
catalyst by filtration, the solvent was concentrated under reduced pressure to give the
amine 5a as a white solid which was used without further purification. The resulting
solid 5a was dissolved together with p-nitrophenyl(diphenylphosphoryl) acetate 6 \[^{[S5]}\]
(8.81 g, 23.1 mmol) and triethylamine (2.34 g, 23.1 mmol) in ethanol-free dry
chloroform (120 mL) at 60 °C for 48 h. Water (100 mL) was added to quench the
reaction. The organic layer was washed repeatedly with 5% Na$_2$CO$_3$ (3 × 100 mL),
water (3 × 100 mL) and dried over anhydrous Na$_2$SO$_4$. The solvent was removed
under reduced pressure. The obtained pale yellow solid was washed with cold ethyl
acetate (3 × 20 mL) and purified by column chromatography on silica gel with
dichloromethane/methanol (15:1, v/v) as the eluent to afford a white powder.

1a: Yield 48%. 1H NMR (400 MHz, CDCl$_3$) δ 8.08 (s, 10 H), 7.75 (m, 40 H), 7.38
(m, 60 H), 6.50 (s, 10 H), 3.59 (s, 10 H), 3.37-3.50 (m, 40 H), 3.28 (m, 20 H). 13C
NMR (100 MHz, CDCl$_3$) δ 165.3, 149.9, 132.2, 131.0, 128.8, 128.7, 128.6, 115.9,
67.2, 39.5, 38.7, 29.3. ESI-HRMS (m/z) calcd. for C$_{195}$H$_{190}$O$_{30}$P$_{10}$N$_{10}$ [M+2Na]$^{2+}$
1754.5444; found [M+2Na]$^{2+}$ 1754.5402.

1b: Yield 55%. 1H NMR (400 MHz, CDCl$_3$) δ 8.03 (s, 10 H), 7.75 (dd, 40 H), 7.34
(m, 60 H), 6.60 (s, 10 H), 3.62 (t, $J = 6.0$ Hz, 20 H), 3.52 (m, 10 H), 3.41 (m, 30 H),
3.29 (m, 10 H), 1.77 (m, 20 H). \(^{13} \text{C} \) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 165.0, 149.7, 132.3, 130.9, 130.8, 128.8, 128.7, 115.0, 66.2, 39.5, 38.9, 37.3, 29.3. ESI-HRMS (m/z) calcd. for C\(_{205}\)H\(_{210}\)O\(_{30}\)P\(_{10}\)N\(_{10}\) [M+2Na\(^{2+}\)] 1824.6226; found [M+2Na\(^{2+}\)] 1824.6232.

\(1c \): Yield 67%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.92 (s, 10 H), 7.76 (m, 40 H), 7.39 (m, 60 H), 6.69 (s, 10 H), 3.72 (m, 10 H), 3.67 (s, 10 H), 3.60 (m, 10 H), 3.18 (m, 20 H), 1.67 (m, 40 H). \(^{13} \text{C} \) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 164.9, 149.8, 132.2, 131.3, 130.9, 128.8, 128.2, 115.0, 67.9, 39.6, 38.8, 29.3, 27.1, 26.1. ESI-HRMS (m/z) calcd. for C\(_{215}\)H\(_{230}\)O\(_{30}\)P\(_{10}\)N\(_{10}\) [M+2Na\(^{2+}\)] 1894.1992; found [M+2Na\(^{2+}\)] 1894.1949.

3. NMR and ESI-HRMS spectra

![NMR spectrum](image)

Figure S1. \(^1\)H NMR spectrum (400 MHz, CDCl\(_3\)) of 3a at 298 K.
Figure S2. 1H NMR spectrum (400 MHz, CDCl$_3$) of 3b at 298 K.

Figure S3. 1H NMR spectrum (400 MHz, CDCl$_3$) of 3c at 298 K.
Figure S4. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4a at 298 K.

Figure S5. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4b at 298 K.
Figure S6. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4b at 298 K.

Figure S7. ESI-HRMS spectrum of 4b.
Figure S8. 1H NMR spectrum (400 MHz, CDCl$_3$) of 4c at 298 K.

Figure S9. 13C NMR spectrum (100 MHz, CDCl$_3$) of 4c at 298 K.
Figure S10. ESI-HRMS spectrum of 4c.

Figure S11. 1H NMR spectrum (400 MHz, CDCl$_3$) of 1a at 298 K.
Figure S12. 13C NMR spectrum (100 MHz, CDCl$_3$) of 1a at 298 K.

Figure S13. ESI-HRMS spectrum of 1a.
Figure S14. ^1H NMR spectrum (400 MHz, CDCl$_3$) of 1b at 298 K.

Figure S15. ^{13}C NMR spectrum (100 MHz, CDCl$_3$) of 1b at 298 K.
Figure S16. ESI-HRMS spectrum of 1b.

Figure S17. 1H NMR spectrum (400 MHz, CDCl$_3$) of 1c at 298 K.
Figure S18. 13C NMR spectrum (100 MHz, CDCl$_3$) of 1c at 298 K.

Figure S19. ESI-HRMS spectrum of 1c.
4. ESI-HRMS for complexes

Figure S20. ESI-HRMS spectrum of the 1:1 (M:L) complex formed between 1a and Eu\(^{3+}\) on addition of 1 equiv. of Eu(NO\(_3\))\(_3\) (inset: experimental isotope distribution (blue) and computer simulation (red)).
Figure S21. ESI-HRMS spectrum of the 2:1 (M:L) complex formed between 1a and Eu$^{3+}$ on addition of 3 equiv. of Eu(NO$_3$)$_3$ (inset: experimental isotope distribution (blue) and computer simulation (red)).

Figure S22. ESI-HRMS spectrum of the 1:1 (M:L) complex formed between 1b and Eu$^{3+}$ on addition of 1 equiv. of Eu(NO$_3$)$_3$ (inset: experimental isotope distribution (blue) and computer simulation (red)).
Figure S23. ESI-HRMS spectrum of the 2:1 (M:L) complex formed between 1b and Eu$^{3+}$ on addition of 3 equiv. of Eu(NO$_3$)$_3$ (inset: experimental isotope distribution (blue) and computer simulation (red)).

Figure S24. ESI-HRMS spectrum of the 1:1 (M:L) complex formed between 1c and Eu$^{3+}$ on addition of 1 equiv. of Eu(NO$_3$)$_3$ (inset: experimental isotope distribution (blue) and computer simulation (red)).
Figure S25. ESI-HRMS spectrum of the 2:1 (M:L) complex formed between 1c and Eu$^{3+}$ on addition of 3 equiv. of Eu(NO$_3$)$_3$ (inset: experimental isotope distribution (blue) and computer simulation (red)).

5. NMR titration of 1 with La$^{3+}$
Figure S26. Titration of a 1a solution (4.0 mM) by La$^{3+}$ in CDCl$_3$/DMSO-d_6 (4:1, v/v) as monitored by 1H NMR spectroscopy at 298 K.

Figure S27. Titration of a 1a solution (4.0 mM) by La$^{3+}$ in CDCl$_3$/DMSO-d_6 (4:1, v/v) as monitored by 31P NMR spectroscopy at 298 K.
Figure S28. Titration of a 1b solution (4.0 mM) by La\(^{3+}\) in CDCl\(_3\)/DMSO-\(d_6\) (4:1, v/v) as monitored by \(^1\)H NMR spectroscopy at 298 K.

Figure S29. Titration of a 1b solution (4.0 mM) by La\(^{3+}\) in CDCl\(_3\)/DMSO-\(d_6\) (4:1, v/v) as monitored by \(^{31}\)P NMR spectroscopy at 298 K.
Figure S30. Titration of a 1c solution (4.0 mM) by La$^{3+}$ in CDCl$_3$/DMSO-d_6 (4:1, v/v) as monitored by 1H NMR spectroscopy at 298 K.

Figure S31. Titration of a 1c solution (4.0 mM) by La$^{3+}$ in CDCl$_3$/DMSO-d_6 (4:1, v/v) as monitored by 31P NMR spectroscopy at 298 K.

6. Fluorescence titration of Eu$^{3+}$ with 1

Figure S32. (a) Fluorescence titration of Eu(NO$_3$)$_3$ (2×10^{-4} M) with ligand 1a in
CH$_3$OH; (b) Corresponding asymmetry factors (AF = I$_{617}$ / I$_{592}$) as a function of [1a]/[M] mole ratio (λ_{ex} = 394 nm).

Figure S33. (a) Fluorescence titration of Eu(NO$_3$)$_3$ (2 \times 10$^{-4}$ M) with ligand 1b in CH$_3$OH; (b) Corresponding asymmetry factors (AF = I$_{617}$ / I$_{592}$) as a function of [1b]/[M] mole ratio (λ_{ex} = 394 nm).

Figure S34. (a) Fluorescence titration of Eu(NO$_3$)$_3$ (2 \times 10$^{-4}$ M) with ligand 1c in CH$_3$OH; (b) Corresponding asymmetry factors (AF = I$_{617}$ / I$_{592}$) as a function of [1c]/[M] mole ratio (λ_{ex} = 394 nm).
7. Job’s plot of 1 and Eu$^{3+}$

Figure S35. Job’s plot of 1a and Eu$^{3+}$ in CH$_3$OH. The emission intensity at 617 nm is plotted against the molar fraction of [1a] to ([1a] + [Eu$^{3+}$]) at a fixed total concentration 2.0 × 10$^{-4}$ M ($\lambda_{\text{ex}} = 394$ nm).

Figure S36. Job’s plot of 1b and Eu$^{3+}$ in CH$_3$OH. The emission intensity at 617 nm is plotted against the molar fraction of [1b] to ([1b] + [Eu$^{3+}$]) at a fixed total concentration 2.0 × 10$^{-4}$ M ($\lambda_{\text{ex}} = 394$ nm).
Figure S37. Job’s plot of 1c and Eu³⁺ in CH₃OH. The emission intensity at 617 nm is plotted against the molar fraction of [1c] to ([1c] + [Eu³⁺]) at a fixed total concentration 2.0 × 10⁻⁴ M (λₑₓ = 394 nm).

8. UV-vis spectrophotometric titration of 1 with Eu³⁺

The stability constants β defined as the concentration ratio ($\beta = \frac{[MₓLₙ^{n⁺}]}{[M^{n⁺}][L]^{y⁻}}$) were determined in methanol by UV-vis spectrophotometric titration at 25 °C. The concentration of ligand 1 in methanol was 4.0 × 10⁻⁵ M and 0.01 M tetrathyammonium nitrate (Et₄NNO₃) was added to control the ionic strength. The experiments were carried out in a 1.0 cm quartz cell. Factor analysis and mathematical treatment of the spectrophotometric data were performed and fitted with the ReactLab EQUILIBRIA software.⁶⁶
Figure S38. UV-vis spectrophotometric titration of 1a (4.0 × 10⁻⁵ M) with Eu(NO₃)₃ in methanol (0 ≤ R = C₉/C₃ ≤ 5).

Figure S39. UV-vis spectrophotometric titration of 1b (4.0 × 10⁻⁵ M) with Eu(NO₃)₃ in methanol (0 ≤ R = C₉/C₃ ≤ 5).

Figure S40. UV-vis spectrophotometric titration of 1c (4.0 × 10⁻⁵ M) with Eu(NO₃)₃
in methanol ($0 \leq R = \frac{C_M}{C_L} \leq 4$).

9. FT-IR spectra of free and Eu$^{3+}$-loaded 1

![FT-IR spectra](image)

Figure S41. FT-IR spectra of 1a in the absent and present of different equivalent of Eu(NO$_3$)$_3$.
Figure S42. FT-IR spectra of 1b in the absent and present of different equivalent of Eu(NO$_3$)$_3$.

Figure S43. FT-IR spectra of 1c in the absent and present of different equivalent of Eu(NO$_3$)$_3$.

S30
10. Extraction properties of Am(III) and Eu(III)

The ligands (1.0 × 10⁻³ M) were dissolved in a mixed solvent system consisting of \(m \)-nitro(trifluoromethyl)benzene and \(n \)-octanol (\(m \)-NTFB/\(n \)-octanol, 95:5, v:v). The organic phase was mixed with an aqueous phase containing europium(III) nitrate (\(C_{\text{Eu}} = 10^{-5} \) M) with \(^{241}\text{Am}(\text{III})\) or \(^{152}\text{Eu}(\text{III})\) (radiochemical purity, \(ca. 1.0 \times 10^{-7} \) mol•L⁻¹) as well as HNO₃ at different concentrations (0.1, 1.0, 2.0, 3.0 and 4.0 M). Liquid-liquid extraction experiments were performed by shaking 1 mL of organic phase and 1 mL of aqueous phase in a stoppered tube immersed in a thermostated bath at 25 ± 0.5 °C for 1 hour which is long enough to reach the extraction equilibrium. After separation of the two phases, 0.5 mL of each phase was collected and the concentration was determined by gamma counting (NaI(Tl) well detector). The distribution ratios \(D_M \) were calculated as the ratio of the cation gamma activity in the organic phase to the cation gamma activity in the aqueous phase. The selectivity for Am(III) over Eu(III) is expressed as \(SF_{\text{Am/Eu}} = \frac{D_{\text{Am}}}{D_{\text{Eu}}} \). The reported \(D_M \) values are the averages of at least two experiments. The errors in the extraction percentages of the duplicate experiments are less than 5%.

![Chemical structures of CMPO-functionalized calixarenes I-III.](image_url)

Figure S44. Chemical structures of CMPO-functionalized calixarenes I-III.
Table S1 Extraction data of Am(III) and Eu(III) from different HNO$_3$ solution by the ligands 1a-c (1 mM) and CMPO 2 (10 mM) into m-NTFB/n-octanol (95:5, v:v) at 25°C.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>HNO$_3$ / mol·L$^{-1}$</th>
<th>0.1</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>D_{Am}</td>
<td>4.30</td>
<td>8.69</td>
<td>2.66</td>
<td>0.69</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>D_{Eu}</td>
<td>2.10</td>
<td>4.54</td>
<td>1.30</td>
<td>0.44</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>$SF_{Am/Eu}$</td>
<td>2.05</td>
<td>1.91</td>
<td>2.05</td>
<td>1.57</td>
<td>1.08</td>
</tr>
<tr>
<td>1b</td>
<td>D_{Am}</td>
<td>4.46</td>
<td>10.7</td>
<td>3.30</td>
<td>0.78</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>D_{Eu}</td>
<td>2.12</td>
<td>6.17</td>
<td>1.37</td>
<td>0.47</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>$SF_{Am/Eu}$</td>
<td>2.10</td>
<td>1.73</td>
<td>2.41</td>
<td>1.66</td>
<td>2.26</td>
</tr>
<tr>
<td>1c</td>
<td>D_{Am}</td>
<td>57.7</td>
<td>171</td>
<td>5.10</td>
<td>1.56</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>D_{Eu}</td>
<td>7.54</td>
<td>13.1</td>
<td>2.90</td>
<td>1.16</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>$SF_{Am/Eu}$</td>
<td>7.65</td>
<td>13.0</td>
<td>1.76</td>
<td>1.34</td>
<td>1.47</td>
</tr>
<tr>
<td>I-aa</td>
<td>D_{Am}</td>
<td>48</td>
<td>51</td>
<td>61</td>
<td>63</td>
<td>nr</td>
</tr>
<tr>
<td></td>
<td>D_{Eu}</td>
<td>28</td>
<td>33</td>
<td>44</td>
<td>48</td>
<td>nr</td>
</tr>
<tr>
<td></td>
<td>$SF_{Am/Eu}$</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
<td>1.3</td>
<td>--</td>
</tr>
<tr>
<td>I-ba</td>
<td>D_{Am}</td>
<td>11.1</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td></td>
<td>D_{Eu}</td>
<td>5.1</td>
<td>26.4</td>
<td>27.7</td>
<td>35.5</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td>$SF_{Am/Eu}$</td>
<td>2.2</td>
<td>> 3</td>
<td>> 3</td>
<td>> 3</td>
<td>> 3</td>
</tr>
<tr>
<td>I-ca</td>
<td>D_{Am}</td>
<td>18.3</td>
<td>32.8</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>D_{Eu}</td>
<td>9.2</td>
<td>21.9</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>$SF_{Am/Eu}$</td>
<td>2.0</td>
<td>1.5</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>IIa</td>
<td>D_{Am}</td>
<td>19</td>
<td>195</td>
<td>275</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>D_{Eu}</td>
<td>2.3</td>
<td>30</td>
<td>52</td>
<td>37</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>$SF_{Am/Eu}$</td>
<td>8.3</td>
<td>6.5</td>
<td>5.3</td>
<td>4.0</td>
<td>5.26</td>
</tr>
<tr>
<td>IIIb</td>
<td>D_{Am}</td>
<td>397</td>
<td>nd</td>
<td>$> 10^3$</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>D_{Eu}</td>
<td>93</td>
<td>nd</td>
<td>$> 10^3$</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td>$SF_{Am/Eu}$</td>
<td>4.27</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>D_{Am}</td>
<td><0.01</td>
<td><0.01</td>
<td>0.04</td>
<td>0.02</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>D_{Eu}</td>
<td><0.01</td>
<td><0.01</td>
<td>0.03</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

a The data were obtained from the literature [S7]; b The data were obtained from the literature [S8] ([ligands] = 1 mM; the diluent: o-nitrophenylhexyl ether, NPHE). nd: not determined.
Table S2 Multiple extractions of Am(III) and Eu(III) from 3 M HNO$_3$ solution by the ligands 1c (1 mM) into m-NTFB/n-octanol (95:5, v:v) at 25 °C.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Extraction No.</th>
<th>D_{Am}</th>
<th>D_{Eu}</th>
<th>$\text{SF}_{\text{Am/Eu}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>1</td>
<td>1.56</td>
<td>1.16</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.0</td>
<td>2.97</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>103</td>
<td>6.63</td>
<td>15.5</td>
</tr>
</tbody>
</table>

11. Fluorescence studies

General

Eu(NO$_3$)$_3$·6H$_2$O (spectroscopic grade, >99.99%) was procured from Alpha Biochem and the solutions were made using Suprapur (Merck) nitric acid and HPLC grade methanol. Sample solutions for time resolved laser induced fluorescence spectroscopy (TRLFS) measurements were prepared by taking suitable aliquots of Eu(III) stock in the present (or absent) of 1a-c in the mixed solvent system of MeOH/H$_2$O (5:1, v/v, pH = 3.0).

TRLFS studies of the Eu$^{3+}$-solvent and Eu$^{3+}$-1 complexes, in dilute nitric acid (pH = 3.0) as well as in the solvent, were carried out using a spectrometer (Edinburgh Analytical Instruments, UK) controlled by CD 920 controller and equipped with OPO laser. While the samples were excited at 394 nm, the emission spectra were recorded in the range of 575-750 nm. The emission decay curves were fitted into the exponential function to obtain the lifetimes/decay rates of the excited states using inbuilt software GEM/3 (Edinburgh) with reproducibility of lifetimes of the excited states within ± 3 μs. The life time of the 5D_0 emitting level of Eu$^{3+}$ depends on the number of OH oscillators linked to the cations.$^{[59]}$ An empirical relation has been established between primary hydration number of Eu$^{3+}$ ion ($N_{\text{H}_2}\text{O}$) and the lifetime of its 5D_0 emitting level:

$$N_{\text{H}_2}\text{O} = 1.06/\tau - 0.19$$

The number of water molecules in the inner coordination sphere calculated from...
the lifetime has an uncertainty of ± 0.5 in these measurements.

Table S3 Life time and number of inner-sphere water molecules ($N_{\text{H}2\text{O}}$) of Eu$^{3+}$-1 complexes when mixing 1.0 equiv. of 1 ($\lambda_{\text{ex}} = 394 \text{ nm}; \lambda_{\text{em}} = 617 \text{ nm}$).

<table>
<thead>
<tr>
<th>System</th>
<th>Life time (ms)</th>
<th>No. of inner-sphere water molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu$^{3+}$-solvent</td>
<td>$\tau = 0.144$</td>
<td>7</td>
</tr>
<tr>
<td>Eu$^{3+}$-1a</td>
<td>$\tau_1 = 0.225 \ (61%)$</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>$\tau_2 = 0.619 \ (39%)$</td>
<td>1.5</td>
</tr>
<tr>
<td>Eu$^{3+}$-1b</td>
<td>$\tau_1 = 0.246 \ (9.0%)$</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>$\tau_2 = 0.411 \ (91%)$</td>
<td>2.0</td>
</tr>
<tr>
<td>Eu$^{3+}$-1c</td>
<td>$\tau_1 = 0.335 \ (22%)$</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>$\tau_2 = 0.673 \ (78%)$</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table S4 Life time and number of inner-sphere water molecules ($N_{\text{H}2\text{O}}$) of Eu$^{3+}$-1 complexes when mixing 0.5 equiv. of 1 ($\lambda_{\text{ex}} = 394 \text{ nm}; \lambda_{\text{em}} = 617 \text{ nm}$).

<table>
<thead>
<tr>
<th>System</th>
<th>Life time (ms)</th>
<th>No. of inner-sphere water molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu$^{3+}$-1a</td>
<td>$\tau = 0.334$</td>
<td>3</td>
</tr>
<tr>
<td>Eu$^{3+}$-1b</td>
<td>$\tau = 0.401$</td>
<td>2.5</td>
</tr>
<tr>
<td>Eu$^{3+}$-1c</td>
<td>$\tau = 0.578$</td>
<td>1.6</td>
</tr>
</tbody>
</table>
Figure S44. Fluorescence decay profiles of Eu$^{3+}$-1 complexes on addition of 0.5 equiv. of 1 in methanol/water (5:1, v/v, pH=3.0); (a) Eu$^{3+}$-1a complex; (b) Eu$^{3+}$-1b complex; (c) Eu$^{3+}$-1c complex.

Figure S45. Fluorescence decay profiles of Eu$^{3+}$-1 complexes on addition of 1.0
equiv. of 1 in methanol/water (5:1, v/v, pH=3.0); (a) Eu$^{3+}$-1a complex; (b) Eu$^{3+}$-1b complex; (c) Eu$^{3+}$-1c complex.

12. References