A stable Li-deficient oxide as high-performance cathode for advanced lithium-ion batteries

Peiyu Hou, Jie Wang, Jishun Song, Dawei Song,* Xixi Shi, Xiaqing Wang, and Lianqi Zhang*

Experimental Section

The Preparation of precursors and Li-deficient oxides. To synthesize the precursor, stoichiometric NiSO$_4$·6H$_2$O, CoSO$_4$·7H$_2$O, and MnSO$_4$·H$_2$O (cionic ratio of Ni:Co:Mn=2:1:7) were dissolved with a concentration of 2.0 mol L$^{-1}$ as the starting materials. Then the aqueous solution were pumped into a continuously stirred tank reactor (CSTR, capacity of 170 L) under a nitrogen atmosphere and reacted with 10 mol L$^{-1}$ NaOH solution (aq) as the pH control agent and 2 mol L$^{-1}$ NH$_4$OH solution (aq) as the chelating agent in the reactor under 50 °C and constant pH (11.5) with 600 rpm stirring rate, leading to [Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$](OH)$_2$ precursors.

Then, the as-prepared [Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$](OH)$_2$ particles were filtered, washed, and dried 24 h in air. The obtained precursor particles were calcined with stoichiometric ratio LiOH (Li/M=0.35) powders at 800 °C in a furnace under air to form layered oxide powders.

After lithiation, the amount of the residual Li$_2$O and other alkaline compounds on the surface of particle, which is highly related to processability in a lithium battery system, can be measured by the following method. Firstly, 1.000 g oxides were added into 1000 mL redistilled water with continually stirring 0.5 h under a nitrogen atmosphere. Then, pH of solution was measured by Mettler PE20.
Materials Characterization. X-ray Diffractometry (XRD, Rigaku D/MAX-2500 Japan) was employed to characterize structure of the prepared materials. XRD datas were obtained at $2\theta=10-80^\circ$ with a step size of 0.02$^\circ$, using Cu K\(\alpha\) radiation. The morphology of synthesized materials was observed by a Scanning Electron Microscope (SEM, S-4800, Japan). Surface solid-state chemistry of particles was characterized by X-ray photoelectron spectroscopy with a monochromatic Al K\(\alpha\) X-ray source (XPS, Thermo Scientific, USA) in fixed transmission mode with pass energy of 400 mV and the binding energy ranged from 0 to 1400 eV. High resolution transmission electron microscopy (HRTEM) characterization and single-crystal selected area electron diffraction (SAED) datas were conducted using a 200 kV JEOL-JEM 2100 transmission electron microscope.

For Differential Scanning Calorimetry (DSC) experiments, cells were finally charged to 4.8 V at a constant current density of 20 mA g\(^{-1}\) at 25 °C and opened carefully in the Ar-filled dry box. After opening the cells, the electrode materials were recovered from the current collector. The DSC datas were collected in a Differential Scanning Calorimeter (NETZSCH 204F1, Germany) using a scan rate of 5 °C min\(^{-1}\) in the range of 50-350 °C.

Electrochemical Measurements. For fabrication of cathode electrodes, the prepared materials were mixed with acetylene black and PVDF (80:10:10 in weight) in NMP. The obtained slurry was coated onto Al foil and dried at 80 °C for a day, followed by a roll-pressing. Prior to use, the electrodes were dried again at 120 °C for half a day in a vacuum oven. The electrodes were electrochemically characterized
using a 2032 type of coin cell with lithium foil as the anode and 1 M LiPF$_6$ in ethylene carbonate diethyl carbonate (1:1 in volume) as the electrolyte. The cells were preliminarily charged and discharged in the voltage range of 2.0-4.9 V (versus Li/Li$^+$) at a constant current density of 10 mA g$^{-1}$ for initial cycle and 20 mA g$^{-1}$ for subsequent cycles and 3.0-5.0 V (versus Li/Li$^+$) at a constant current density of 10 mA g$^{-1}$ and 25 °C.

Fig. S1 SEM of as-prepared Li-rich layered oxides Li$_{1.8}$Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$O$_{2.5}$ calcined at 800 °C in a furnace under air.
Fig. S2 XRD pattern of as-prepared Li-deficient spinel Li$_{0.2}$Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$O$_{2-x}$, Li$_{0.35}$Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$O$_{2-x}$ and spinel Li$_{0.5}$Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$O$_2$.

Fig. S3 XRD pattern of as-prepared Li-deficient spinel Li$_{0.35}$Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$O$_{2-x}$ that store in air two months.
Fig. S4 XPS spectra of the as-prepared Li-deficient spinel Li$_{0.35}$Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$O$_{2-x}$.

Fig. S5 Cycling performance of as-prepared Li-deficient spinel

Li$_{0.2}$Ni$_{0.3}$Co$_{0.1}$Mn$_{0.7}$O$_{2-x}$, Li$_{0.35}$Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$O$_{2-x}$ and spinel Li$_{0.5}$Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$O$_2$.
Fig. S6 (a) charge-discharge curves, (b) discharged median-voltage, (c) cycling performance and (d) rate property of Li-deficient spinel Li$_{0.35}$Ni$_{0.2}$Co$_{0.1}$Mn$_{0.7}$O$_{2-x}$ in the voltage of 3.0-5.0V.