A Fluorescent Heteroditopic Hemicryptophane Cage for the Selective Recognition of Choline Phosphate

Dawei Zhang, Guohua Gao, Laure Guy, Vincent Robert, Alexandre Martinez, Jean-Pierre Dutasta

1. Materials and instrumentation
2. Synthesis
3. Fluorescence Job plot
4. Fluorescence spectroscopic titration
5. \(^1\)H NMR spectroscopic titration
6. Computational method
7. References
1. Materials and instrumentation

All solvents used were of commercial grade. 1H NMR and 13C NMR spectra were recorded on a Bruker Avance spectrometer operating at 500.10 MHz and 125.76 MHz for 1H NMR and 13C NMR spectra, respectively. 1H NMR chemical shifts (δ) are reported in ppm and referenced to the protonated residual solvent signal. Fluorescence spectra were carried out with a Horiba-Jobin Yvon spectrofluorimeter. Mass spectra were recorded by the Centre de Spectrométrie de Masse, Institute of Chemistry, Lyon.

2. Synthesis

![Scheme S1. The synthesis of Zn(II)@1 complex.](image)

Hemicryptophane 1 was synthesized according to our previously reported procedure. Zn(II)@1 complex was prepared as follow: to a solution of 1 (90.3 mg, 0.082 mmol) in 6 mL CHCl$_3$, 20 µL triethylamine was added under argon followed by addition of the solution of Zn(ClO$_4$)$_2$(H$_2$O)$_6$ (30.5 mg, 0.082 mmol, 1.0 equivalent) in 6 mL CH$_3$OH. After stirring the reaction mixture at room temperature for 2 hours, a large amount of precipitate appeared. The precipitate was collected, washed thoroughly with Et$_2$O and dried under vacuum to give the
final product as a white solid (70.8 mg, yield 63%). The ligand 1 is soluble in most of the common solvents, for example CH$_2$Cl$_2$, CHCl$_3$, acetone and DMSO. However, the Zn(II)@1 complex is only soluble in DMSO, and moderate soluble in acetone.

Ligand 1:

1H NMR (500.1 MHz, 298 K, CDCl$_3$) δ 7.33 (d, 3H, $J = 8.4$ Hz); 7.16 (d, 3H, $J = 8.3$ Hz); 7.13 (s, 3H); 7.07 (s, 3H); 7.00 (d, 3H, $J = 9.0$ Hz); 6.92 (s, 3H); 6.89 (s, 3H); 6.56 (d, 3H, $J = 8.6$ Hz); 4.84 (d, 3H, $J = 13.8$ Hz); 4.58-4.61 (m, 3H); 4.39-4.43 (m, 3H); 4.25 (t, 6H, $J = 4.90$ Hz); 3.69 (s, 9H); 3.65 (d, 3H, $J = 13.3$ Hz); 3.63 (d, 3H, $J = 13.7$ Hz); 3.53 (d, 3H, $J = 13.3$ Hz); 2.54-2.69 (m, 12H).

13C NMR (125.7 MHz, 298 K, CDCl$_3$) δ 156.8, 148.7, 146.5, 133.6, 133.2, 131.9, 129.3, 128.9, 127.2, 126.9, 126.5, 119.4, 116.7, 113.7, 107.3, 67.6, 67.5, 56.0, 52.9, 47.7, 36.7.

ESI-MS m/z: found 1101.5350 [M+H]$^+$; calcd for C$_{69}$H$_{73}$N$_4$O$_9$: 1101.5372.

IR $\tilde{\nu}$ = 2931, 1606, 1508, 1263 cm$^{-1}$.

M.p. > 310 °C (decomp.).

Zn(II)@1 complex:

1H NMR (500.1 MHz, 298 K, DMSO-d_6) δ 7.43-7.63 (broad, 12H); 7.20 (s, 3H); 7.05-7.11 (broad, 9H); 4.66 (d, 3H, $J = 13.3$ Hz); 4.21-4.43 (broad, 12H); 4.03 (broad, 3H); 3.93 (broad, 3H); 3.69 (s, 9H); 3.47 (d, 3H, $J = 13.4$ Hz); 2.96-3.18 (broad, 12H).

1H NMR (500.1 MHz, 373 K, DMSO-d_6) δ 7.57 (bs, 9H); 7.32 (bs, 3H); 7.03-7.10 (m, 12H); 4.68 (d, 3H, $J = 13.5$ Hz); 4.28 (bs, 12H); 3.88 (bs, 6H); 3.70 (s, 9H); 3.50 (d, 3H, $J = 13.5$ Hz); 2.97 (bs, 12H).

13C NMR (125.7 MHz, 298 K, DMSO-d_6) δ 156.6, 148.4, 146.5, 133.9, 133.0, 132.0, 129.4, 128.4, 127.4, 119.3, 116.4, 107.4, 66.9, 66.3, 57.2, 54.6, 51.0, 49.4, 35.4.

ESI-MS m/z: found 1199.4224 [M$^{2+}$ + Cl]$^+$; calcd for C$_{69}$H$_{73}$N$_4$O$_9$: 1199.4274.

IR $\tilde{\nu}$ = 3237, 2934, 1612, 1507, 1483, 1263, 1218, 1282, 1085 cm$^{-1}$.

M.p. > 350 °C (decomp.).
\(^1\)H NMR spectrum (DMSO-\(d_6\), 500.1 MHz, 298K) of the Zn(II)@ I complex.

\(^1\)H NMR spectrum (DMSO-\(d_6\), 500.1 MHz, 373K) of the Zn(II)@ I complex.
13C NMR spectrum (DMSO-d_6, 125.7 MHz, 298K) of the Zn(II)@1 complex.

ESI-MS spectrum of the Zn(II)@1 complex.
3. Fluorescence Job plot

The continuous variation method was used for determining the binding stoichiometry.\[^2\] In this method, solutions of the host and guest at the same concentration (5 µM) were prepared in DMSO containing 2% H₂O. Then the two solutions were mixed in different proportions maintaining a total volume of 3 mL and a total concentration of 5 µM. After incubating the mixture for 30 s, the spectra of the solutions for different compositions were recorded.

![Fig. S1](image1.png)

Fig. S1 Fluorescence Job plot of Zn(II)@I with choline phosphate 2 (a) and choline 3 (b).

4. Fluorescence spectroscopic titration

2 mL Zn(II)@I complex solution (5 µM) was taken into the cuvette, and then certain equivalents of a concentrated guest solution (0.5 mM or 5 mM) were added stepwise with a syringe. As a very small volume of guest solution was added, the final amount of the solution was almost unchanged (2 mL). The mixed solution was incubated for 30 s and then irradiated at 300 nm. The corresponding emission values at 350 nm during titration were then recorded.

![Fig. S2](image2.png)

Fig. S2 Fluorescence titrations of 5 µM Zn(II)@I with choline 3 excited at 300 nm in DMSO containing 2% water. Inset: the intensity at 350 nm as a function of the added choline 3.
Fig. S3 Fluorescence titrations of 5 µM Zn(II)@I with choline phosphate 2 (a) and choline 3 (b) excited at 300 nm in DMSO/H₂O (80/20, v/v). Inset: the intensity at 350 nm as a function of the guest.

Fig. S4 Fluorescence titrations of 5 µM Zn(II)@I excited at 300 nm with guest 4 (a) and guest 5 (b) in DMSO containing 2% water. Insets: the intensity at 350 nm as a function of the guest.

Fig. S5 Fluorescence titrations of 5 µM Zn(II)@I excited at 300 nm with taurine 6 in DMSO containing 2% water.

Fig. S6 Fluorescence titrations of 5 µM ligand 1 excited at 300 nm with choline phosphate 2 in DMSO containing 2% water.
5. \(^1\)H NMR spectroscopic titration

0.5 mL Zn(II)@1 complex solution was taken into the NMR spectroscopy tube, and then certain equivalents of a concentrated guest solution were added stepwise with a syringe. As a very small volume of guest solution was added, the final amount of the solution was almost unchanged (0.5 mL). The mixed solution was incubated for 30 s and then the measurement of \(^1\)H NMR spectroscopy of the solution was performed.

Fig. S7 \(^1\)H NMR titrations of 1 mM Zn(II)@1 with choline phosphate 2 at 298 K in DMSO-\(d_6\)/D\(_2\)O (80/20, v/v). H atoms in blue are attributed to the four diastereotopic protons of the encaged 2.

Fig. S8 \(^1\)H NMR titrations of 1 mM Zn(II)@1 with choline phosphate 2 at 353 K and then return to 298 K in DMSO-\(d_6\)/D\(_2\)O (80/20, v/v).
Fig. S9 The up-field region of the 2D COSY NMR spectrum for the mixture of Zn(II)@1 and 5 equiv. of choline phosphate 2 in DMSO-d6/D2O (80/20, v/v).

Fig. S10 1H NMR titrations of 1 mM Zn(II)@1 with choline 3 at 298 K in DMSO-d6/D2O (80/20, v/v). H atoms in blue are attributed to the diastereotopic protons of methylene and N(CH3)3 of the encaged 3.

Fig. S11 1H NMR titrations of 1 mM Zn(II)@1 with choline 3 at 353 K in DMSO-d6/D2O (80/20, v/v).
Fig. S12 31P NMR titrations of 1 mM choline phosphate 2 with Zn(II)@1 at 298 K in DMSO-d$_6$/D$_2$O (80/20, v/v).

6. Computational method

Ab initio evaluations were performed using the Gaussian 03 package17 within a restricted DFT framework.[3] In order to access geometrical information upon the host-guest species, full geometry optimizations were performed using DFT calculations. A combination of BP86 function and an all electron 6-31G* basis set including polarization functions has proven to be very satisfactory for similar issues.[4] We checked using the hybrid B3LYP function that our results do not suffer from the arbitrariness of the exchange correlation function.

7. Reference
