Supporting Information

A Novel Aromatic Carbocation-based Coupling Reagent for Esterification and Amidation Reactions

Thanh V. Nguyen* and Demelza J. M. Lyons

Department of Chemistry, Curtin University, Perth, WA 6102, Australia
E-mail: thanhvinh.nguyen@curtin.edu.au
Table of Contents

General Methods.. 3
Optimization of esterification reaction between phenylacetic acid and phenyl ethanol.................. 4
General procedure for tropylium chloride mediated esterification reactions (Table 1)................ 5
General procedure for tropylium chloride mediated amidation reactions (Table 2)............... 5
General procedure for catalytic coupling reactions of carboxylic acids (Table 3)......................... 6
13C NMR studies for mechanistic investigation (Figure S1)... 7
Characterization data of products .. 8
NMR spectra .. 22
General Methods

Reactions, unless otherwise stated, were conducted under a positive pressure of dry nitrogen in oven-dried glassware. Tetrahydrofuran (THF), benzene, toluene and diethyl ether were dried over sodium wire and distilled from sodium benzophenone ketyl. Dichloromethane was dried by distillation from calcium hydride. Triethylamine and diisopropylethylamine were dried over 4Å molecular sieves. Magnesium sulfate was dried at 140 °C for 12 h prior to use. Commercially available reagents were used as purchased unless otherwise noted. Analytical thin layer chromatography was performed using silica gel plates pre-coated with silica gel 60 F254 (0.2 mm). Flash chromatography employed 230-400 mesh silica gel. Solvents used for chromatography are quoted as volume/volume ratios.

1H NMR spectra were recorded at 298 K unless otherwise stated using Bruker Avance III 400 MHz spectrometers. Data is expressed in parts per million (ppm) downfield shift from tetramethylsilane with residual solvent as an internal reference (δ 7.26 ppm for chloroform) and is reported as position (δ in ppm), multiplicity ($s =$ singlet, $d =$ doublet, $t =$ triplet, $q =$ quartet, $m =$ multiplet), coupling constant (J in Hz) and integration (number of protons).

13C NMR spectra were recorded at 298 K unless otherwise stated using Bruker Avance III 100 MHz spectrometers with complete proton decoupling. Data is expressed in parts per million (ppm) downfield shift relative to the internal reference (δ 77.2 ppm for the central peak of deuterated chloroform) and is reported as position (δ in ppm).
Optimization of esterification reaction between phenylacetic acid and phenyl ethanol

\[
\begin{array}{c}
\text{O} \text{H} \\
\text{Bn} \\
\text{OH}
\end{array}
\xrightarrow{\text{(i) } \text{TropCl}_2, \text{ (ii) } \text{Et}_3\text{N}}
\begin{array}{c}
\text{O} \\
\text{Bn} \\
\text{O} - \text{Ph}
\end{array}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Equiv of 1</th>
<th>Base</th>
<th>Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH\textsubscript{3}CN</td>
<td>1.5</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>59%</td>
</tr>
<tr>
<td>2</td>
<td>EtOAc</td>
<td>1.5</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>43%</td>
</tr>
<tr>
<td>3</td>
<td>Benzene</td>
<td>1.5</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>48%</td>
</tr>
<tr>
<td>4</td>
<td>THF</td>
<td>1.5</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>34%</td>
</tr>
<tr>
<td>5</td>
<td>Acetone</td>
<td>1.5</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>24%</td>
</tr>
<tr>
<td>6</td>
<td>Toluene</td>
<td>1.5</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>57%</td>
</tr>
<tr>
<td>7</td>
<td>DCE</td>
<td>1.5</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>84%</td>
</tr>
<tr>
<td>8</td>
<td>CH\textsubscript{3}Cl</td>
<td>1.5</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>88%</td>
</tr>
<tr>
<td>9</td>
<td>CH\textsubscript{3}Cl</td>
<td>1.1</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>85%</td>
</tr>
<tr>
<td>10</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>1.5</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>92%</td>
</tr>
<tr>
<td>11</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>1.1</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>60 min</td>
<td>90%</td>
</tr>
<tr>
<td>12</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>1.1</td>
<td>Et\textsubscript{3}N (4 equiv)</td>
<td>30 min</td>
<td>91%</td>
</tr>
<tr>
<td>13</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>1.1</td>
<td>Et\textsubscript{3}N (3 equiv)</td>
<td>30 min</td>
<td>90%</td>
</tr>
<tr>
<td>14</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>1.1</td>
<td>DBU (3 equiv)</td>
<td>30 min</td>
<td>58%</td>
</tr>
<tr>
<td>15</td>
<td>CH\textsubscript{2}Cl\textsubscript{2}</td>
<td>1.1</td>
<td>DIPEA (3 equiv)</td>
<td>30 min</td>
<td>89%</td>
</tr>
</tbody>
</table>
General procedure for tropylium chloride mediated esterification reactions (Table 1)

To a solution of tropylium chloride 1 (170 mg, 1.05 mmol), prepared according to the reported procedure,\(^1\) in dry dichloromethane (3 mL) was slowly added a mixture of the carboxylic acid (1.0 mmol) and triethylamine (3.0 mmol) in dichloromethane solution (2 mL) and the reaction mixture was stirred at rt for the indicated time. The alcohol (1.1 mmol) was added and the reaction mixture was stirred at rt for 2-16 h until the starting materials were totally consumed as checked by TLC. The reaction mixture was concentrated under reduced pressure and then purified by column chromatography (SiO\(_2\), hexanes:EtOAc 9:1 → 7:3) to obtain the ester product.

General procedure for tropylium chloride mediated amidation reactions (Table 2)

To a solution of tropylium chloride 1 (170 mg, 1.05 mmol), prepared according to the reported procedure, in dry dichloromethane (3 mL) was slowly added a mixture of the carboxylic acid (1.0 mmol) and triethylamine (3.0 mmol) in dichloromethane solution (2 mL) and the reaction mixture was stirred at rt for the indicated time. The amine (1.1 mmol) was added and the reaction mixture was stirred at rt for 1-8 h until the starting materials were totally consumed as checked by TLC. The reaction mixture was concentrated under reduced pressure and then purified by column chromatography (SiO\(_2\), hexanes:EtOAc 8:2 → 6:4) to obtain the amide product.

General procedure for catalytic coupling reactions of carboxylic acids (Table 3)

A solution of oxalyl chloride (152 mg, 1.2 mmol) in dichloromethane (8 mL) was added via syringe pump over 12 h to a stirring solution of the carboxylic acid (1.0 mmol), the alcohol or the amine substrate (1.1 mmol), triethylamine (3.0 mmol) and tropone (10 mol%) in dichloromethane (5 mL) at rt. DMAP (10 mol%) was also added to the reaction mixture before the addition of oxalyl chloride for the indicated reactions. After the addition was completed, the reaction mixture was stirred at rt for another 2 h. The reaction mixture was then concentrated under reduced pressure and purified by column chromatography (SiO₂, hexanes:EtOAc 9:1 → 6:4) to obtain the ester or amide product.
The presence of acid anhydrides in the reaction mixtures was demystified by a study monitoring the transformation of benzoic acid by 13C NMR spectroscopy (Figure S1) under different reaction conditions. We observed the reactions of: (B) benzoic acid with the slow addition of 1.2 equiv oxalyl chloride over 12 h in the presence of 0.1 equiv of tropone and 3.0 equiv of Et$_3$N; (C) benzoic acid with a stoichiometric amount (1.05 equiv) of pre-formed tropylium chloride (I) and 3.0 equiv of Et$_3$N after 45 minutes; (D) quenching of (C) after 60 minutes with n-butylamine (1.1 equiv). These were cross-referenced against 13C NMR spectra of pure samples of (A) benzoyl chloride, (E) n-butylanamide, (F) tropylium chloride (I) and (G) tropone. Evidences from this study suggested that while a stoichiometric amount of tropylium chloride converted the acid to its acid chloride, a catalytic amount of tropylium chloride, formed in situ from tropone and oxalyl chloride, predominantly converted the acid to its anhydride instead.
Characterization data of products

Ethyl phenylacetate\(^2\) (Table 1, entry 1): Prepared according to the general procedure from phenylacetic acid to yield a colorless oil (147 mg, 0.89 mmol, 89% yield).

![Ethyl phenylacetate](image)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40-7.25 (m, 5H), 4.17 (q, \(J = 8.0\) Hz, 2H), 3.63 (s, 2H), 1.27 (t, \(J = 8.0\) Hz, 3H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 170.3, 138.4, 128.7, 127.8, 127.4, 126.8, 43.7, 23.1 ppm.

(2-Phenyl)ethyl phenylacetate\(^3\) (Table 1, entry 2): Prepared according to the general procedure from phenylacetic acid to yield a colorless oil (216 mg, 0.90 mmol, 90% yield).

![Ethyl phenylacetate](image)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.39-7.25 (m, 8H), 7.21 (d, \(J = 8.0\) Hz, 2H), 4.37 (t, \(J = 8.0\) Hz, 2H), 3.65 (s, 2H), 2.97 (t, \(J = 8.0\) Hz, 2H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 171.6, 138.9, 134.1, 129.4, 129.0, 128.7, 128.6, 127.2, 126.6, 65.4, 41.5, 35.2 ppm.

4-Methoxybenzyl phenylacetate\(^4\) (Table 1, entry 3): Prepared according to the general procedure from phenylacetic acid to yield a colorless oil (238 mg, 0.93 mmol, 93% yield).

![Ethyl phenylacetate](image)

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.26-7.16 (m, 7H), 6.79 (d, \(J = 8.0\) Hz, 2H), 4.99 (s, 2H), 3.72 (s, 3H), 3.55 (s, 2H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 171.7, 159.8, 134.1, 130.2, 129.5, 128.7, 128.2, 127.3, 114.1, 66.6, 55.4, 41.5 ppm.

\(^3\) Sølvhøj, A.; Madsen, R. *Organometallics.* 2011, 30, 6044.

Ethyl benzoate (Table 1, entry 4): Prepared according to the general procedure from benzoic acid to yield a colorless oil (90 mg, 0.60 mmol, 60% yield).

\[
\begin{align*}
\text{CO}_2\text{Et}
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.07-8.03 (m, 2H), 7.56-7.51 (m, 1H), 7.45-7.40 (m, 2H), 4.38 (q, J = 8.0 Hz, 2H), 1.39 (t, J = 8.0 Hz, 3H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 166.7, 132.9, 130.7, 129.6, 128.4, 61.0, 14.4 ppm.

Phenyl benzoate (Table 1, entry 5): Prepared according to the general procedure from benzoic acid to yield a white solid (137 mg, 0.69 mmol, 69% yield).

\[
\begin{align*}
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.13 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.41 (m, 2H), 7.32 (m, 2H), 7.16 (m, 1H), 7.13 (m, 2H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 165.3, 151.2, 133.7, 130.3, 129.8, 129.7, 128.7, 126.0, 121.9 ppm.

\(n\)-Octyl benzoate (Table 1, entry 6): Prepared according to the general procedure from benzoic acid to yield a white solid (155 mg, 0.66 mmol, 66% yield).

\[
\begin{align*}
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.05 (d, J = 8.0 Hz, 2H), 7.58-7.53 (m, 1H), 7.49-7.42 (m, 2H), 4.32 (t, J = 9.0 Hz, 2H), 1.77 (m, 2H), 1.50-1.20 (m, 10H), 0.89 (t, J = 8.0 Hz, 3H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 166.9, 132.9, 130.8, 129.7, 128.5, 65.3, 32.0, 29.4 (two coincident resonances), 28.9, 26.2, 22.8, 14.3 ppm.

Benzyl butyrate\(^8\) (Table 1, entry 7): Prepared according to the general procedure from \(n\)-butyric acid to yield a colorless oil (146 mg, 0.82 mmol, 82\% yield).

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\end{array}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.45-7.25 (m, 5H), 5.12 (s, 2H), 2.34 (td, \(J = 8.0\) Hz, 4.0 Hz, 2H), 1.75-1.60 (m, 2H), 0.98 (dt, \(J = 8.0\) Hz, 4.0 Hz, 3H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.5, 136.3, 128.6, 128.4, 128.3, 66.1, 36.3, 18.5, 13.7 ppm.

Phenyl butyrate\(^9\) (Table 1, entry 8): Prepared according to the general procedure from \(n\)-butyric acid to yield a colorless oil (144 mg, 0.88 mmol, 88\% yield).

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\end{array}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.41-7.39 (m, 2H), 7.28-7.24 (m, 1H), 7.14-7.11 (m, 2H), 2.57 (t, \(J = 8.0\) Hz, 2H), 1.84 (m, 2H), 1.09 (t, \(J = 8.0\) Hz, 2H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 172.2, 150.9, 129.5, 125.8, 121.7, 36.4, 18.6, 13.8 ppm.

4-Methoxyphenyl butyrate\(^10\) (Table 1, entry 9): Prepared according to the general procedure from \(n\)-butyric acid to yield a colorless oil (179 mg, 0.92 mmol, 92\% yield).

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\end{array}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.97 (d, \(J = 8.0\) Hz, 2H), 6.88 (d, \(J = 8.0\) Hz, 2H), 3.79 (s, 3H), 2.52 (t, \(J = 8.0\) Hz, 2H), 1.78 (m, 2H), 1.04 (t, \(J = 8.0\) Hz, 3H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 172.6, 157.3, 144.4, 122.5, 114.6, 55.7, 36.3, 18.6, 13.8 ppm.

4-Cyanophenyl butyrate\(^10\) (Table 1, entry 10): Prepared according to the general procedure from \(n\)-butyric acid to yield a colorless oil (151 mg, 0.80 mmol, 80\% yield).

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\end{array}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.65 (d, $J = 12.0$ Hz, 2H), 7.20 (d, $J = 8.0$ Hz, 2H), 2.54 (t, $J = 8.0$ Hz, 2H), 1.76 (m, 2H), 1.01 (t, $J = 8.0$ Hz, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 171.2, 154.1, 133.6, 122.8, 118.3, 109.6, 36.1, 18.3, 13.6 ppm.

Methyl octanoate11 (Table 1, entry 11): Prepared according to the general procedure from n-octanoic acid to yield a colorless oil (138 mg, 0.87 mmol, 87% yield).

![Methyl octanoate](image)

1H NMR (400 MHz, CDCl$_3$) δ 3.65 (s, 3H), 2.28 (t, $J = 8.0$ Hz, 2H), 1.60 (m, 2H), 1.32-1.20 (m, 8H), 0.86 (t, $J = 8.0$ Hz, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 174.5, 51.6, 34.3, 31.8, 29.3, 29.1, 25.1, 22.7, 14.2 ppm.

Methyl decanoate12 (Table 1, entry 12): Prepared according to the general procedure from n-decanoic acid to yield a colorless oil (158 mg, 0.85 mmol, 85% yield).

![Methyl decanoate](image)

1H NMR (400 MHz, CDCl$_3$) δ 3.64 (s, 3H), 2.28 (t, $J = 8.0$ Hz, 2H), 1.60 (m, 2H), 1.33-1.22 (m, 12H), 0.86 (t, $J = 8.0$ Hz, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 174.5, 51.6, 34.3, 32.0, 29.6, 29.4 (two coincident resonances), 29.3, 25.1, 22.8, 14.2 ppm.

Methyl dodecanoate11 (Table 1, entry 13): Prepared according to the general procedure from n-dodecanoic acid to yield a colorless oil (174 mg, 0.81 mmol, 81% yield).

![Methyl dodecanoate](image)

1H NMR (400 MHz, CDCl$_3$) δ 3.64 (s, 3H), 2.28 (t, $J = 8.0$ Hz, 2H), 1.60 (m, 2H), 1.35-1.18 (m, 16H), 0.86 (t, $J = 8.0$ Hz, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 174.5, 51.5, 34.3, 32.1, 29.8, 29.6, 29.5, 29.4, 29.3, 25.1, 22.8, 14.2 ppm.

Methyl tetradecanoate13 (Table 1, entry 14): Prepared according to the general procedure from \textit{n}-tetradecanoic acid to yield a colorless oil (194 mg, 0.80 mmol, 80\% yield).

\[
\begin{align*}
\text{MeO} & \quad \text{OMe} \\
& \quad \text{MeO} \quad \text{OMe}
\end{align*}
\]

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 3.64 (s, 3H), 2.28 (t, \(J = 8.0 \text{ Hz}, 2\)H), 1.60 (m, 2H), 1.35-1.18 (m, 20H), 0.86 (t, \(J = 8.0 \text{ Hz}, 3\)H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \) 174.4, 51.5, 34.3, 32.1, 29.8 (two coincident resonances), 29.7, 29.6, 29.5, 29.4, 29.3, 25.1, 22.8, 14.2 ppm.

Methyl hexadecanoate14 (Table 1, entry 15): Prepared according to the general procedure from \textit{n}-hexadecanoic acid to yield a white solid (233 mg, 0.86 mmol, 86\% yield).

\[
\begin{align*}
\text{MeO} & \quad \text{OMe} \\
& \quad \text{MeO} \quad \text{OMe}
\end{align*}
\]

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 3.66 (s, 3H), 2.29 (t, \(J = 8.0 \text{ Hz}, 2\)H), 1.60 (m, 2H), 1.35-1.18 (m, 24H), 0.87 (t, \(J = 8.0 \text{ Hz}, 3\)H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \) 174.5, 51.6, 34.3, 32.1, 29.9 (three coincident resonances), 29.8 (three coincident resonances), 29.6, 29.5, 29.4, 29.3, 25.2, 22.9, 14.3 ppm.

Methyl octadecanoate15 (Table 1, entry 16): Prepared according to the general procedure from \textit{n}-octadecanoic acid to yield a white solid (245 mg, 0.82 mmol, 82\% yield).

\[
\begin{align*}
\text{MeO} & \quad \text{OMe} \\
& \quad \text{MeO} \quad \text{OMe}
\end{align*}
\]

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 3.66 (s, 3H), 2.29 (t, \(J = 8.0 \text{ Hz}, 2\)H), 1.60 (m, 2H), 1.40-1.15 (m, 28H), 0.88 (t, \(J = 8.0 \text{ Hz}, 3\)H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta \) 174.5, 51.6, 34.3, 32.1, 29.9 (three coincident resonances), 29.8 (two coincident resonances), 29.6 (two coincident resonances), 29.5, 29.4, 25.2, 22.9, 14.3 ppm.

13 Si, C.; Lei, X.; Xiaonan, L.; Meiming, L. \textit{Synthesis.} \textbf{2014}, \textit{46}, 263.
N,N-Diethyl dodecanamide (Table 2, entry 1): Prepared according to the general procedure from n-dodecanoic acid to yield a white solid (189 mg, 0.74 mmol, 74% yield).

\[
\begin{align*}
\text{NEt}_2 & \quad \text{O} \\
& \quad \text{CH}_2
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.28 (q, J = 4.0 Hz, 2H), 3.21 (q, J = 4.0 Hz, 2H), 2.19 (t, J = 8.0 Hz, 2H), 1.54 (m, 2H), 1.30-1.10 (m, 16H), 1.06 (t, J = 8.0 Hz, 3H), 1.01 (t, J = 8.0 Hz, 3H), 0.78 (t, J = 8.0 Hz, 3H) ppm. \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 172.4, 42.0, 40.1, 33.2, 32.0, 29.7 (two coincident resonances), 29.6 (three coincident resonances), 29.4, 25.6, 22.7, 14.5, 14.1, 13.2 ppm.

1-(piperidin-1-yl)hexadecan-1-one (Table 2, entry 2): Prepared according to the general procedure from n-hexadecanoic acid to yield a white solid (233 mg, 0.72 mmol, 72% yield).

\[
\begin{align*}
\text{N} & \quad \text{O} \\
& \quad \text{CH}_2
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 3.46 (bs, 4H), 2.31 (t, J = 8.0 Hz, 2H), 1.70-1.45 (m, 8H), 1.40-1.15 (m, 24H), 0.87 (t, J = 8.0 Hz, 3H) ppm. \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 171.8, 33.6, 32.1, 29.9, 29.8 (three coincident resonances), 29.7 (two coincident resonances), 29.6, 29.5, 26.1 (broad), 25.7, 24.8, 22.9, 14.3 ppm.

1-(benzoyl)piperidine (Table 2, entry 3): Prepared according to the general procedure from benzoic acid to yield a white solid (129 mg, 0.68 mmol, 68% yield).

\[
\begin{align*}
\text{N} & \quad \text{O} \\
& \quad \text{CH}_2
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.34 (bs, 5H), 3.61 (bs, 2H), 3.33 (bs, 2H), 1.90-1.20 (m, 6H) ppm. \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 170.3, 136.5, 129.4, 128.4, 126.8, 48.5 (broad), 43.0 (broad), 26.1 (broad), 24.6 ppm.

N,N-Diethyl benzamide18 (Table 2, entry 4): Prepared according to the general procedure from benzoic acid to yield a white solid (126 mg, 0.71 mmol, 71\% yield).

\begin{center}
\includegraphics[width=0.1\textwidth]{diethylbenzamide.png}
\end{center}

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.37-7.32 (m, 5H), 3.52 (bs, 2H), 3.23 (bs, 2H), 1.21 (bs, 3H), 1.10 (bs, 3H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 171.4, 137.4, 129.2, 128.5, 126.4, 43.4 (broad), 39.4 (broad), 14.3 (broad), 13.0 (broad) ppm.

N,N-Diisopropyl benzamide19 (Table 2, entry 5): Prepared according to the general procedure from benzoic acid to yield a white solid (125 mg, 0.61 mmol, 61\% yield).

\begin{center}
\includegraphics[width=0.1\textwidth]{diisopropylbenzamide.png}
\end{center}

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.37-7.28 (m, 5H), 3.66 (bs, 2H), 1.46 (bs, 6H), 1.25 (bs, 6H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 171.2, 138.9, 128.8, 128.6, 125.7, 51.0 (broad), 46.1 (broad), 20.9 (broad) ppm.

N-Benzyl benzamide20 (Table 2, entry 6): Prepared according to the general procedure from benzoic acid to yield a white solid (133 mg, 0.63 mmol, 63\% yield).

\begin{center}
\includegraphics[width=0.1\textwidth]{benzylbenzamide.png}
\end{center}

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.79 (m, 2H), 7.55-7.25 (m, 8H), 6.61 (bs, 1H), 4.63 (d, $J = 4.0 \text{ Hz}$, 2H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 167.5, 138.4, 134.6, 131.7, 128.9, 128.7, 128.0, 127.7, 127.1, 44.3 ppm.

18 Han, Q.; Xiong, X.; Li, S. \textit{Cat. Commun.} \textbf{2014}, 58, 85.
N-Benzyl 4-methoxybenzamide\(^{21}\) (Table 2, entry 7): Prepared according to the general procedure from 4-methoxybenzoic acid to yield a white solid (157 mg, 0.65 mmol, 65% yield).

\[
\text{CONHBn} \quad \text{MeO}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.72 (d, \(J = 8.0\) Hz, 2H), 7.26-7.20 (m, 5H), 6.82 (d, \(J = 8.0\) Hz, 2H), 6.70 (t, \(J = 6.0\) Hz, 1H), 4.53 (d, \(J = 8.0\) Hz, 2H), 3.76 (s, 3H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 167.1, 162.3, 138.6, 129.0, 128.8, 127.9, 127.5, 126.8, 113.8, 55.5, 44.1 ppm.

N-Benzyl phenylacetamide\(^{22}\) (Table 2, entry 8): Prepared according to the general procedure from phenylacetic acid to yield a white solid (191 mg, 0.85 mmol, 85% yield).

\[
\text{CONHBn}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.40-7.25 (m, 10H), 4.50 (d, \(J = 8.0\) Hz, 2H), 4.29 (s, 2H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 160.0, 137.0, 132.8, 130.0, 129.0, 128.8, 128.0 (two coincident resonances), 127.4, 43.7, 43.4 ppm.

N-Benzylacetamide\(^{23}\) (Table 2, entry 9): Prepared according to the general procedure from acetic acid to yield a white solid (128 mg, 0.86 mmol, 86% yield).

\[
\text{CONHBn}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.45-7.25 (m, 5H), 6.52 (bs, 1H), 4.36 (d, \(J = 4.0\) Hz, 2H), 1.96 (s, 3H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 171.1, 136.1, 128.4, 66.5, 21.1 ppm.

N-Benzylbutyramide\(^{24}\) (Table 2, entry 10): Prepared according to the general procedure from butyric acid to yield a white solid (140 mg, 0.79 mmol, 79% yield).

\[
\text{CONHBn}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.40-7.25 (m, 5H), 6.59 (bs, 1H), 4.38 (d, $J = 8.0$ Hz, 2H), 2.19-2.15 (m, 2H), 1.71-1.63 (m, 2H), 0.94 (t, $J = 8.0$ Hz, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 173.2, 138.6, 128.6, 127.6, 127.3, 43.4, 38.5, 19.2, 13.8 ppm.

Dodecanamide25 (**Table 2, entry 11**): Prepared according to the general procedure from n-dodecanoic acid to yield a white solid (134 mg, 0.67 mmol, 67% yield).

\[
\text{\includegraphics[width=0.2\textwidth]{dodecanamide.png}}
\]

1H NMR (400 MHz, CDCl$_3$) δ 5.56 (bs, 2H), 2.23 (t, $J = 8.0$ Hz, 2H), 1.64 (m, 2H), 1.40-1.15 (m, 16H), 0.88 (t, $J = 8.0$ Hz, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 172.4, 36.0, 32.1, 29.8, 29.7, 29.5, 29.4, 25.7, 22.9, 14.3 ppm.

4-Methoxybenzamide26 (**Table 2, entry 12**): Prepared according to the general procedure from 4-methoxybenzoic acid to yield a white solid (94 mg, 0.62 mmol, 62% yield).

\[
\text{\includegraphics[width=0.2\textwidth]{4-methoxybenzamide.png}}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.79 (d, $J = 8.0$ Hz, 2H), 6.94 (d, $J = 8.0$ Hz, 2H), 5.81 (bs, 2H), 3.86 (s, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 169.3, 163.0, 129.6, 125.3, 114.1, 55.6 ppm.

Boc-L-Ala-L-Phe-OMe27 (**Table 2, entry 13**): Prepared according to the general procedure from Boc-L-Ala-OH to yield an off-white solid (252 mg, 0.72 mmol, 72% yield).

\[
\text{\includegraphics[width=0.2\textwidth]{Boc-L-Ala-L-Phe-OMe.png}}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.30-7.20 (m, 3H), 7.10 (d, $J = 8.0$ Hz, 2H), 6.56 (d, $J = 8.0$ Hz, 1H), 4.98 (m, 1H), 4.85 (m, 1H), 4.14 (bs, 1H), 3.70 (s, 3H), 3.20-3.05 (m, 2H), 1.43 (s, 9H), 1.26 (d, $J = 8.0$ Hz, 3H) ppm. 13C NMR (100 MHz, CDCl$_3$) δ 172.5, 171.9, 155.5, 135.9, 129.4, 128.7, 127.3, 80.3, 53.3, 52.5, 50.2, 38.1, 28.5, 18.4 ppm.

S16
Boc-L-Phe-L-Ala-OMe²⁸ (Table 2, entry 14): Prepared according to the general procedure from Boc-L-Phe-OH to yield an off-white solid (263 mg, 0.75 mmol, 75% yield).

![Boc-L-Phe-L-Ala-OMe](image)

¹H NMR (400 MHz, CDCl₃) δ 7.35-7.15 (m, 5H), 6.24 (d, J = 8.0 Hz, 1H), 5.04 (m, 1H), 4.52 (m, 1H), 4.35 (bs, 1H), 3.71 (s, 3H), 3.15-3.00 (m, 2H), 1.41 (s, 9H), 1.35 (d, J = 8.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 170.9, 155.4, 136.5, 129.4, 128.7, 127.0, 80.3, 55.6, 52.5, 48.2, 38.4, 28.5, 18.4 ppm.

Boc-L-Val-L-Phe-OMe²⁹ (Table 2, entry 15): Prepared according to the general procedure from Boc-L-Val-OH to yield an off-white solid (292 mg, 0.77 mmol, 77% yield).

![Boc-L-Val-L-Phe-OMe](image)

¹H NMR (400 MHz, CDCl₃) δ 7.30-7.20 (m, 3H), 7.11 (d, J = 8.0 Hz, 2H), 6.36 (bs, 1H), 5.07 (bs, 1H), 4.86 (m, 1H), 3.89 (bs, 1H), 3.71 (s, 3H), 3.20-3.00 (m, 2H), 2.09-1.99 (m, 1H), 1.44 (s, 9H), 0.95-0.80 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 171.6, 155.9, 136.0, 129.4, 128.8, 127.4, 80.1, 60.0, 53.3, 52.5, 38.2, 31.0, 28.5, 19.3, 17.9 ppm.

(2-Phenylethyl dodecanoate³⁰ (Table 3, product 2): Prepared according to the general procedure from n-dodecanoic acid to yield a colorless oil (260 mg, 0.90 mmol, 90% yield).

![2-Phenylethyl dodecanoate](image)

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.16 (m, 5H), 4.27 (t, J = 8.0 Hz, 2H), 2.92 (t, J = 8.0 Hz, 2H), 2.26 (t, J = 8.0 Hz, 2H), 1.58 (m, 2H), 1.35-1.15 (m, 16H), 0.88 (t, J = 8.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 138.0, 129.0, 128.6, 126.6, 64.8, 34.5, 32.1, 29.8, 29.6, 29.5, 29.4, 29.3, 25.1, 22.8, 14.2 ppm.

Cylohexyl dodecanoate31 (Table 3, product 4): Prepared according to the general procedure from \textit{n}-dodecanoic acid to yield a colorless oil (223 mg, 0.79 mmol, 79\% yield).

\begin{center}
\includegraphics[width=0.2\textwidth]{cylohexyl_dodecanoate}
\end{center}

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 4.74 (m, 1H), 2.25 (t, \(J = 8.0\) Hz, 2H), 1.81 (m, 2H), 1.68 (m, 2H), 1.61 (m, 2H), 1.45-1.15 (m, 22H), 0.86 (t, \(J = 8.0\) Hz, 3H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 173.5, 72.4, 34.9, 32.1, 31.8, 29.8, 29.6, 29.5, 29.4, 29.3, 25.6, 25.3, 23.9, 22.8, 14.3 ppm.

Isooctyl dodecanoate32 (Table 3, product 5): Prepared according to the general procedure from \textit{n}-dodecanoic acid to yield a colorless oil (244 mg, 0.78 mmol, 78\% yield).

\begin{center}
\includegraphics[width=0.2\textwidth]{isoctyl_dodecanoate}
\end{center}

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 4.88 (m, 1H), 2.24 (t, \(J = 8.0\) Hz, 2H), 1.65-1.40 (m, 4H), 1.45-1.20 (m, 24H), 1.18 (d, \(J = 4.0\) Hz, 3H), 0.86 (t, \(J = 8.0\) Hz, 6H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 173.7, 70.9, 36.2, 34.9, 32.1, 31.9, 29.8, 29.7, 29.5 (two coincident resonances), 29.3 (two coincident resonances), 25.6, 25.3, 22.8, 22.7, 20.2, 14.2 (two coincident resonances) ppm.

Methyl \textit{1}-undecenoate33 (Table 3, product 7): Prepared according to the general procedure from 1-decenoic acid to yield a colorless oil (153 mg, 0.77 mmol, 77\% yield).

\begin{center}
\includegraphics[width=0.2\textwidth]{methyl_undecenoate}
\end{center}

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 5.81 (m, 1H), 5.01-4.92 (m, 2H), 3.67 (s, 3H), 2.30 (t, \(J = 8.0\) Hz, 2H), 2.04 (m, 2H), 1.62 (m, 2H), 1.50-1.20 (m, 10H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 174.5, 139.3, 114.3, 51.6, 34.3, 33.9, 29.4, 29.3 (two coincident resonances), 29.2, 29.0, 25.1 ppm.

Methyl oleate34 (Table 3, product 8): Prepared according to the general procedure from oleic acid to yield a colorless oil (240 mg, 0.81 mmol, 81% yield).

\begin{center}
\includegraphics[width=0.2\textwidth]{methyl_oleate}
\end{center}

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 5.34 (m, 2H), 3.66 (s, 3H), 2.29 (t, J = 8.0 Hz, 2H), 2.00 (m, 4H), 1.61 (m, 2H), 1.40-1.20 (m, 20H), 0.87 (t, J = 8.0 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 174.5, 130.2, 130.0, 51.6, 34.3, 32.1, 30.0, 29.9, 29.7, 29.5, 29.3 (three coincident resonances), 27.4, 27.3, 25.1, 22.9, 14.3 ppm.

10-Decanolide35 (Table 3, product 9): Prepared according to the general procedure from 10-hydroxy decanoic acid to yield a colorless oil (121 mg, 0.71 mmol, 71% yield).

\begin{center}
\includegraphics[width=0.2\textwidth]{10-decanolide}
\end{center}

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 4.09 (t, J = 8.0 Hz, 2H), 2.47 (t, J = 8.0 Hz, 2H), 1.75-1.67 (m, 4H), 1.45-1.25 (m, 10H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 174.1, 64.4, 34.7, 29.3, 29.1, 28.9 (two coincident resonances), 28.4, 26.0, 24.7 ppm.

16-Hexadecanolide36 (Table 3, product 10): Prepared according to the general procedure from 10-hydroxy decanoic acid to yield a colorless oil (186 mg, 0.73 mmol, 73% yield).

\begin{center}
\includegraphics[width=0.2\textwidth]{16-hexadecanolide}
\end{center}

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 4.12 (t, J = 8.0 Hz, 2H), 2.32 (t, J = 8.0 Hz, 2H), 1.72-1.57 (m, 4H), 1.45-1.20 (m, 22H) ppm. 13C NMR (100 MHz, CDCl\textsubscript{3}) δ 174.1, 64.4, 34.7, 29.7, 28.7, 28.2, 27.9 (two coincident resonances), 27.7 (two coincident resonances), 27.1, 27.0, 26.9, 26.8, 25.6, 25.1 ppm.

34 Characterization data matched authentic sample from Sigma-Aldrich.
2-Benzofuranone³⁷ (Table 3, product 11): Prepared according to the general procedure from 10-hydroxy decanoic acid to yield a yellow oil (123 mg, 0.92 mmol, 92% yield).

![2-Benzofuranone](image)

1H NMR (400 MHz, CDCl₃) δ 7.35-7.10 (m, 4H), 3.75 (s, 2H) ppm. 13C NMR (100 MHz, CDCl₃) δ 174.2, 154.9, 129.0, 124.8, 124.2, 123.2, 110.9, 33.1 ppm.

4-Methoxyphenyl cinnamate³⁸ (Table 3, product 13): Prepared according to the general procedure from cinnamic acid to yield a white solid (181 mg, 0.71 mmol, 71% yield).

![4-Methoxyphenyl cinnamate](image)

1H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 16.0 Hz, 1H), 7.60-7.57 (m, 2H), 7.45-7.40 (m, 3H), 7.10 (d, J = 8.0 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H), 6.63 (d, J = 16.0 Hz, 2H), 3.82 (s, 2H) ppm. 13C NMR (100 MHz, CDCl₃) δ 165.9, 157.4, 146.6, 144.5, 134.4, 130.8, 129.2, 128.4, 122.5, 117.6, 114.7, 55.8 ppm.

N-Butylbenzamide³⁹ (Table 3, product 15): Prepared according to the general procedure from benzoic acid to yield a white solid (69 mg, 0.39 mmol, 39% yield).

![N-Butylbenzamide](image)

1H NMR (400 MHz, CDCl₃) δ 7.75 (m, 2H), 7.46 (m, 1H), 7.41 (m, 2H), 6.18 (bs, 1H), 3.45 (q, J = 4.0 Hz, 2H), 1.60 (m, 2H), 1.40 (m, 2H), 0.96 (t, J = 8.0 Hz, 3H) ppm. 13C NMR (100 MHz, CDCl₃) δ 167.7, 135.0, 131.5, 128.7, 127.0, 40.0, 31.9, 20.3, 14.0 ppm.

N,N-Diisopropyl 4-phenylbutyramide\(^{40}\) (Table 3, product 18): Prepared according to the general procedure from 4-phenylbutyric acid to yield a white solid (205 mg, 0.83 mmol, 83% yield).

\[
\begin{align*}
\text{N,N-Diisopropyl 4-phenylbutyramide} \\
\begin{array}{c}
\text{Chemical structure} \\
\text{N,N-Diisopropyl 4-phenylbutyramide}
\end{array}
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.35-7.15 (m, 5H), 3.87 (m, 1H), 3.48 (bs, 1H), 2.68 (t, \(J = 8.0\) Hz, 2H), 2.28 (t, \(J = 8.0\) Hz, 2H), 1.95 (m, 2H), 1.38 (d, \(J = 4.0\) Hz, 6H), 1.65 (d, \(J = 8.0\) Hz, 6H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 172.0, 142.1, 128.7, 128.5, 126.0, 48.5, 45.9, 35.5, 34.4, 27.1, 21.1, 20.9 ppm.

N,N-Dicyclohexyl 4-phenylbutyramide\(^{40}\) (Table 3, product 19): Prepared according to the general procedure from 4-phenylbutyric acid to yield a white solid (252 mg, 0.77 mmol, 77% yield).

\[
\begin{align*}
\text{N,N-Dicyclohexyl 4-phenylbutyramide} \\
\begin{array}{c}
\text{Chemical structure} \\
\text{N,N-Dicyclohexyl 4-phenylbutyramide}
\end{array}
\end{align*}
\]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.30-7.15 (m, 5H), 3.32 (bs, 1H), 2.67 (t, \(J = 8.0\) Hz, 2H), 2.46 (bs, 1H), 2.28 (t, \(J = 8.0\) Hz, 2H), 1.95 (m, 2H), 1.77 (m, 4H), 1.63 (m, 4H), 1.46 (m, 4H), 1.30-1.10 (m, 8H) ppm. \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 172.3, 142.4, 128.6, 128.5, 126.1, 48.5, 45.9, 35.6, 34.4, 29.6, 29.5, 26.1, 22.9, 21.0, 20.9 ppm.

NMR spectra

400 MHz, 1H NMR, CDCl$_3$

Table 1, entry 1

400 MHz, 1H NMR, CDCl$_3$

Table 1, entry 2
400 MHz, 1H NMR, CDCl$_3$

Table 1, entry 3

400 MHz, 1H NMR, CDCl$_3$

Table 1, entry 4
200 MHz, 1H NMR, CDCl$_3$

Table 1, entry 5

CO_2Ph

2, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

2, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

200 MHz, 1H NMR, CDCl$_3$

Table 1, entry 6

CO_2nOct

2, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
400 MHz, 1H NMR, CDCl$_3$

Table 1, entry 7

400 MHz, 1H NMR, CDCl$_3$

Table 1, entry 8
400 MHz, 1H NMR, CDCl$_3$

Table 1, entry 11

400 MHz, 1H NMR, CDCl$_3$

Table 1, entry 12
Table 1, entry 15

Table 1, entry 16
400 MHz, 1H NMR, CDCl$_3$

Table 2, entry 1

400 MHz, 1H NMR, CDCl$_3$

Table 2, entry 1

S30
400 MHz, 1H NMR, CDCl$_3$

Table 2, entry 5

400 MHz, 1H NMR, CDCl$_3$

Table 2, entry 6
400 MHz, 1H NMR, CDCl$_3$

Table 2, entry 15

400 MHz, 1H NMR, CDCl$_3$

Table 3, product 2

S37
400 MHz, 1H NMR, CDCl$_3$

Table 3, product 4

400 MHz, 1H NMR, CDCl$_3$

Table 3, product 5
400 MHz, 1H NMR, CDCl$_3$

Table 3, product 11

400 MHz, 1H NMR, CDCl$_3$

Table 3, product 13
400 MHz, 1H NMR, CDCl$_3$

Table 3, product 15

400 MHz, 1H NMR, CDCl$_3$

Table 3, product 18
400 MHz, 1H NMR, CDCl$_3$

Table 3, product 19