Supporting information

Chiral N,N'-Dioxide/In(OTf)₃-Catalyzed Asymmetric Vinylogous Mukaiyama Aldol Reactions

Kai Fu, a Jianfeng Zheng, a Lili Lin, a* Xiaohua Liu a and Xiaoming Feng a,b,*

a Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China

b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
xmfeng@scu.edu.cn

Contents:

1. General remarks ... 2

2. General procedure for the catalytic asymmetric VMAR .. 2

3. Other conditions of VMAR .. 2

4. The analytical and spectral characterization data of the VMAR products 3

5. The operando IR experiments of the reaction .. 22

6. References .. 23

7. Copies of NMR spectra for VMAR products .. 23
1. General remarks

1H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts are recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard (CDCl$_3$, δ = 7.26). Spectra are reported as follows: chemical shift (δ = ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz), integration and assignment. 13C NMR data were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl$_3$, δ = 77.0). Enantiomeric excesses (ee) were determined by chiral HPLC on corresponding commercial chiral column. Optical rotations were reported as follows: $[\alpha]^T_{D}$ (c: g/100 mL, in solvent). HRMS was recorded on a commercial apparatus (ESI Source). Reactions were carried out using commercial available reagents in oven dried apparatus. Acyclic silyl dienolate 1, were prepared from methyl crotonate according to a literature procedure.1 The N,N'-dioxide ligands were synthesized by the same procedure in the literature.2

2. General procedure for the catalytic asymmetric VMAR

N,N'-dioxide L-PiPr_2 (0.02 mmol), In(OTf)$_3$ (0.01 mmol), and 5-methylsalicylic acid (0.02 mmol) were stirred in 0.5 mL ethyl caproate solvent at 35 °C for 0.5 h under an N$_2$ atmosphere. Subsequently, acyclic silyl dienol ester 1 (0.15 mmol) and aldehydes 2 (0.1 mmol) were added under −20 °C. The mixture was stirred for further 48 h, and then was purified directly by column chromatography on silica gel (ethyl acetate/petroleum ether 1/7–1/4).

3. Other conditions of VMAR
<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Metal</th>
<th>L: Metal</th>
<th>Solvent</th>
<th>Additive</th>
<th>Temp. [°C]</th>
<th>T [h]</th>
<th>Yield [%]</th>
<th>ee [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>1:0.8</td>
<td>ethyl caproate</td>
<td>-</td>
<td>-20</td>
<td>48</td>
<td>45</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>1:1</td>
<td>ethyl caproate</td>
<td>-</td>
<td>-20</td>
<td>48</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>1:2:1</td>
<td>ethyl caproate</td>
<td>-</td>
<td>-20</td>
<td>48</td>
<td>63</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>1.5:1</td>
<td>ethyl caproate</td>
<td>-</td>
<td>-20</td>
<td>48</td>
<td>73</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>ethyl caproate</td>
<td>-</td>
<td>-20</td>
<td>48</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>L-PiPr₂</td>
<td>Y(OTf)₃</td>
<td>2:1</td>
<td>THF</td>
<td>-</td>
<td>35</td>
<td>24</td>
<td>23</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>L-PiPh</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>THF</td>
<td>-</td>
<td>35</td>
<td>24</td>
<td>56</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>DCM</td>
<td>-</td>
<td>35</td>
<td>24</td>
<td>Trace</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>ethyl caproate</td>
<td>-</td>
<td>0</td>
<td>48</td>
<td>86</td>
<td>81</td>
</tr>
<tr>
<td>10</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>ethyl caproate</td>
<td>-</td>
<td>-30</td>
<td>48</td>
<td>62</td>
<td>89</td>
</tr>
<tr>
<td>11</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>ethyl caproate</td>
<td>DABCO</td>
<td>-20</td>
<td>48</td>
<td>N.R.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>ethyl caproate</td>
<td>Na2SO4</td>
<td>-20</td>
<td>48</td>
<td>74</td>
<td>89</td>
</tr>
<tr>
<td>13</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>ethyl caproate</td>
<td>Salicylic acid</td>
<td>-20</td>
<td>48</td>
<td>75</td>
<td>91</td>
</tr>
<tr>
<td>14</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>ethyl caproate</td>
<td>Benzoic acid</td>
<td>-20</td>
<td>48</td>
<td>94</td>
<td>87</td>
</tr>
<tr>
<td>15</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>ethyl caproate</td>
<td>4-tert-butylbenzoic acid</td>
<td>-20</td>
<td>48</td>
<td>98</td>
<td>89</td>
</tr>
<tr>
<td>16</td>
<td>L-PiPr₂</td>
<td>In(OTf)₃</td>
<td>2:1</td>
<td>ethyl caproate</td>
<td>3-hydroxybenzoic acid</td>
<td>-20</td>
<td>48</td>
<td>70</td>
<td>90</td>
</tr>
</tbody>
</table>

* Unless specified, all reactions were performed with L-metal (10 mol%, 2:1), 1 (0.15 mmol), 2a (0.10 mmol) in THF (0.5 mL). "Isolated yield. " Determined by HPLC analysis.

4. The analytical and spectral characterization data of the VMAR products

(S,2E,6E)-methyl 5-hydroxy-7-phenylhepta-2,6-dienoate 3a
A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 70/30, flow rate = 1.0 ml/min, λ = 254 nm), retention time: t\textsubscript{1} = 5.57 min, t\textsubscript{2} = 6.79 min, ee = 92%. [α\textsubscript{D}23.7] = −3.57 (c = 0.42 in CHCl\textsubscript{3}). 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.41 – 7.24 (m, 5H), 7.01 (dt, J = 15.5, 7.3 Hz, 1H), 6.61 (d, J = 15.9 Hz, 1H), 6.22 (dd, J = 15.9, 6.6 Hz, 1H), 5.95 (dt, J = 15.7, 1.4 Hz, 1H), 4.44 (q, J = 6.2 Hz, 1H), 3.72 (s, 3H), 2.56 – 2.52 (m, 2H), 2.04 (s, 1H). 13C NMR (101 MHz, CDCl\textsubscript{3}) 166.84, 144.83, 136.30, 131.09, 130.91, 128.65, 127.93, 126.58, 123.68, 71.37, 51.59, 40.11.

HRMS (SEI-TOF) calcd for C\textsubscript{14}H\textsubscript{16}NaO\textsubscript{3}+ ([M+Na+]) = 255.0992, Found 255.0998.

Retention Time	% Area
1 | 5.472 | 3.65
2 | 6.733 | 96.35

(2E,6E)-methyl 5-hydroxy-7-(2-methoxyphenyl)hepta-2,6-dienoate 3b

A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 70/30, flow rate = 1.0 ml/min, λ = 254 nm), retention time: t\textsubscript{1} = 7.05 min, t\textsubscript{2} = 11.78 min, ee = 93%. [α\textsubscript{D}26.5] = −2.67 (c = 0.60 in CHCl\textsubscript{3}). 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.41 (dd, J = 7.6, 1.6 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.06 – 6.97 (m, 1H), 6.96 – 6.84 (m, 3H), 6.24 (dd, J = 16.0, 6.8 Hz, 1H), 6.02 – 5.89 (m, 1H), 4.44 (q, J = 6.3 Hz, 1H), 3.84 (s, 3H), 3.72 (s, 3H), 2.62 – 2.46 (m, 2H), 1.98 (s, 1H). 13C NMR (101 MHz, CDCl\textsubscript{3}) 166.77, 156.84, 144.96, 131.62, 129.00, 127.02, 126.12, 125.30, 123.57, 120.67, 110.91, 72.01, 55.43, 51.48, 40.16. HRMS (SEI-TOF) calcd for C\textsubscript{15}H\textsubscript{18}NaO\textsubscript{4}+ ([M+Na+]) = 285.1097, Found 285.1107.
(2E,6E)-methyl 7-(4-chlorophenyl)-5-hydroxyhepta-2,6-dienoate 3c

A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: $t_{r1} = 10.78$ min, $t_{r2} = 11.91$ min, ee = 90%. $[\alpha]_{D}^{22.6} = -7.62$ (c = 0.30 in CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.33 – 7.23 (m, 4H), 7.09 – 6.90 (m, 1H), 6.58 (dd, $J = 15.9, 0.8$ Hz, 1H), 6.20 (dd, $J = 15.9, 6.4$ Hz, 1H), 5.99 – 5.91 (m, 1H), 4.45 (q, $J = 6.1$ Hz, 1H), 3.73 (s, 3H), 2.58 – 2.48 (m, 2H), 1.97 (s, 1H). 13C NMR (101 MHz, CDCl$_3$) 166.71, 144.45, 134.80, 133.57, 131.52, 129.85, 128.80, 127.77, 123.88, 71.32, 51.58, 40.11. HRMS (SEI-TOF) calcd for C$_{14}$H$_{15}$ClNaO$_3$+ ([M+Na$^+$]) = 289.0602, Found 289.0604; HRMS (SEI-TOF) calcd for C$_{14}$H$_{15}$ClNaO$_3$+ ([M+Na$^+$]) = 291.0583.
(2E,6E)-methyl 7-(furan-2-yl)-5-hydroxyhepta-2,6-dienoate 3d

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: t₁ = 16.38 min, t₂ = 18.59 min, ee = 92%. [α]D^{27.3} = −14.38 (c = 0.15 in CHCl₃). H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 1.5 Hz, 1H), 6.99 (dt, J = 15.5, 7.3 Hz, 1H), 6.49 – 6.41 (m, 1H), 6.38 (dd, J = 3.3, 1.8 Hz, 1H), 6.26 (d, J = 3.3 Hz, 1H), 6.17 (dd, J = 15.8, 6.3 Hz, 1H), 5.95 (dt, J = 15.7, 1.4 Hz, 1H), 4.46 – 4.37 (m, 1H), 3.73 (s, 3H), 2.63 – 2.42 (m, 2H), 1.82 (s, 1H). C NMR (101 MHz, CDCl₃) 166.70, 151.96, 144.51, 142.22, 129.38, 123.84, 119.31, 111.37, 108.66, 77.34, 77.03, 76.71, 71.08, 51.54, 40.14. HRMS (SEI-TOF) calcd for C₁₂H₁₄NaO₄⁺ (M+Na⁺) = 245.0784, Found 245.0788.
(2E,6Z)-methyl 6-bromo-5-hydroxy-7-phenylhepta-2,6-dienoate \(3e\)

A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 80/20, flow rate = 1.0 ml/min, \(\lambda = 254\) nm), retention time: \(t_{11} = 6.05\) min, \(t_{12} = 6.70\) min, ee = 92%. \([\alpha]_D^{28.1} = -13.30\) (c = 1.20 in CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.63 – 7.53\) (m, 2H), 7.42 – 7.28 (m, 3H), 7.10 (s, 1H), 6.98 (dt, \(J = 15.6, 7.3\) Hz, 1H), 5.98 (dt, \(J = 15.7, 1.4\) Hz, 1H), 4.46 – 4.38 (m, 1H), 3.72 (s, 3H), 2.79 – 2.61 (m, 3H). \(^1^3\)C NMR (101 MHz, CDCl\(_3\)) 166.75, 143.96, 134.80, 129.14, 128.69, 128.53, 128.34, 128.22, 123.89, 76.15, 51.60, 38.60. HRMS (SEI-TOF) calcd for \(\text{C}_{14}\text{H}_{15}\text{BrNaO}_3^+ ([M+Na^+]) = 333.0097\), Found 333.0100; HRMS (SEI-TOF) calcd for \(\text{C}_{14}\text{H}_{15}\text{BrNaO}_3^+ ([M+Na^+]) = 335.0077\), Found 335.0111.

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.053</td>
</tr>
<tr>
<td>2</td>
<td>6.695</td>
</tr>
</tbody>
</table>

(S,E)-methyl 5-hydroxy-5-phenylpent-2-enoate \(3f\)

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, \(\lambda = 254\) nm), retention time: \(t_{11} = 14.17\) min, \(t_{12} = 15.37\) min, ee = 95%. \([\alpha]_D^{21.6} = -41.32\) (c = 0.48 in CHCl\(_3\)). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.39 – 7.25\) (m, 5H), 6.96 (dt, \(J = 15.5, 7.3\) Hz, 1H), 5.89 (dt, \(J = 15.7, 1.3\) Hz, 1H), 4.81 (dd, \(J = 7.6, 5.3\) Hz, 1H), 3.70 (s, 3H), 2.72 – 2.54 (m, 2H), 2.30 (s,
1H). 13C NMR (101 MHz, CDCl$_3$) 166.79, 145.08, 143.45, 128.63, 127.94, 125.74, 123.56, 73.07, 51.53, 41.84. HRMS (SEI-TOF) calcd for $\text{C}_{12}\text{H}_{14}\text{NaO}_3^+$ ([M+Na$^+$]) = 229.0835, Found 229.0843.

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.165</td>
</tr>
<tr>
<td>2</td>
<td>15.374</td>
</tr>
</tbody>
</table>

(E)-methyl 5-hydroxy-5-(o-tolyl)pent-2-enoate 3g

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: $t_{r1} = 7.12$ min, $t_{r2} = 20.64$ min, ee = 86%. $[\alpha]_D^{22.1}$ = -60.62 (c = 0.39 in CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.51 – 7.42 (m, 1H), 7.26 – 7.11 (m, 3H), 7.01 (dt, J = 15.6, 7.3 Hz, 1H), 5.92 (dt, J = 15.7, 1.4 Hz, 1H), 5.10 – 4.98 (m, 1H), 3.72 (s, 3H), 2.65 – 2.55 (m, 2H), 2.32 (s, 3H), 2.10 (d, J = 3.2 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) 166.78, 145.35, 141.55, 134.27, 130.54, 127.61, 126.47, 125.06, 123.47, 69.42, 51.51, 40.73, 18.99. HRMS (SEI-TOF) calcd for $\text{C}_{13}\text{H}_{16}\text{NaO}_3^+$ ([M+Na$^+$]) = 243.0992, Found 243.0999.
(E)-methyl 5-hydroxy-5-(m-tolyl)pent-2-enoate 3h

A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 95/05, flow rate = 1.0 ml/min, λ = 254 nm), retention time: t₁ = 13.65 min, t₂ = 14.78 min, ee = 94%. [α]D²⁸ = −29.62 (c = 0.26 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 1H), 7.19 – 7.08 (m, 3H), 7.02 – 6.92 (m, 1H), 5.91 (d, J = 15.7 Hz, 1H), 4.78 (t, J = 5.8 Hz, 1H), 3.72 (s, 3H), 2.72 – 2.55 (m, 2H), 2.36 (s, 3H), 2.08 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) 166.76, 145.13, 143.39, 138.36, 128.71, 128.55, 126.40, 123.54, 122.79, 73.14, 51.50, 41.81, 21.45. HRMS (SEI-TOF) calcd for C₁₃H₁₆NaO₃⁺ ([M+Na⁺]) = 243.0992, Found 243.1000.
A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: t_{r1} = 18.20 min, t_{r2} = 21.25 min, ee = 92%. \([\alpha]_D^{26.5} = -25.25\) (c = 0.80 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 7.5, 1.6 Hz, 1H), 7.28 – 7.23 (m, 1H), 7.05 – 6.94 (m, 2H), 6.88 (d, J = 8.2 Hz, 1H), 5.88 (dt, J = 15.7, 1.4 Hz, 1H), 5.03 (dd, J = 12.4, 5.8 Hz, 1H), 3.84 (s, 3H), 3.70 (s, 3H), 2.76 (dd, J = 5.5, 2.1 Hz, 1H), 2.70 – 2.63 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) 166.87, 156.30, 145.97, 131.26, 128.66, 126.76, 126.67, 122.98, 120.86, 110.52, 69.38, 55.27, 51.40, 40.12. HRMS (SEI-TOF) calcd for C₁₃H₁₆NaO₄⁺ ([M+Na⁺]) = 259.0941, Found 259.0946.

(E)-methyl 5-hydroxy-5-(3-methoxyphenyl)pent-2-enoate 3j

A colorless oil; HPLC (Chiralcel IC, hexane/i-PrOH = 80/20, flow rate = 1.0 ml/min, λ = 254 nm), retention time: t_{r1} = 11.80 min, t_{r2} = 14.62 min, ee = 95%. \([\alpha]_D^{28.7} = -33.33\) (c = 0.30 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 1H), 7.03 – 6.86 (m, 3H), 6.87 – 6.79 (m, 1H), 5.95 – 5.86 (m, 1H), 4.80 (t, J = 5.2 Hz, 1H), 3.81 (s, 3H), 3.71 (s, 3H), 2.72 – 2.55 (m, 2H), 2.22 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) 166.76, 159.85, 145.15, 145.00, 129.69, 123.58, 118.00, 113.38, 111.23, 73.01, 55.26, 51.53, 41.80. HRMS (SEI-TOF) calcd for C₁₃H₁₆NaO₄⁺
(E)-methyl 5-hydroxy-5-(4-methoxyphenyl)pent-2-enoate 3k

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: tᵱ₁ = 25.62 min, tᵱ₂ = 27.41 min, ee = 95%. [α]ᵢ²⁸.⁷ = −7.84 (c = 0.10 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.23 (m, 2H), 7.02 – 6.83 (m, 3H), 5.89 (dt, J = 15.7, 1.3 Hz, 1H), 4.82 – 4.71 (m, 1H), 3.80 (s, 3H), 3.71 (s, 3H), 2.74 – 2.50 (m, 2H), 2.08 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) 166.75, 159.31, 145.11, 135.58, 127.03, 123.49, 114.01, 72.74, 55.30, 51.48, 41.77. HRMS (SEI-TOF) calcd for C₁₃H₁₂O₄Na⁺ ([M+Na⁺]) = 259.0941, Found 259.0942.
(E)-methyl 5-hydroxy-5-(3-phenoxyphenyl)pent-2-enoate 3l

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: $t_1 = 17.82$ min, $t_2 = 20.64$ min, ee = 96%. $[\alpha]_D^{25.1} = -19.69$ (c = 0.66 in CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.36 – 7.25 (m, 3H), 7.14 – 7.05 (m, 2H), 7.04 – 6.87 (m, 5H), 5.88 (dt, $J = 15.7, 1.3$ Hz, 1H), 4.84 – 4.70 (m, 1H), 3.70 (s, 3H), 2.68 – 2.54 (m, 2H), 2.33 (d, $J = 3.4$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) 166.71, 157.57, 157.00, 145.60, 144.77, 129.98, 129.82, 123.71, 123.42, 120.47, 118.96, 118.14, 116.12, 72.70, 51.53, 41.79. HRMS (SEI-TOF) calcd for C$_{18}$H$_{18}$NaO$_4$ ([M+Na$^+$]) = 321.1097, Found 321.1100.

(E)-methyl 5-(4-fluorophenyl)-5-hydroxypent-2-enoate 3m

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.832</td>
</tr>
<tr>
<td>2</td>
<td>20.604</td>
</tr>
</tbody>
</table>
A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: \(t_{r1} = 11.20 \) min, \(t_{r2} = 12.51 \) min, ee = 87%. \([\alpha]_{D}^{27.8} = -40.00 \) (c = 0.40 in CHCl₃). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta 7.47 \) (td, \(J = 7.5, 1.7 \) Hz, 1H), 7.30 – 7.23 (m, 1H), 7.16 (td, \(J = 7.5, 1.0 \) Hz, 1H), 7.08 – 6.91 (m, 2H), 5.91 (dt, \(J = 15.7, 1.4 \) Hz, 1H), 5.15 (t, \(J = 5.9 \) Hz, 1H), 3.71 (s, 3H), 2.76 – 2.59 (m, 2H), 2.30 (s, 1H). \(^{13}\)C NMR (101 MHz, CDCl₃) 166.71, 160.80, 158.36, 144.62, 130.45, 130.32, 129.28, 129.20, 127.13, 127.09, 124.44, 124.41, 123.79, 115.49, 115.28, 67.03, 67.01, 51.52, 40.60. HRMS (SEI-TOF) calcd for \(\text{C}_{12}\text{H}_{13}\text{FNaO}_3^+ \) ([M+Na⁺]) = 247.0741, Found 247.0746.

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.203</td>
</tr>
<tr>
<td>2</td>
<td>12.509</td>
</tr>
</tbody>
</table>

\((E)\)-methyl 5-(3-fluorophenyl)-5-hydroxypent-2-enoate 3n

A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 95/05, flow rate = 1.0 ml/min, λ = 254 nm), retention time: \(t_{r1} = 15.27 \) min, \(t_{r2} = 16.21 \) min, ee = 94%. \([\alpha]_{D}^{28.4} = -20.83 \) (c = 0.36 in CHCl₃). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta 7.36 – 7.28 \) (m, 1H), 7.14 – 7.06 (m, 2H), 7.01 – 6.90 (m, 2H), 5.95 – 5.86 (m, 1H), 4.87 – 4.80 (m, 1H), 3.72 (s, 3H), 2.67 – 2.59 (m, 2H), 2.29 (d, \(J = 3.2 \) Hz, 1H). \(^{13}\)C NMR (101 MHz, CDCl₃) 166.67, 164.23, 161.78, 146.12, 146.05, 144.42, 130.20, 130.12,
123.91, 121.31, 121.28, 114.86, 114.64, 112.79, 112.57, 72.41, 72.40, 51.57, 41.80. HRMS (SEI-TOF) calcd for $C_{12}H_{13}FNaO_3^+$ ([M+Na$^+$]) = 247.0741, Found 247.0746.

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.268</td>
</tr>
<tr>
<td>2</td>
<td>16.205</td>
</tr>
</tbody>
</table>

(E)-methyl 5-((4-fluorophenyl)-5-hydroxypent-2-enoate 3o

![Graph of retention times and areas]

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: $t_{11} = 10.85$ min, $t_{12} = 11.85$ min, ee = 95%. $[\alpha]_D^{22.4} = -35.11$ (c = 0.54 in CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.35 – 7.26 (m, 2H), 7.09 – 6.99 (m, 2H), 6.98 – 6.87 (m, 1H), 5.88 (dt, $J = 15.7$, 1.3 Hz, 1H), 4.80 (dd, $J = 7.5$, 5.4 Hz, 1H), 3.70 (s, 3H), 2.69 – 2.56 (m, 2H), 2.56 – 2.27 (m, 1H). 13C NMR (101 MHz, CDCl$_3$) 166.77, 163.53, 161.08, 144.76, 139.23, 139.20, 127.47, 127.39, 123.69, 115.54, 115.33, 72.38, 51.56, 41.92. HRMS (SEI-TOF) calcd for $C_{12}H_{13}FNaO_3^+$ ([M+Na$^+$]) = 247.0741, Found 247.0744.
(E)-methyl 5-(3-bromophenyl)-5-hydroxypent-2-enoate 3p

A colorless oil; HPLC (Chiralcel IC, hexane/i-PrOH = 80/20, flow rate = 1.0 ml/min, \(\lambda = 254 \) nm), retention time: \(t_{r1} = 7.61 \) min, \(t_{r2} = 10.16 \) min, ee = 96%. \([\alpha]_D^{28.6} = -29.69\) (\(c = 0.32 \) in CHCl\(_3\)).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.52 \) (s, 1H), 7.44 – 7.39 (m, 1H), 7.28 – 7.19 (m, 2H), 7.02 – 6.85 (m, 1H), 5.90 (d, \(J = 15.7 \) Hz, 1H), 4.83 – 4.75 (m, 1H), 3.71 (s, 3H), 2.69 – 2.55 (m, 2H), 2.41 (d, \(J = 3.5 \) Hz, 1H). \(^1\)C NMR (101 MHz, CDCl\(_3\)) 166.70, 145.78, 144.45, 130.95, 130.19, 128.86, 124.38, 123.92, 122.75, 72.33, 51.59, 41.82. HRMS (SEI-TOF) calcld for C\(_{12}\)H\(_{13}\)BrNaO\(_3^+\) ([M+Na\(^+\)]) = 306.9940, Found 306.9941; HRMS (SEI-TOF) calcld for C\(_{12}\)H\(_{13}\)BrNaO\(_3^+\) ([M+Na\(^+\)]) = 308.9920, Found 308.9948.
(E)-methyl 5-(benzo[d][1,3]dioxol-5-yl)-5-hydroxypent-2-enoate 3q

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 80/20, flow rate = 1.0 ml/min, λ = 254 nm), retention time: $t_{r1} = 18.17$ min, $t_{r2} = 20.33$ min, ee = 98%. $[\alpha]_{D}^{22.3} = -16.84\, (c = 0.37$ in CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) $\delta 6.93$ (dt, $J = 15.5, 7.3$ Hz, 1H), 6.86 (s, 1H), 6.82 – 6.73 (m, 2H), 5.95 (s, 2H), 5.89 (dt, $J = 15.7, 1.4$ Hz, 1H), 4.73 (dd, $J = 7.6, 5.4$ Hz, 1H), 3.71 (s, 3H), 2.71 – 2.52 (m, 2H), 2.20 (s, 1H). 13C NMR (101 MHz, CDCl$_3$) 166.76, 147.92, 147.22, 144.93, 137.50, 123.54, 119.23, 108.20, 106.23, 101.10, 72.95, 51.53, 41.82. HRMS (SEI-TOF) calcld for C$_{13}$H$_{14}$NaO$_5$ $([M+Na^+] = 273.0733$, Found 273.0735.

(E)-methyl 5-(3,4-dichlorophenyl)-5-hydroxypent-2-enoate 3r

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 95/05, flow rate =
1.0 ml/min, \(\lambda = 254 \text{ nm} \), retention time: \(t_{r1} = 19.81 \) min, \(t_{r2} = 20.93 \) min, ee = 93\%. \([\alpha]_D^{27.9} = -26.45 \) (c = 0.76 in CHCl\(_3\)).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.44 (dd, \(J = 18.1, 5.1 \text{ Hz} \), 2H), 7.17 (dd, \(J = 8.3, 2.0 \text{ Hz} \), 1H), 6.92 (dt, \(J = 15.6, 7.3 \text{ Hz} \), 1H), 5.89 (dt, \(J = 15.7, 1.4 \text{ Hz} \), 1H), 4.79 (dd, \(J = 8.0, 6.6 \text{ Hz} \), 1H), 3.71 (s, 3H), 2.67 – 2.53 (m, 3H), 1.82 (s, 0H).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) 166.69, 144.11, 143.71, 132.71, 131.68, 130.54, 127.79, 125.10, 124.08, 71.77, 51.62, 41.75.

HRMS (SEI-TOF) calcd for C\(_{12}\)H\(_{12}\)O\(_3\)Cl\(_2\)NaO\(_3\)= ([M+Na\(^+\)]) = 297.0056, Found 297.0063; HRMS (SEI-TOF) calcd for C\(_{12}\)H\(_{12}\)O\(_3\)Cl\(_2\)NaO\(_3\)= ([M+Na\(^+\)]) = 300.9996, Found 301.0003.

\((E)\)-methyl 5-hydroxy-5-(naphthalen-1-yl)pent-2-enoate 3s

A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, \(\lambda = 254 \text{ nm} \), retention time: \(t_{r1} = 12.24 \) min, \(t_{r2} = 14.95 \) min, ee = 94\%. \([\alpha]_D^{27.5} = -70.45 \) (c = 0.22 in CHCl\(_3\)).

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.04 (d, \(J = 8.1 \text{ Hz} \), 1H), 7.92 – 7.86 (m, 1H), 7.80 (d, \(J = 8.2 \text{ Hz} \), 1H), 7.67 (d, \(J = 7.1 \text{ Hz} \), 1H), 7.57 – 7.45 (m, 3H), 7.16 – 7.06 (m, 1H), 6.00 – 5.90 (m, 1H), 5.61 (dd, \(J = 8.0, 3.8 \text{ Hz} \), 1H), 3.73 (s, 3H), 2.90 – 2.72 (m, 2H), 2.19 (s, 1H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) 166.77, 145.38, 138.94, 133.85, 130.05, 129.09, 128.40, 126.32, 125.71, 125.48, 123.53,
HRMS (SEI-TOF) calcd for C_{10}H_{14}NaO_{3}^+ ([M+Na^+]) = 279.0992, Found 279.0996.

(S,E)-methyl 5-(furan-2-yl)-5-hydroxypent-2-enoate 3t

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: t_{11} = 15.80 min, t_{22} = 17.20 min, ee = 92%. [α]_D^{22.9} = −22.73 (c = 0.09 in CHCl₃), ^1H NMR (400 MHz, CDCl₃) δ 7.43 – 7.36 (m, 1H), 7.01 – 6.91 (m, 1H), 6.34 (dd, J = 3.2, 1.9 Hz, 1H), 6.27 (d, J = 3.2 Hz, 1H), 5.94 (dt, J = 15.7, 1.4 Hz, 1H), 4.84 (dd, J = 11.1, 6.4 Hz, 1H), 3.71 (s, 3H), 2.84 – 2.69 (m, 2H), 2.14 (d, J = 4.7 Hz, 1H). ^13C NMR (101 MHz, CDCl₃) 169.04, 166.66, 155.32, 144.12, 142.30, 123.85, 110.30, 106.50, 66.46, 51.55, 38.26. HRMS (SEI-TOF) calcd for C_{10}H_{14}NaO_{3}^+ ([M+Na^+]) = 219.0628, Found 219.0637.
(E)-methyl 5-hydroxyoct-2-enoate 3u

A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 95/05, flow rate = 1.0 ml/min, λ = 254 nm), retention time: \(t_1 = 9.02 \text{ min} \), \(t_2 = 9.78 \text{ min} \), ee = 83%. \([\alpha]_D^{23.5} = -8.89 \) (c = 0.18 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) \(\delta 7.08 – 6.92 \text{ (m, 1H)} \), 5.91 (d, \(J = 15.7 \text{ Hz, 1H} \)), 3.78 (s, 1H), 3.74 (s, 3H), 2.46 – 2.28 (m, 2H), 1.62 (s, 1H), 1.51 – 1.32 (m, 4H), 0.99 – 0.88 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) 170.61, 166.79, 145.59, 123.43, 70.30, 51.51, 40.19, 39.26, 18.78, 13.97. HRMS (SEI-TOF) calcd for \(C_{9}H_{16}NaO_{3}^{+} ([M+Na^{+}]) = 195.0992 \), Found 195.0999.

(R,E)-methyl 5-hydroxydec-2-enoate 3v

A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 98/02, flow rate = 1.0 ml/min, λ = 254 nm), retention time: \(t_1 = 15.66 \text{ min} \), \(t_2 = 17.76 \text{ min} \), ee = 93%. \([\alpha]_D^{25.1} = -6.25 \) (c = 0.40 in CHCl₃). ¹H NMR (400 MHz, CDCl₃) \(\delta 7.06 – 6.93 \text{ (m, 1H)} \), 5.91 (dt, \(J = 15.7, 1.3 \text{ Hz, 1H} \)), 3.81 – 3.72 (m, 4H), 2.45 – 2.24 (m, 2H), 1.68 (s, 1H), 1.51 – 1.26 (m, 8H), 0.89 (t, \(J = 6.8 \text{ Hz, 3H} \)). ¹³C NMR (101 MHz, CDCl₃) 166.81, 145.64, 123.40, 70.57, 51.50, 40.17, 37.11, 31.73, 25.26, 22.59, 14.01. HRMS (SEI-TOF) calcd for \(C_{16}H_{16}NaO_{3}^{+} ([M+Na^{+}]) = 223.1305 \), Found 223.1309.
(S,E)-methyl 5-hydroxy-6-methylhept-2-enoate 3w

A colorless oil; HPLC (Chiralcel IB, hexane/i-PrOH = 95/05, flow rate = 1.0 ml/min, λ = 254 nm), retention time: $t_{R1} = 7.68$ min, $t_{R2} = 9.00$ min, ee = 89%. $[\alpha]_{D}^{29.1} = -13.89$ (c = 0.18 in CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 7.09 – 6.95 (m, 1H), 5.92 (dt, $J = 15.7$, 1.4 Hz, 1H), 3.73 (s, 3H), 3.57 – 3.45 (m, 1H), 2.51 – 2.21 (m, 2H), 1.76 – 1.68 (m, 1H), 1.66 (d, $J = 3.5$ Hz, 1H), 0.95 (d, $J = 1.1$ Hz, 3H), 0.94 (d, $J = 1.2$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) 166.79, 146.20, 123.24, 75.34, 51.47, 37.17, 33.40, 18.69, 17.22. HRMS (SEI-TOF) calcd for C$_9$H$_{16}$NaO$_3$ $^+(\text{M+Na}^+)$ = 195.0992, Found 195.1000.
(S,E)-methyl 5-hydroxy-6,6-dimethylhept-2-enoate 3x

A colorless oil; HPLC (Chiralcel IE, hexane/i-PrOH = 90/10, flow rate = 1.0 ml/min, λ = 254 nm), retention time: t\textsubscript{r1} = 8.54 min, t\textsubscript{r2} = 9.68 min, ee = 98%. \([\alpha]_D^{23.9} = -10.00\) (c = 0.08 in CHCl\textsubscript{3}). \(^1\)H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.12 – 6.97 (m, 1H), 5.93 (d, J = 15.7 Hz, 1H), 3.73 (s, 3H), 3.37 (d, J = 10.1 Hz, 1H), 2.52 – 2.35 (m, 1H), 2.25 – 2.10 (m, 1H), 1.56 (d, J = 2.7 Hz, 1H), 0.93 (s, 9H). \(^13\)C NMR (101 MHz, CDCl\textsubscript{3}) 166.83, 147.49, 122.97, 78.38, 51.47, 34.85, 25.60. HRMS (SEI-TOF) calcd for C\textsubscript{10}H\textsubscript{18}NaO\textsubscript{3}+ ([M+Na+]) = 209.1148, Found 209.1153.

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>% Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.540</td>
</tr>
<tr>
<td>2</td>
<td>9.675</td>
</tr>
</tbody>
</table>

methyl 5-hydroxydecanoate 5v

To a solution of 3v (3.7 mmol, 741.3 mg) in CH\textsubscript{3}OH (12 mL), 5% Pd/C (100 mg) was added. The mixture was stirred under H\textsubscript{2} atmosphere (5 MPa) at 25 °C until the reaction was finished (12 h). Then, Pd/C was removed by filtration and washed with CH\textsubscript{2}Cl\textsubscript{2}. The filtrate was concentrated and isolated via column chromatography (1/7, ethyl acetate/petroleum ether). A colorless oil; \(^1\)H NMR (400 MHz, CDCl\textsubscript{3}) δ 3.67 (s, 3H), 3.63 – 3.54 (m, 1H), 2.35 (t, J = 7.4 Hz, 2H), 1.84 – 1.61 (m, 3H), 1.54 – 1.38 (m, 5H), 1.34 – 1.22 (m, 5H), 0.89 (t, J = 6.9 Hz, 3H). \(^13\)C NMR (101 MHz, CDCl\textsubscript{3}) 174.26, 71.36, 51.53, 37.43, 36.68, 33.89, 31.86, 25.29, 22.61, 20.98, 14.02. HRMS (SEI-TOF) calcd for C\textsubscript{11}H\textsubscript{22}NaO\textsubscript{3}+ ([M+Na+]) = 225.1461, Found 225.1465.
(R)-6-pentyltetrahydro-2H-pyran-2-one 6v

The product of 5v (0.665g) was dissolved in 12 mL DCM, 16.5 mg of p-TSA was added, and the mixture was stirred for 12 h. The mixture was subjected to chromatography using ethyl acetate/petroleum ether = 1/7. A colorless oil; ee = 94%. $[\alpha]_D^{20.0} = 39.00$ (c = 0.50 in CHCl$_3$), lit.3 $[\alpha]_D^{25.0} = 52.20$ (c =1.00 in CHCl$_3$). 1H NMR (400 MHz, CDCl$_3$) δ 4.33 – 4.24 (m, 1H), 2.64 – 2.53 (m, 1H), 2.51 – 2.38 (m 1H), 1.98 – 1.83 (m, 3H), 1.75 – 1.65 (m, 1H), 1.62 – 1.44 (m, 3H), 1.42 – 1.25 (m, 5H), 0.89 (t, J = 6.8 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) 179.55, 80.57, 35.76, 31.55, 29.42, 27.75, 24.56, 22.47, 18.45, 13.94. HRMS (SEI-TOF) calcd for C$_{10}$H$_{18}$NaO$_2$+$^+$ ([M+Na$^+$]) = 193.1199, Found 193.1209.

5. The operando IR experiments of the reaction

The 3D ATR-FTIR profile of the reaction

The IR spectrum of diene 1
The IR spectrum of aldehyde 2a

The IR spectrum of product 3a

6. References

7. Copies of NMR spectra for VMAR products

(S,2E,6E)-methyl 5-hydroxy-7-phenylhepta-2,6-dienoate 3a
(2E,6E)-methyl 5-hydroxy-7-(2-methoxyphenyl)hepta-2,6-dienoate 3b
(2E,6E)-methyl 7-(4-chlorophenyl)-5-hydroxyhepta-2,6-dienoate 3c
(2E,6E)-methyl 7-(furan-2-yl)-5-hydroxyhepta-2,6-dienoate 3d
(2E,6Z)-methyl 6-bromo-5-hydroxy-7-phenylhepta-2,6-dienoate 3e
(S,E)-methyl 5-hydroxy-5-phenylpent-2-enoate 3f
(E)-methyl 5-hydroxy-5-(o-tolyl)pent-2-enoate 3g
(E)-methyl 5-hydroxy-5-((m-tolyl)pent-2-enoate 3h
(E)-methyl 5-hydroxy-5-(2-methoxyphenyl)pent-2-enoate 3i
(E)-methyl 5-hydroxy-5-(3-methoxyphenyl)pent-2-enoate 3j
(E)-methyl 5-hydroxy-5-(4-methoxyphenyl)pent-2-enoate 3k
(E)-methyl 5-hydroxy-5-(3-phenoxphenyl)pent-2-enoate 3l
(E)-methyl 5-(4-fluorophenyl)-5-hydroxypent-2-enoate 3m
(E)-methyl 5-(3-fluorophenyl)-5-hydroxypent-2-enoate 3n
(E)-methyl 5-(4-fluorophenyl)-5-hydroxypent-2-enoate 3o
(E)-methyl 5-(3-bromophenyl)-5-hydroxypent-2-enoate 3p
(E)-methyl 5-(benzo[d][1,3]dioxol-5-yl)-5-hydroxypent-2-enoate 3q
(E)-methyl 5-(3,4-dichlorophenyl)-5-hydroxypent-2-enoate 3r
(E)-methyl 5-hydroxy-5-(naphthalen-1-yl)pent-2-enoate 3s
(S,E)-methyl 5-(furan-2-yl)-5-hydroxypent-2-enoate 3t
(E)-methyl 5-hydroxyoct-2-enoate 3u
(S,E)-methyl 5-hydroxydec-2-enoate 3v
(S,E)-methyl 5-hydroxy-6-methylhept-2-enoate 3w
(S,E)-methyl 5-hydroxy-6,6-dimethylhept-2-enoate 3x
methyl 5-hydroxydecanoate 5v
(R)-6-pentyltetrahydro-2H-pyran-2-one 6v